的不同部分上, 入射光的位相差可以忽略不计.
ii. 分子作受迫振动ω,发出电磁波(偶极振子模型)
iii. 可证明.只要分子的密度是均匀的,次波相干迭加 的结果只剩下遵从几何光学规律的光线. 沿其余 的振动干涉相消 用半波带概念.
iv. 用惠更斯 — 菲涅耳原理可解释. 但此处的“次波” 有真实的振源.
当光波在媒质中传播时,由于光波和物 质的相互作用,一般呈现两种效应,一种是 速度减慢引起的折射和双折射现象;另一种 是光能减弱的消光 (extinction)现象。消光现 象中,将光能转换成其它形式的能量,是吸 收 (absorption)现象;而有部分光波沿其它方 向传播,是散射 (scattering)现象。对于沿原 方向传播的光波来说,这两种现象都使光能 减弱,起消光作用。
不稳定非均匀介质 a 变, 非弹性散射 ( 拉曼、布里渊散射)
二. 散射、反射、漫射、衍射的区别
光的散射现象之所以区别于直射心的排列:
散射时无规则 一定有序 完全有序
散射. d <λ. 衍射. d≥λ 漫射. d >λ.
反射. d >>λ.
R表示观察者离偶极子的距离
光在半径为R的球面上各点的相位都 相等,且相位较原点处落后了R/c
但是振幅随θ角而变,这就引起波的 强度I(能流密度)在同一波面上的不 均匀分布。如图
二. 电偶极辐射对反射和折射现象的初步解释
解释1:均匀介质中的直线传播定律. i. 分子线度很小(d ~10-8cm, λ~10-5cm) . 在一个分子
解: 根据公式:
I0-II0(1-e-aad)
I 为光通过厚度为d的吸收层以后的光强,αa为吸收系数.
同样强度的光通过不同吸收物质的不同厚度,而产生相等的吸