七年级上册数学知识树
- 格式:ppt
- 大小:1.51 MB
- 文档页数:10
初中数学知识树一、数的认识1. 整数(1)正整数、零、负整数(2)整数的基本性质2. 分数(1)真分数、假分数、带分数(2)分数的基本性质3. 小数(1)小数的意义(2)小数的性质二、数的运算1. 加法(1)整数加法(2)分数加法(3)小数加法2. 减法(1)整数减法(2)分数减法(3)小数减法3. 乘法(1)整数乘法(2)分数乘法(3)小数乘法4. 除法(1)整数除法(2)分数除法(3)小数除法5. 混合运算(1)加减混合运算(2)乘除混合运算(3)加减乘除混合运算三、方程与不等式1. 一元一次方程(1)方程的概念(2)解一元一次方程的方法2. 一元一次不等式(1)不等式的概念(2)解一元一次不等式的方法四、几何图形1. 点、线、面(1)点、线、面的概念(2)点、线、面的性质2. 平面图形(1)三角形(2)四边形(3)圆3. 立体图形(1)长方体(2)正方体(3)圆柱(4)圆锥五、概率与统计1. 概率(1)概率的概念(2)概率的计算方法2. 统计(1)平均数(2)中位数(3)众数(4)方差(5)标准差六、数学应用1. 实际问题求解(1)应用题的解题思路(2)应用题的解题方法2. 数学建模(1)数学建模的概念(2)数学建模的步骤(3)数学建模的应用七、数学思维与能力培养1. 抽象思维(1)抽象思维的概念(2)抽象思维的培养方法2. 逻辑思维(1)逻辑思维的概念(2)逻辑思维的培养方法3. 创新思维(1)创新思维的概念(2)创新思维的培养方法八、数学学习方法与技巧1. 课堂学习(1)认真听讲(2)做好笔记(3)积极参与讨论2. 课后复习(1)及时复习(3)做习题巩固3. 考试技巧(1)合理安排时间(2)仔细审题(3)规范答题九、数学竞赛与拓展1. 数学竞赛(1)数学竞赛的意义(2)数学竞赛的准备(3)数学竞赛的参赛技巧2. 数学拓展(1)数学拓展的意义(2)数学拓展的方法(3)数学拓展的实践十、数学与生活1. 数学与生活(1)数学在生活中的应用(2)数学与生活的关系2. 数学与科技(1)数学在科技中的应用(2)数学与科技的关系3. 数学与艺术(1)数学在艺术中的应用(2)数学与艺术的关系初中数学知识树一、数的认识1. 整数(1)正整数、零、负整数(2)整数的基本性质2. 分数(1)真分数、假分数、带分数(2)分数的基本性质3. 小数(1)小数的意义(2)小数的性质二、数的运算1. 加法(1)整数加法(2)分数加法(3)小数加法2. 减法(1)整数减法(2)分数减法(3)小数减法3. 乘法(1)整数乘法(2)分数乘法(3)小数乘法4. 除法(1)整数除法(2)分数除法(3)小数除法5. 混合运算(1)加减混合运算(2)乘除混合运算(3)加减乘除混合运算三、方程与不等式1. 一元一次方程(1)方程的概念(2)解一元一次方程的方法2. 一元一次不等式(1)不等式的概念(2)解一元一次不等式的方法四、几何图形1. 点、线、面(1)点、线、面的概念(2)点、线、面的性质2. 平面图形(1)三角形(2)四边形(3)圆3. 立体图形(1)长方体(2)正方体(3)圆柱(4)圆锥五、概率与统计1. 概率(1)概率的概念(2)概率的计算方法2. 统计(1)平均数(2)中位数(3)众数(4)方差(5)标准差六、数学应用1. 实际问题求解(1)应用题的解题思路(2)应用题的解题方法2. 数学建模(1)数学建模的概念(2)数学建模的步骤(3)数学建模的应用七、数学思维与能力培养1. 抽象思维(1)抽象思维的概念(2)抽象思维的培养方法2. 逻辑思维(1)逻辑思维的概念(2)逻辑思维的培养方法3. 创新思维(1)创新思维的概念(2)创新思维的培养方法八、数学学习方法与技巧1. 课堂学习(1)认真听讲(2)做好笔记(3)积极参与讨论2. 课后复习(1)及时复习(3)做习题巩固3. 考试技巧(1)合理安排时间(2)仔细审题(3)规范答题九、数学竞赛与拓展1. 数学竞赛(1)数学竞赛的意义(2)数学竞赛的准备(3)数学竞赛的参赛技巧2. 数学拓展(1)数学拓展的意义(2)数学拓展的方法(3)数学拓展的实践十、数学与生活1. 数学与生活(1)数学在生活中的应用(2)数学与生活的关系2. 数学与科技(1)数学在科技中的应用(2)数学与科技的关系3. 数学与艺术(1)数学在艺术中的应用(2)数学与艺术的关系在探索数学的旅程中,我们不仅要掌握基础的知识点,还要学会如何灵活运用这些知识解决实际问题。
七年级上册数学知识点思维导图+考点梳理七年级上册数学知识点思维导图+考点梳理一、整数1. 整数的概念及表示方法- 整数:正整数、负整数和0的集合。
- 整数的表示方法:带有符号的数或用数轴表示。
2. 整数的比较与大小关系- 整数的大小比较:相同符号,绝对值大的整数大;不同符号,负整数小于正整数。
- 整数的绝对值:正整数的绝对值是本身,负整数的绝对值是去掉符号的数值。
3. 整数的加法与减法- 整数的加法:同号相加,异号相减。
- 整数的减法:减去一个整数等于加上这个整数的相反数。
4. 整数的乘法与除法- 整数的乘法:异号相乘得负,同号相乘得正。
- 整数的除法:除数不为0时,同号得正,异号得负。
二、分数1. 分数的概念及表示方法- 分数:一个整数除以另一个整数所得的结果。
- 分数的表示方法:分子/分母,分子表示几份,分母表示几等分。
2. 分数与小数的转换- 分数转小数:分子÷分母,若能除尽,则为有限小数;若不能除尽,则为无限循环小数。
- 小数转分数:根据小数位数,分子为小数的数值,分母为10的对应次幂。
3. 分数的加法与减法- 分数的加法:通分后相加,最后化简。
- 分数的减法:通分后相减,最后化简。
4. 分数的乘法与除法- 分数的乘法:分子与分子相乘,分母与分母相乘,最后化简。
- 分数的除法:分子与分母互换位置,再进行乘法运算。
三、代数与方程1. 代数式的概念及表示方法- 代数式:用字母或符号表示的数或数与字母的和、差、积、商的表达式。
- 代数式的表示方法:常见的代数字母有x、y、a、b等。
2. 代数式的运算- 代数式的加法与减法:将同类项相加或相减,并合并同类项。
- 代数式的乘法:将同类项相乘,并合并同类项。
- 代数式的除法:将被除数与除数进行约分,并化简。
3. 一元一次方程的概念及解法- 一元一次方程:只有一个未知数的一次方程,形如ax+b=0。
- 解一元一次方程:利用等式性质,将方程化简为未知数的系数与常数的组合,并求解未知数的值。
有理数运算规律:先定符号,再求值,第一章有理数有理数定义与分类有关概念与性质有理数的运算定义:整数和分数统称为有理数。
有理数(按定义分)有理数(按性质分)有限小数和无限循环小数统称为有理数正整数负整数分数整数正分数负分数正整数正分数正有理数负有理数负整数负分数数轴:规定了原点、正方向、单位长度的直线叫数轴。
性质:每一个有理数都可以在数轴上找到相应的点;数轴上的点不一定都表示有理数。
相反数:只有符号不同的两个数互为相反数;0的相反数为0;性质:互为相反数的两个数和为0.几何定义:在原点的两侧,到原点的距离相等的两个数互为相反数。
“—”起相反数的作用。
绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣. ∣a∣≧ 0(非负数)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.加减法乘除法有理数比较大小:数轴上右边的数总大于左边的数;正数大于0;0大于负数;正数大于一切负数;两个负数比较大小,绝对值大的反而小。
a a﹥00 a=0-a a﹤0∣a∣=∣a∣=a a≧0-a a≦0乘方科学记数法及近似数两数相加:同号取相同的符号,并把绝对值相加;异号取绝对值较大加数符号,并用较大绝对值减去较小绝对值。
减去一个数等于加上这个数的相反数;省略加号的和的形式。
两数相乘:同号取正,异号取负,并把绝对值相乘。
除以一个数等于乘以这个数的倒数;互为倒数的两数积为1;多个有理数相乘,积的符号由负因数的个数决定(奇数个积为负;偶数个积为正;0与任何数相乘都得0.求几个相同因数的积的运算,叫做有理数的乘方。
即:a n=aa…a(有n个a) a叫底数,n叫指数。
结果叫幂。
正数的任何次幂都是正数,负数的偶次幂为正,负数的奇次幂为负;0的任何次幂为0;任何数的偶次幂为非负数。
★非负数的和等于0,则每个非负数必为0把一个绝对值大于10的数记成a ×10n的形式(其中1≦︱a︱<10),叫做科学记数法.对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
1 第一章:有理数★知识结构图:正分数负分数正整数0负整数第二章:整式的加减★知识结构图:2★概念、定义:1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数(coefficient)。
32.一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
4.多项式里次数最高项的次数,叫做这个多项式的次数。
5.把多项式中的同类项合并成一项,叫做合并同类项。
6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。
7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
4第三章:一元一次方程知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。
3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
56.把等式一边的某项变号后移到另一边,叫做移项。
7.工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形的初步认识知识结构图:61.我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
72.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。
3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。
第一章:有理数★知识结构图:正分数负分数 正整数负整数★正数和负数 概念、定义:1.大于0的数叫做正数(positive number)。
2.在正数前面加上负号“-”的数叫做负数(negative number)。
3.整数和分数统称为有理数(rational number)。
4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。
5.在直线上任取一个点表示数0,这个点叫做原点(origin)。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
两个负数,绝对值大的反而小。
★有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。
6.有理数减法法则:减去一个数,等于加上这个数的相反数。
★有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。
2. 有理数中仍然有:乘积是1的两个数互为倒数。
3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
★有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
★做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
七年级数学上册知识点导图(本文采用导图形式来呈现数学上册知识点,共分为四个大部分)
一、基本概念
1. 数的基本概念:自然数、整数、有理数、实数
2. 数的分类:正负数、整数、分数
3. 数的性质:交换律、结合律、分配律
二、代数式
1. 代数式的定义及表示方法
2. 代数式的运算:加减乘除
3. 同类项的合并和化简
4. 因式分解和提公因式
三、方程
1. 方程的定义及解的含义
2. 一元一次方程:解法及应用
3. 一元二次方程:解法及应用
4. 同时含有两个及以上未知数的方程
四、几何
1. 几何基础概念:点、线、面
2. 基本图形的性质:角、边、面积、体积
3. 三角形及其性质:等边三角形、等腰三角形、直角三角形
4. 直线和平面的位置关系:平行、垂直、交点
五、统计与概率
1. 统计基础概念:样本、总体、频数、频率、中位数
2. 统计分布及表示方法:直方图、折线图、饼图
3. 概率的基本概念及计算方法:概率的定义、加法原理、乘法原理
通过以上的数学知识导图,七年级的同学们可以快速了解数学上册知识点的基本内容,方便对知识点进行系统性学习和分析,为更好地掌握数学知识打下坚实的基础。
七年级上册知识点框架
一、数
1. 整数
2. 分数和小数
3. 数轴和有理数的比较大小
4. 基本整数运算
5. 分数和小数的加减乘除
二、代数式
1. 代数式的概念和基本性质
2. 同类项和合并同类项
3. 四则运算和去括号
4. 展开和因式分解
5. 代数式的应用:解方程等
三、平面图形
1. 基本概念:点、直线、线段、角、多边形等
2. 直线和角的关系:相交、平行、垂直等
3. 三角形
4. 四边形和其他多边形
5. 平面图形的应用:面积、周长、相似等
四、函数
1. 函数的概念和表示方法
2. 常见函数及其图像:一次函数、二次函数、绝对值函数等
3. 函数的性质:奇偶性、单调性、周期性等
4. 函数的运算:加减乘除、复合等
5. 函数的应用:解方程、解不等式、函数模型等
五、数据的收集和处理
1. 统计调查和数据的收集
2. 数据的展示方式:表格、条形图、折线图、饼图等
3. 中心位置和离散程度:平均数、中位数、众数、极差、标准差等
4. 相关系数和回归分析
5. 数据的应用:数据分析、预测等
六、立体图形
1. 基本概念:点、线、面、体等
2. 立体图形的投影:正投影、斜投影等
3. 直角棱柱和直角锥
4. 球和圆柱
5. 立体图形的应用:体积、表面积等。
人教版七年级数学上册知识点思维导图及总结 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1? a 、b 互为倒数;若ab=-1? a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级数学知识树新林三中曲春梅一、数学课程的总体目标:1、获得重要数学知识、基本思想方法、必要生活技能2、初步学会运用数学的思维方式解决问题,增强应用数学意识。
3、了解数学的价值,增进学好数学的信心。
4、具有初步的创新精神和实践能力二、教材编写的意图1、体现由具体—抽象—具体的认识过程2、强调学生的自主学习3、体现师生互动构建和谐课堂4、强调培养学生的学习兴趣和激发学生的学习热情5、体现以学生发展为本的基本原则三、教材的体例书的结构:导引——目录——探究的主题——附录单元的结构:章前图——正文——章后练习1、章前图直观新颖,引言引人入胜。
2、正文有“思考”、“探究”、“归纳”等栏目,栏目中以问题,留白或填空形式为学生提供思维发展,合作交流的空间。
3、章后习题,联系生活实际。
既有居民用水节电问题,运输购物问题,还有农业生产问题等。
课的结构:设计了思考——探究——归纳的栏目四、本学段目标基本要求数与代数:学习有理数、整式、方程、不等式等知识,探索数、形及实际问题中蕴含的关系和规律。
发展符号感,体会数学与生活的紧密联系,提高运用代数知识解决问题的能力。
空间与图形:探索基本图形(相交线和平行线,三角形等图形)的基本性质及相关关系,进一步丰富对空间图形的认识和感受,学习平移的基本性质,欣赏变换在现实生活中的应用,发展空间观念。
统计与概率:体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的方法。
实践与综合应用:探讨具有挑战性的研究课题,发展应用数学知识解决问题的意识和能力;进一步加深对相关数学知识的理解,认识知识之间的联系。
五、落实目标的策略与方法1、从教材内容方面贴近生活,注重过程:内容素材的选取,力求贴近学生的生活实际和社会现实;注重学生的认知过程和情感体验过程,为构建丰富的学习环境提供重要资源。
2从教学的过程入手增加课堂趣味性:符合学生的认知能力和水平,调动学生的积极性和注意力使学生乐于探究。
初一上册数学思维导图一,二单元树形图2021-08-01 04:24:41 2165 人初一上册数学思维导图一,二单元树形图_小学体育身体素质树形思维导图初一上册数学思维导图一,二单元树形图_谈高中英语阅读教学中几种常见的思维导图-精品文档谈高中英语阅读教学中几种常见的思维导图高中英语;思维导图;阅读教学阅读是一系列的信息加工过程,其实质是一系列复杂的思维过程。
?普通高中英语课程标准〔实验〕?指出,阅读教学要完成多元目标,即提高学生适应各类语体、文本的阅读能力,开展阅读过程中的信息提取、思维加工和问题求解能力,形成健全的情感态度和价值观,提升科学与人文素养等。
可见,高中英语阅读教学不仅要完成传授语言知识、开展语言能力的任务,还要重视并进展多层次、高层次的思维训练。
在阅读课教学中,教师积极帮助学生“勾画〞思维导图,不但可以获得很好的篇章梳理效果,使学生在阅读的“读中〞环节,强化对篇章构造的认识,降低阅读的难度,还可以在思维导图中实现“读后〞从读到写和说的过渡,使整节课更加浑然一体。
一、思维导图的根本理论东尼?博赞在经过长期的研究和实践后发现,思维导图对学习者的记忆和学习产生的积极影响有:只记忆相关的词可以节省时间 50%——95%;只阅读相关的词可节省时间 90%;复习思维导图笔记课节省时间90%;集中精力于真正的问题;鼓励思想的不间断和无穷尽的流动。
二、思维导图在高中英语阅读教学中的应用在英语阅读教学中,教师利用思维导图可以让学生通过大脑风暴的形式进展发散式思维,同时还可以帮助学生将文章抽象零碎的信息分类整理成与主题密切相关的块状、条状等图形知识,从而有助于学生深入激活背景知识、把握语篇构造、抓住语篇的关键信息等。
通过思维导图不仅帮助学生提升语篇理解能力,还培养了他们的思维能力,真正实现阅读教学的高层次思维训练的目的。
下面笔者将结合实际教学,和大家分享个人对几种思维导图模式的理解。
〔一〕“实物图示〞思维导图 1.“鱼骨图〞人教版 Module 5 Unit 3 Reading“First Impression〞,主要讲述主人公 Li Qiang 在时空旅行前、时空旅行中及时空旅行后的所见所想,让学生认识现在,展望未来,通过探索、发现和分享,创造美好未来。
第一章:有理数知识结构图:有理数的运算分配律除 法乘 方乘 法交换律结合律减 法加 法比较大小数 轴点与数的对应有理数分数整数正分数负分数正整数0负整数具体框图:负数引入有理数数 轴相反数加减法 加法法则及运算律减法法则有理数分类绝对值 乘除法 除法法则有理数大小的比较乘 方乘方及混合运算科学计数法生活实际乘法法则及运算律近似数及有效数字有理数比较大小相反数绝对值相反意义的量正数负数有理数数轴有理数的运算法则运算律加减法乘除法乘方交换律结合律分配律有理数的分类有理数概念运算相反数大小比较绝对值倒数加法减法乘法除法数轴先确定符号再确定绝对值科学计数法一、概念、定义:1.、大于0的数叫做正数;2.、在正数前面加上负号“-”的数叫做负数;3、整数和分数统称为有理数;4、人们通常用一条直线上的点表示数,这条直线叫做数轴;5、在直线上任取一个点表示数0,这个点叫做原点;6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值;7、一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;8、正数大于0,负数小于0,正数大于负数。
二、有理数加法法则:1、两个负数,绝对值大的反而小;同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数;4、有理数的加法中,两个数相加,交换加数的位置,和不变;5、有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。
三、有理数减法法则:减去一个数,等于加上这个数的相反数。
四、有理数乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0;2、有理数中,乘积是1的两个数互为倒数;3、一般地,有理数乘法中,两个数相乘,交换因数的位置,积不变;4、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;5、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
人教版初中数学七年级上册第一章 有理数第二章 整式的加减第三章 一元一次方程第四章 几何图形初步1.正数和负数2.有理数3.有理数的加减法4.有理数的乘除法5.有理数的乘方1.整式2.整式的加减1.从算式到方程2.解一元一次方程(一)3.解一元一次方程(二)4.实际问题与一元一次方程1.几何图形2.直线、射线、线段3.角4.课题学习人教版初中数学七年级上册1-4单元知识点导图正数和负数有理数有理数的加减法有理数的乘除法有理数的乘方0既不是正数也不是负数可以用来表示在一个问题中相反意义的量例如:一个物体向左移动记为+1m,向右移动记为-1m温度、海拔、收入增长...增长量是正数,表示真正的增长增长量是负数,表示负增长B.注意A.整数和分数统称为有理数整数分数正整数负整数正分数负分数能约分成整数的数不能算作分数两个整数的比、有限小数、无限循环小数都是分数无限不循环小数不是有理数(1)概念(2)三要素(3)画法画一条水平线,在直线上取一点表示0(这个点叫原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,这样的直线角数轴原点+正方向+单位长度A.画直线,定原点B.规定从原点向右为正方向,并用箭头表示C.根据需要选取适当长度D.标数(1)概念(2)注意像2和-2这样,只有符号不同的两个数叫做互为相反数A.“只有”就是说仅仅只有符号不同B.相反数是成对出现的C.一个数的相反数只有一个D.0的相反数是0(1)概念(2)注意数轴上表示a的点与原点的距离叫做数a的绝对值A.一个正数的绝对值是它本身B.一个负数的绝对值是它的相反数C.零的绝对值是零D.互为相反数的两个数的绝对值相等E.任何一个有理数的绝对值是非负数1.有理数加法法则2.有理数减法法则(1)同号两数相加,取相同的符号,并把绝对值相加(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小绝对值(3)一个数同0相加,仍得这个数(4)互为相反数的两个数相加得0加法交换律加法结合律减去一个数等于加上这个数的相反数a-b=a+(-b)1.有理数乘法法则2.有理数除法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘(2)任何数与0相乘都得0(1)两数相除,同号得正,异号得负,并把绝对值相除(2)0除以任何一个不等于0的数,都得0(3)除以一个不等于0的数等于乘以这个数的倒数注意:A.乘积是1的两个数互为倒数B.几个不等于0的数相乘,积的符号由负因数的个数决定C.几个数相乘,有一个因数为0,积就为0奇数个--积为负偶数个--积为正1.乘方2.科学计数法3.近似数(1)概念(2)性质(3)运算求n个相同因数的积的运算,叫做乘方。
七年级上册数学整式的加减知识树全文共3篇示例,供读者参考七年级上册数学整式的加减知识树1代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。
(分母中含有字母有除法运算的,那么式子叫做分式)1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。
(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。
(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。
2、多项式(1)概念:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
(3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:a、先确认按照哪个字母的指数来排列。
b、确定按这个字母降幂排列,还是升幂排列。
3、整式:单项式和多项式统称为整式。
4、列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;(6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。
人教版七年级数学上册知识点思维导图及总结 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a -b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
新人教版七年级数学上册教材站识树一、新课标的三个维度目标与新课标对本学段、本学科的基本要求要使学生在数学教学过程中探究数学知识,发现数学知识,让学生自主建构知识体系。
要使学生获得必要的数学基础知识和基本技能。
力)基本要求法与二、整式的加减/r七年数学上册正数利用数轴比较有理数的大小整数:负数生活中的正数和负数、的L轴法数画第一$1有理数的概念数轴的定义、相反数和绝爵眉5互为相反数的两个数的绝型值相等厂利用绝对值也较两个负数跑-\ •J-法法则第加法法乘法的 意义有理数的乘 除及乘方、有理数的混 合运算、有理数的加 减法 \/减法 —I法则 加法 算律运用法则进钦 混合运算V・学习有理数,整式、方程,探索数、形及实际问题中蕴含的关系和规律,初步掌握一些有效的表示,处理和交流数量关系及变化规律的工具,发展符号感,体会数学与生活的紧密联系,增强应用意识,提高运用代数知识解决问题的能力。
实践与运用探讨一些具有挑战性的研究课题,发展应用数学知识解决问题的意识和能力;进一步加深对相关数学知识的理解,认识数学知识之间的联系。
教材的体例安排和偏写意图・1、列举了大量实例,直观新颖图文,极大激发了学生的学习兴趣。
・2、正文有“思考”、“探究”、“归纳”等栏目,栏目中以问题,留白或填空形式为学生提供思维发展, 合作交流的空间。
・3、章后习题,联系生活实际。
选择习题内容时,密切联系生活实际,使学生感受到我们学的是生活中的数学,是身边的数学,既有居民用水节电问题,运输购物问题,还有农业生产问题等。
由于教材中生活化素材较多,学生感到亲切,能够感受到数学的应用价值,激发学生的学习热情。
・1、正确处理数学、生活、学生三者的关系,数学来源于生活,学生通过学习数学知识,又服务于生活。
・2、遵循认知规律,为学生创造自主探究、合作交流的平台,为教师营造指导、点拨的氛围,体现 -师生互动,构建和谐,愉快的数学课堂。
三.教材的知识体系・有理数・整式的加减•—元一次方程・图形的初步认识・从实例引入正数、负数、数轴、相反数、绝对值。
七年级上册数学知识点框架在初中阶段,数学是一个非常重要的科目,它不仅仅是一门学科,还是一种思维方式和生活中不可或缺的技能。
七年级上册数学知识点框架,是提供给大家的一个学习路径,帮助大家更好地掌握初中数学知识点,更好地理解和应用于实际生活中。
以下就是七年级上册数学知识点框架,可以作为初中数学复习的指南。
一、有理数1.自然数、零、整数、分数、小数的概念及相互间的关系2.有理数的比较大小及大小关系的判定方法3.有理数的加减乘除及应用4.有理数的绝对值及应用二、代数式与方程式1.代数式概念及基本性质2.二元一次方程及应用3.一元一次方程及应用4.含绝对值的方程及应用三、数形结合1.几何图形的认识及基本性质2.正方形、长方形、平行四边形、三角形的性质及计算3.圆的基本概念及计算4.图形的相似及应用四、数据的收集与整理1.数据及其描述2.统计量的概念及计算3.频数分布表及直方图4.统计图形的选择及应用五、函数的概念1.函数及函数的表示方法2.函数图象的作法及含义3.比例与比例函数4.函数的应用六、无理数1.无理数的概念及性质2.无理数的比较及大小关系的判定方法3.无理数的加减及应用七、初中数学证明及计算1.初中几何证明2.初中数学计算3.初中数学理解和应用总结七年级上册数学知识点框架,由有理数、代数式与方程式、数形结合、数据的收集与整理、函数的概念、无理数和初中数学证明及计算七个部分组成。
这些知识点都是初中数学的基础知识,学生需要认真学习和理解它们,才能更好地掌握初中数学,为未来的高中数学以及相关领域学习打下扎实的基础。