数字图像处理及其应用教材何东健西安电子科技
- 格式:ppt
- 大小:1.71 MB
- 文档页数:4
何东健数字图像处理课后答案【篇一:数字图像处理课后参考答案】>1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。
1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。
1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。
第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数l称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。
数字图像处理教学大纲(范文模版)第一篇:数字图像处理教学大纲(范文模版)《数字图像处理》课程教学大纲课程英文名Digital Image Processing执笔人:周山编写日期:2010.7.9一、课程基本信息1.课程编号:070101162.课程性质/类别:选修课 /专业课 3.学时/学分: 32+16学时 / 2学分 4.适用专业:信息与计算科学专业二、课程教学目标及学生应达到的能力数字图像处理是一门迅速发展的新兴学科,发展的历史并不长。
由于图像是视觉的基础,而视觉又是人类重要的感知手段,故数字图像成为心理学、生理学、计算机科学等诸多方面学者研究视觉感知的有效工具。
本课程着重研究数字图像处理的方法,训练学生运用所学基础知识解决实际问题的能力,同时要求拓宽专业知识面。
三、课程教学内容与基本要求(一)绪论(4学时)1.主要内容:图像处理的概述,基本物理假设硬件设备,处理软件,光度学及色度学原理 2.基本要求1、了解数字图像处理概述;2、了解图像输入输出设备;3、掌握图像的亮度函数等;4、了解色彩的基本属性;3.自学内容:数学实验 4.课外实践:无(二)信号分析基础(8学时)1.主要内容:图像的数学信号表示,图像的取样和量化、像素间的一些基本关系、线性和非线性操作2.基本要求1、掌握信号的采样及量化2、理解图像的点运算,代数运算及几何运算;3、理解线性系统的性质及线性移不变系统的频率响应;4、掌握图像的卷积运算 3.自学内容:信号与系统4.课外实践:无(三)图像变换(8学时)1.主要内容:积分变换,连续及离散傅立叶变换,快速傅立叶变换,正交变换的一般表现形式 2.基本要求1、了解积分变换;2、掌握离散傅里叶变换、连续傅里叶变换、快速傅里叶变换;3、理解沃尔什变换,哈达吗变换等 3.自学内容:数字信号处理4.课外实践:无(四)图像的增强与复原(10学时)1.主要内容:图像增强原理、直方图处理、图像平滑化,图像的锐化,图像的复原2.基本要求1、掌握灰度级变换增强及频域增强原理;2、深刻理解直方图均衡化;3、了解邻域平均法;;4、掌握低通滤波法,高通滤波法;5、掌握图像复原的一般方法;3.自学内容:数字信号处理概率论4.课外实践:无(五)图像的分析与识别基础(10学时)1.主要内容:视觉再认模式,间断检测、边缘连接和边界检测、门限处理及基于区域的分割 , 2.基本要求1、了解模式匹配模式,傅立叶模式;2、掌握阈值分割法;3、掌握边缘检测法;1、了解区域增长法;2、掌握二值图像分割法;3、了解图像分割质量的评价;3.自学内容:概率论 4.课外实践:无(六)图像的压缩与编码(10学时)1.主要内容:图像压缩理论及模型,无损压缩、有损压缩,图像编码常用方法,图像编码评价方法,图像编码的国际标准 2.基本要求1、了解哈夫曼编码;2、掌握离散余弦变换;3、理解dct编码与解码;4、了解压缩编码的新进展; 3.自学内容:数据编码 4.课外实践:无四、教学安排建议1.作业练习每章课后布置2-3题作业。
4.1 直方图4.2 灰度变换4.3 图像噪声4.4 去除噪声4.5 图像锐化4.6 图像的伪彩色处理4.7 编程实例第四章图像增强与平滑4.1 直方图4.1.1直方图的基本概念如果将图像中像素亮度(灰度级别)看成是一个随机变量,则其分布情况就反映了图像的统计特性,这可用Probability Density Function(PDF)来刻画和描述,表现为灰度直方图(Histogram)。
灰度直方图是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中每种灰度出现的频率,如图4-1所示。
灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。
图4-1 图像灰度直方图6646313266416665436646611223466543211426545654321设r代表图像中像素灰度级,作归一化处理后,r将被限定在[0,1]之内。
在灰度级中,r=0代表黑,r=1代表白。
对于一幅给定的图像来说,每一个像素取得[0,1]区间内的灰度级是随机的,也就是说r是一个随机变量。
假定对每一瞬间,它们是连(r)来表示原始图像续的随机变量,那么就可以用概率密度函数pr的灰度分布。
如果用直角坐标系的横轴代表灰度级r,用纵轴代(r),这样就可以针对一幅图像在这个表灰度级的概率密度函数pr坐标系中作出一条曲线来。
这条曲线在概率论中就是概率密度曲线,如图4-2所示。
图4-2 图像灰度分布概率密度函数Pr(r)r1Pr(r)10r(a)(b)从图像灰度级的分布可以看出一幅图像的灰度分布特性。
例如,从图4-2中的(a)和(b)两个灰度分布概率密度函数中可以看出:(a)的大多数像素灰度值取在较暗的区域,所以这幅图像肯定较暗,一般在摄影过程中曝光过强就会造成这种结果;(b)图像的像素灰度值集中在亮区,因此,图像(b)将偏亮,一般在摄影中曝光太弱将导致这种结果。
当然,从两幅图像的灰度分布来看图像的质量均不理想。
《数字图像处理》课程教学大纲Digital Image Processing一、课程说明课程编码:课程总学时(理论总学时/实践总学时):51(42/9),周学时:3,学分:3,开课学期:第6学期。
1.课程性质:专业选修课2.适用专业:电子信息与技术专业3.课程教学目的和要求《数字图像处理》是信号处理类的一门重要的专业选修课,通过本课程的学习,应在理论知识方面了解和掌握数字图像的概念、类型,掌握数字图像处理的基本原理和基本方法:图像变换、图像增强、图像编码、图像的复原和重建。
并通过实验加深理解数字图像处理的基本原理。
4.本门课程与其他课程关系本课程的先修课程为:数字信号处理和应用5.推荐教材及参考书推荐教材:阮秋琦,《数字图像处理学》(第二版),电子工业出版社,2007年参考书(1)姚敏等,《数字图像处理》,机械工业出版社,2006年(2)何东健,《数字图像处理》(第二版),西安电子工业出版社,2008年(3)阮秋琦,《数字图像处理基础》,清华大学出版社,2009年(4)(美)Rafael C. Gonzalez著,阮秋琦译,《数字图像处理》(第二版),电子工业出版社,2007年6.课程教学方法与手段主要采用课堂教学的方式,通过多媒体课件进行讲解,课外作业,答疑辅导。
并辅以适当的实验加深对数字图像处理的理解。
7.课程考核方法与要求本课程为考查课课程的实验成绩占学期总成绩的50%,期末理论考查占50%;考查方式为笔试。
8.实践教学内容安排实验一:图像处理中的正交变换实验二:图像增强实验三:图像复原详见实验大纲。
二、教学内容纲要与学时分配(一)数字图像处理基础(3课时)1.主要内容:图像处理技术的分类,数字图像处理的特点,数字图像处理的主要方法及主要内容,数字图像处理的硬件设备,数字图像处理的应用,数字图像处理领域的发展动向2.基本要求:了解图像处理技术的分类和特点,数字图像处理的主要方法及主要内容,熟悉数字图像处理的硬件设备。
OBE理念引导下“数字图像处理”课程教学改革探索作者:上官宏张雄乔建华武晓嘉宁爱平来源:《科技风》2022年第24期摘要:新工科建设和工程教育认证对课程建设提出了更高的要求,倡导以成果产出为导向(OBE)作为课程目标,强调对学生的综合能力进行培养。
传统的“数字图像处理”课程采用教材导向的课程目标,教学内容强调方法讲解忽略学生兴趣培养,强调孤立算法实现忽略完整项目的开发,强调知识讲解忽略实践技能培养。
本文针对“数字图像处理”课程教学过程中存在的问题,将OBE理念引入该课程教学的各个方面,围绕课程教学目标设计、课程教学内容更新、课程教学方式改革、课程考核方式改革四個方面构建“数字图像处理”课程的教学体系。
教学实践的成果表明,OBE理念引导下的“数字图像处理”课程教学方案可以有效避免传统教学方案存在的弊端,提升学生的综合能力和综合素质。
关键词:数字图像处理;教学改革;OBE理念1 “数字图像处理”课程教学现状及存在的问题数字图像是一种在计算机中以数字格式存储的图像数据。
目前,国内各大高校所开设的针对本科生的“数字图像处理”课程主要介绍利用计算机实现对图像的采集、增强、变换、编码、恢复、分割、分析和识别等的理论、方法和技术,该课程涉及传感器、计算机、信号处理和模式识别等技术领域,是一门多学科交叉的课程。
随着我国创新驱动发展战略的实施,培养更多具有创新创业能力的技术型人才成为当前高等教育的使命。
可广泛应用于医学诊疗、工业无损检测、自动驾驶、目标跟踪、地形勘探等领域的“数字图像处理”课程已成为信息类学科的重要专业基础课程,通过研究数字图像的采集、显示和处理的基本概念、算法和系统,学生们可获取毕业后从事模式识别、计算机视觉、信息技术及其工程应用等工作所需的机器视觉基础知识[1]。
“数字图像处理”课程涉及较为高深的基本理论(如傅里叶变换、聚类分析、霍夫变换、形态学分析、数字信号滤波),具备较强的应用实践背景(例如人脸、指纹、静脉等生物特征识别,图像去雨、去雾、去摩尔纹,以及智能视频监控等),要求学生具备较强编程动手能力。
何东健数字图像处理课后答案【篇一:数字图像处理课后参考答案】>1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。
1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。
1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。
第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数l称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。