全国2013年10月自学考试《高等数学(一)》试题和答案
- 格式:doc
- 大小:788.00 KB
- 文档页数:8
高等数学一自考题-9(总分90, 做题时间90分钟)第一部分选择题一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的。
1.设f(x)是定义在实数域上的一个函数,且f(x-1)=x2+x+1,=______ A. B.C. D.SSS_SIMPLE_SINA B C D分值: 3答案:D[解析] f(x-1)=(x-1)2+3(x-1)+3,∴f(x)=x2+3x+3,∴.答案为D.2.,则k=______• A.-3•**•**D.-2SSS_SIMPLE_SINA B C D分值: 3答案:A[解析] ∵,∴应有,即,∴k=-3.答案为A.3.=______A.0 B.C. D.∞SSS_SIMPLE_SINA B C D分值: 3答案:C[解析] 当x→0时,,从而,.答案为C.4.已知函数则f(x)在x=0处______• A.间断• B.导数不存在• C.导数f'(0)=-1• D.导数f'(0)=1SSS_SIMPLE_SINA B C D分值: 3答案:C(0)=-1,,故f'(0)=-1.答案为C.[解析] 由条件,f(0)=1,f'-5.已知f(x)=sin(2x)+,那么f(x)的微分df(x)=______A.[2cos(2x)+2x]dx B.[cos(2x)+2x]dxC.[2cos(2x)+]dx D.cos(2x)+]dxSSS_SIMPLE_SINA B C D分值: 3答案:A[解析] 用复合函数求导法则求导.∵f'(x)=cos(2x)·2+,∴df(x)=f'(x)dx=[2cos(2x)+]dx.答案为A.6.函数y=sinx-x在区间[0,π]上的最大值是______A. B.0C.-π D.πSSS_SIMPLE_SINA B C D分值: 3答案:B[解析] 因为y'=cosx-1在(0,π)内小于零,故y在[0,π]上严格单调下降,所以函数在x=0处取得最大值,y=0.答案为B.7.=______A. B.C. D.SSS_SIMPLE_SINA B C D分值: 3答案:C[解析] .答案为C.8.微分方程的通解是______A.arctanx+C B.(arctanx+C)C. D.arctanx+SSS_SIMPLE_SINA B C D分值: 3答案:B[解析] 由通解公式,通解答案为B.9.设z=,则dz=______A. B.C. D.SSS_SIMPLE_SINA B C D分值: 3答案:D[解析] .答案为D.10.设D是由直线y=x,y=0,x=1所围成的平面区域,则=______ A. B.C. D.SSS_SIMPLE_SINA B C D分值: 3答案:A[解析] 根据二重积分与二次积分的转换.∵D={(x,y)|0≤y≤x,0≤x≤1},如下图所示,∴.答案为A.第二部分非选择题二、简单计算题1.求极限.SSS_TEXT_QUSTI分值: 4答案:2.已知y=arcsinf(x2),求y'.SSS_TEXT_QUSTI分值: 4答案:y=arcsinf(x2),函数可以看成由y=arcsinu,u=f(v),v=x2复合而得到,所以3.求函数y=x3+6x2-36x的凹凸区间、单调区间、拐点和极大值点.SSS_TEXT_QUSTI分值: 4答案:求出y'和y",分别分区讨论正负而确定.y'=3x2+12x-36=3(x+6)(x-2),令y'=0,得驻点x1=-6,x2=2,分区讨论符号:x (-∞,-6) -6 (-6,2) 2 (2,+∞)y' + - - 0 +y ↗极大↘极小↗y"=6x+12,令y"=0,得x=-2,分区讨论符号:x (-∞,-2) -2 (-2,+∞)y" - 0 +y 凸拐点凹x=-2时,求出y=88.由以上讨论可知:单调增加区间为(-∞,-6)∪(2,+∞),单调减少区间为(-6,2);凸区间为(-∞,-2),凹区间为(-2,+∞);极大值点为x=-6,拐点为(-2,88).4.计算定积分.SSS_TEXT_QUSTI分值: 4答案:因(-2x2+1)'=-4x,所以用凑微分法.5.设D为由直线y=x与圆x2+(y-1)2=1围成,且在直线y=x下方的平面区域,求.SSS_TEXT_QUSTI分值: 4答案:D如下图所示,交点满足,解得x=1,0,故对x积分的积分限为0和1,由方程x2+(y-1)2=1得下边界为y=.于是有三、计算题1.设f(x+2)=x2-2x+3,求f[f(2)].SSS_TEXT_QUSTI分值: 5答案:因为f(x+2)=x2-2x+3=[(x+2)-2]2-2[(x+2)-2]+3,∴f(x)=(x-2)2-2(x-2)+3=x2-6x+11,于是f(2)=3,从而f[f(2)]=f(3)=32-6×3+11=2.2.设y=cos2xlnx,求y".SSS_TEXT_QUSTI分值: 5答案:=3.求曲线f(x)=-(x+1)+的水平渐近线.SSS_TEXT_QUSTI分值: 5答案:,因为所以y=-1是曲线的水平渐近线.4.设f(2x+1)=xe x,求.SSS_TEXT_QUSTI分值: 5答案:设t=2x+1,则dt=d(2x+1)=2dx,并且时t从3→5,x从1→2,所以5.求,其中D是由y=和x轴所围成的区域.SSS_TEXT_QUSTI分值: 5答案:D如下图所示.边界方程y=在极坐标下为r=2cosθ,被积函数.于是有四、综合题某公司生产某产品的边际成本为MC(Q)=1(万元/百台),边际收益为MR=7-Q(万元/百台),设固定成本为零.求:SSS_TEXT_QUSTI1.得到最大利润时的产量分值: 5答案:总利润=总收益-总成本,即T(Q)=TR(Q)-TC(Q),nTR(Q)=∫MRdQ=∫(7-Q)dQ=.又由Q=0时,TR=0,∴C=0,∴TR(Q)=.总成本TC(Q)=∫MCdQ=∫1dQ=Q+C.∵固定成本为0,即TC=0,故C=0,从而TC(Q)=Q,(Q)=,故Tn(Q)=6-Q.T'n令T'(Q)=0,即6-Q=0,Q=6,n(Q)=-1<0,又T"n故Q=6时为极大值点,由问题的实际意义,当Q=6(百台)时,总利润最大.最大利润为(6)==18(万元).TnSSS_TEXT_QUSTI2.在利润最大时的产量基础上又生产了50台,总利润减少了多少?分值: 5答案:在产量为6百台的基础上又生产了50台,即共生产了650台,此时利润为(6.5)=6×6.5-=17.875,Tn所以总利润下降了18-17.875=0.125(万元).SSS_TEXT_QUSTI3.设某种产品的产量是劳动力x和原料y的函数:f(x,y)=,假设每单位劳动力花费50元,每单位原料花费100元,现有20000元资金用于生产,应如何安排劳动力和原料,才能得到最多的产品?分值: 5答案:约束条件为:50x+100y=20000,化简为:x=400-2y,代入f(x,y)得Q=f(400-2y,y)=,令Q'=0,即,解之,得y=100.Q"=,所以y=100,x=200时产量最高.1。
2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
自考高等数学试题及答案### 自考高等数学试题及答案#### 一、选择题(每题2分,共10分)1. 下列函数中,不是偶函数的是()。
A. \( y = \cos x \)B. \( y = x^2 \)C. \( y = \sin x \)D. \( y = e^x \)2. 极限 \(\lim_{x \to 0} \frac{\sin x}{x}\) 的值是()。
A. 0B. 1C. 2D. \(\infty\)3. 函数 \( y = x^3 - 3x^2 + 2 \) 的导数是()。
A. \( y' = 3x^2 - 6x \)B. \( y' = 3x^2 - 6x + 2 \)C. \( y' = x^2 - 6x + 2 \)D. \( y' = x^3 - 3x^2 \)4. 曲线 \( y = x^2 \) 在点 \( (1, 1) \) 处的切线斜率是()。
A. 0B. 1C. 2D. 45. 积分 \(\int_{0}^{1} x^2 dx\) 的值是()。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. 1D. 2#### 二、填空题(每题3分,共15分)1. 函数 \( y = \ln(x) \) 的反函数是 \( y = \_\_\_\_\_\_\_ \)。
2. 函数 \( y = e^x \) 的导数是 \( y' = \_\_\_\_\_\_\_ \)。
3. 函数 \( y = \sin(x) \) 的不定积分是 \( \int y dx =\_\_\_\_\_\_\_ + C \)。
4. 函数 \( y = x^3 \) 的二阶导数是 \( y'' = \_\_\_\_\_\_\_ \)。
5. 函数 \( y = \cos(x) \) 在区间 \([0, \pi]\) 上的定积分是\( \int_{0}^{\pi} \cos(x) dx = \_\_\_\_\_\_\_ \)。
2013年普通高等学校招生全国统一考试文科数学 第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0} (C ){0,1} (D ){-1,,0,1}(2)212(1)ii +=-( ) (A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )14错误!未找到引用源。
(D )16错误!未找到引用源。
(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为错误!未找到引用源。
,则C 的渐近线方程为( ) (A )14y x =± (B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为错误!未找到引用源。
的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( )(A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
自考高数试题及答案一、选择题(本题共10分,每题1分)1. 函数f(x)=x^3-3x+1的导数是()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3xD. x^2 + 3x答案:A2. 极限lim(x→0) (sin x)/x的值是()A. 0B. 1C. 2D. ∞答案:B3. 定积分∫(0,1) x^2 dx的值是()A. 1/3B. 1/2C. 1/4D. 1/6答案:C4. 微分方程y'' - y' - 2y = 0的通解是()A. y = e^x + e^(-x)B. y = e^(2x) + e^(-2x)C. y = e^x + e^(-x) + xD. y = e^(2x) + e^(-2x) + x答案:A5. 矩阵A = [1, 2; 3, 4]的行列式值是()A. 2B. -2C. 7D. -7答案:C二、填空题(本题共10分,每题2分)6. 函数f(x) = x^2 - 6x + 8的极值点是______。
答案:37. 函数y = ln(x)的导数是______。
答案:1/x8. 曲线y = x^3 - 3x + 1在点(1, -1)处的切线斜率是______。
答案:39. 函数y = sin(x) + cos(x)的周期是______。
答案:2π10. 矩阵B = [1, 0; 0, 1]的逆矩阵是______。
答案:[1, 0; 0, 1]三、解答题(本题共30分,每题15分)11. 求函数f(x) = x^3 - 3x^2 + 2在区间[-2, 2]上的最大值和最小值。
答案:函数f(x) = x^3 - 3x^2 + 2的导数为f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或 x = 2。
在区间[-2, 2]上,当x = -2时,f(x) = 2;当x = 2时,f(x) = -2;当x = 0时,f(x) = 2。
自考高数一历年试题及答案自考高等数学(一)历年试题及答案一、选择题1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = x^2答案:C2. 函数f(x) = x^3在区间(-1,2)上的最大值是()。
A. 1B. 8C. -1D. 2答案:B3. 微分方程dy/dx - y = 0的通解是()。
A. y = Ce^xB. y = Cxe^xC. y = CxD. y = e^x答案:A4. 若函数f(x) = 2x - 3在点x=1处的导数为1,则该函数在此处的切线斜率为______。
答案:15. 定积分∫₀¹ x² dx的值为______。
答案:1/3三、解答题6. 求函数f(x) = 3x² - 2x + 5的极值。
解答:首先求导数f'(x) = 6x - 2。
令f'(x) = 0,解得x = 1/3。
在x = 1/3处,f(x)取得极小值,计算得f(1/3) = 14/3。
7. 已知某工厂生产函数为Q = 2L²/3 + 3K,其中L为劳动投入,K为资本投入。
求劳动对产量的边际贡献。
解答:首先求产量对劳动的偏导数,即边际贡献。
对Q关于L求偏导得:dQ/dL = 4L/3。
这就是劳动对产量的边际贡献。
四、证明题8. 证明函数f(x) = x³ - 6x在区间(-2, 2)上是增函数。
证明:求导数f'(x) = 3x² - 6。
要证明f(x)在区间(-2, 2)上是增函数,需要证明f'(x)在该区间内恒大于0。
观察f'(x) = 3x² - 6,可以发现在x = ±√2时,f'(x) = 0。
在区间(-2, -√2)和(√2, 2)内,f'(x) > 0,而在区间(-√2, √2)内,f'(x) < 0。
绝密★启用前2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分. 答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i i++121(i 是虚数单位)的虚部是 A .23 B .21 C .3 D .12.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x x M,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a 的值是 A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为(1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα(3),,βα⊥⊥m m则α∥β(4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是 A .18 B .21 C .24 D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B .223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .85 12.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅,则a 的值为 A .916 B .59 C .925 D .516 第Ⅱ卷(非选择题 共90分)题图第13注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的倍.16.给出下列命题: ①已知,,a b m 都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立;③命题“x R ∃∈,使得2210x x -+<”的否定是真命题;④“1,1≤≤y x且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的第14题图取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S Sd 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知四棱锥BCDEA -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE ∥CD ,F为AD 的中点.(Ⅰ)求证:EF ∥面ABC;(Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDEA -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的ABCDEF2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分12分)已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x .(Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分) 实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于CB ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一. 选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二. 填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915.231016. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6si n (=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x …………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos=A ,∴在ABC ∆中 ∠3π=A …………………………………………8分21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B (10)分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分123)12(37353-⋅+++⋅+⋅+=n n n Tn n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴n n n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点 ∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC……………………………4分ABCDEF G(Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BG ∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BCAO ⊥,又⊥CD 平面ABC,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面B C D E ,∴AO为BCDEA V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCD EA B CD EV S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分) 解:(Ⅰ)将1-=x代入切线方程得2-=y∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分222)1(2)()1()(x xb ax x a x f +⋅+-+=' 12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分 解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分(Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222m n n m c n m …………………………………………2分解得92=c,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B由AB AC 2= 得)22(22212-=-x x ,化简得22221=-x x …………………………………………8分联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12,得0821682=-+-k kx x∴k x 8221=+① …………………………………………10分联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y得0821632)2168()41(2222=--+-++k k x k k x k∴22241821622k kk x +-=+② …………………………………………12分∴2222418216)228(222221=++---=-k kk k x x整理得:0)4121)(2416(2=+--kkk∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
2013年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4},B={x|x=n 2,n∈A},则A∩B=( ) A.{1,4} B.{2,3} C.{9,16} D.{1,2}2.1+2i(1-i )2=( )A.-1-12IB.-1+12IC.1+12ID.1-12i3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12B.13C.14D.164.已知双曲线C:x 2a 2-y 2b2=1(a>0,b>0)的离心率为√52,则C 的渐近线方程为( )A.y=±14x B.y=±13xC.y=±12xD.y=±x5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x 3=1-x 2,则下列命题中为真命题的是( ) A.p∧qB. p∧qC.p∧qD.p∧q6.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ) A.S n =2a n -1 B.S n =3a n -2 C.S n =4-3a nD.S n =3-2a n7.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s 属于( )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]8.O为坐标原点,F为抛物线C:y2=4√2x的焦点,P为C上一点,若|PF|=4√2,则△POF的面积为( )A.2B.2√2C.2√3D.49.函数f(x)=(1-cos x)sin x在[-π,π]的图象大致为( )10.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=( )A.10B.9C.8D.511.某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π12.已知函数f(x)={-x 2+2x ,x ≤0,ln (x +1),x >0.若|f(x)|≥ax,则a 的取值范围是( )A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a,b 的夹角为60°,c=ta+(1-t)b.若b·c=0,则t= . 14.设x,y 满足约束条件{1≤x ≤3,-1≤x -y ≤0,则z=2x-y 的最大值为 .15.已知H 是球O 的直径AB 上一点,AH∶HB=1∶2,AB⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为 .16.设当x=θ时,函数f(x)=sin x-2cos x 取得最大值,则cos θ= . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (Ⅰ)求{a n }的通项公式; (Ⅱ)求数列{1a 2n -1a 2n+1}的前n 项和.18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=√6,求三棱柱ABC-A1B1C1的体积.20.(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0, f(0))处的切线方程为y=4x+4. (Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生从第22、23、24题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=√3,延长CE交AB于点F,求△BCF外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为{x =4+5cost ,y =5+5sint (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3. (Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>-1,且当x∈[-a2,12)时, f(x)≤g(x),求a 的取值范围.2013年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A ∵B={x|x=n 2,n∈A}={1,4,9,16}, ∴A∩B={1,4},故选A. 2.B1+2i (1-i )2=1+2i -2i =(1+2i )i (-2i )i =-2+i2=-1+12i,故选B.3.B 从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2的有(1,3),(2,4)2种结果,概率为13,故选B. 4.C 由双曲线的离心率e=c a =√52可知,b a =12,而双曲线x 2a2-y 2b2=1(a>0,b>0)的渐近线方程为y=±ba x,故选C.5.B 对于命题p,由于x=-1时,2-1=12>13=3-1,所以是假命题,故 p 是真命题;对于命题q,设f(x)=x 3+x 2-1,由于f(0)=-1<0, f(1)=1>0,所以f(x)=0在区间(0,1)上有解,即存在x∈R,x 3=1-x 2,故命题q 是真命题. 综上, p∧q 是真命题,故选B. 6.D 因为a 1=1,公比q=23,所以a n =(23)n -1,S n =a 1(1-q n )1-q=3[1-(23)n ]=3-2(23)n -1=3-2a n ,故选D.7.A 由框图可知s={3t ,-1≤t <1,4t -t 2,1≤t ≤3,即求分段函数的值域.当-1≤t<1时,-3≤s<3;当1≤t≤3时,s=4t-t 2=-(t-2)2+4, 所以3≤s≤4.综上,s∈[-3,4],故选A.8.C 如图,设点P 的坐标为(x 0,y 0),由|PF|=x 0+√2=4√2,得x 0=3√2,代入抛物线方程得,y 02=4√2×3√2=24,所以|y 0|=2√6,所以S △POF =12|OF||y 0|=12×√2×2√6=2√3.故选C.9.C 因为f(-x)=[1-cos(-x)]sin(-x)=-(1-cos x)·sin x=-f(x),所以函数f(x)为奇函数,图象关于原点对称,排除选项B;当x∈(0,π)时,1-cos x>0,sin x>0,所以f(x)>0,排除选项A;又函数f(x)的导函数f '(x)=sin x·sin x+(1-cos x)·cos x,所以f '(0)=0,排除D.故选C.评析 本题考查对函数图象的识辨能力,考查综合运用所学知识的意识,体现了数形结合的思想方法;难点是判断选项C 中f '(0)=0. 10.D 由23cos 2A+cos 2A=0得25cos 2A=1,因为A 为锐角,所以cos A=15.又由a 2=b 2+c 2-2bccos A 得49=b 2+36-125b,整理得5b 2-12b-65=0, 解得b=-135(舍)或b=5,故选D.11.A 由所给三视图可知该几何体是一个组合体,下方是底面为半圆的柱体,底面半圆的半径为2,高为4;上方为长、宽、高分别为4、2、2的长方体.所以该几何体的体积为12π×22×4+4×2×2=16+8π,故选A. 评析 本题考查识图能力和空间想象能力以及体积的计算;能正确得出几何体的形状是解题关键.12.D |f(x)|={x 2-2x , x ≤0,ln (x +1),x >0,其图象如图.由对数函数图象的变化趋势可知,要使ax≤|f(x)|,则a≤0,且ax≤x 2-2x(x≤0), 即a≥x -2对x≤0恒成立,所以a≥-2. 综上,-2≤a≤0,故选D. 二、填空题 13.答案 2解析 b·c=b·[ta+(1-t)b]=ta·b+(1-t)b 2=t|a||b|cos 60°+(1-t)|b|2=t2+1-t=1-t2.由b·c=0,得1-t2=0,所以t=2.14.答案 3解析 可行域为平行四边形ABCD 及其内部(如图),由z=2x-y,得y=2x-z.-z 的几何意义是直线y=2x-z 在y 轴上的截距,要使z 最大,则-z 最小,所以当直线y=2x-z 过点A(3,3)时,z 最大,最大值为2×3-3=3. 15.答案9π2解析 平面α截球O 所得截面为圆面,圆心为H,设球O 的半径为R,则由AH∶HB=1∶2得OH=13R,由圆H 的面积为π,得圆H 的半径为1,所以(R 3)2+12=R 2,得出R 2=98,所以球O 的表面积S=4πR 2=4π×98=92π. 16.答案 -2√55解析 f(x)=sin x-2cos x=√5sin(x-φ),其中cos φ=√55,sin φ=2√55, 当x-φ=2kπ+π2时,f(x)取得最大值√5,此时x=2kπ+π2+φ,即θ=2kπ+π2+φ,cos θ=cos (π2+φ)=-sin φ=-2√55. 评析 本题考查三角函数的最值问题,考查了运算求解能力;熟练运用三角函数的有关公式是解题关键.三、解答题17.解析 (Ⅰ)设{a n }的公差为d,则S n =na 1+n (n -1)2d.由已知可得{3a 1+3d =0,5a 1+10d =-5.解得a 1=1,d=-1.故{a n }的通项公式为a n =2-n. (Ⅱ)由(Ⅰ)知1a 2n -1a 2n+1=1(3-2n )(1-2n )=12(12n -3-12n -1), 从而数列{1a2n -1a 2n+1}的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1)=n1-2n . 评析 本题考查等差数列的通项公式及前n 项和公式,考查了裂项求和的方法,考查了运算求解能力与方程思想.18.解析 (Ⅰ)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y ,由观测结果可得 x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (Ⅱ)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.评析 本题考查数据的平均数和茎叶图,考查数据的分析处理能力和应用意识. 19.解析 (Ⅰ)取AB 的中点O,连结OC,OA 1,A 1B.因为CA=CB, 所以OC⊥AB.由于AB=AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB. 因为OC∩OA 1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(Ⅱ)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=√3.又A1C=√6,则A1C2=OC2+O A12,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积S△ABC=√3,故三棱柱ABC-A1B1C1的体积V=S△ABC×OA1=3.评析本题主要考查直线与平面垂直的判定与性质、线线、线面的位置关系以及体积计算等基础知识,考查空间想象能力和推理论证能力.20.解析(Ⅰ)f '(x)=e x(ax+a+b)-2x-4.由已知得f(0)=4, f '(0)=4.故b=4,a+b=8.从而a=4,b=4.(Ⅱ)由(Ⅰ)知f(x)=4e x(x+1)-x2-4x,f '(x)=4e x(x+2)-2x-4=4(x+2)(e x-12).令f '(x)=0,得x=-ln 2或x=-2.从而当x∈(-∞,-2)∪(-ln 2,+∞)时, f '(x)>0;当x∈(-2,-ln 2)时, f '(x)<0.故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).评析本题考查导数的运算及几何意义、利用导数研究函数的单调性和极值等基础知识,考查了运算求解能力.21.解析由已知得圆M的圆心为M(-1,0),半径r 1=1;圆N的圆心为N(1,0),半径r2=3. 设圆P的圆心为P(x,y),半径为R.(Ⅰ)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,2为长半轴长,√3为短半轴长的椭圆(左顶点除外),其方程为x 24+y23=1(x≠-2).(Ⅱ)对于曲线C 上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P 的圆心为(2,0)时,R=2.所以当圆P 的半径最长时,其方程为(x-2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2√3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q,则|QP ||QM |=Rr 1,可求得Q(-4,0),所以可设l:y=k(x+4).由l 与圆M 相切得√1+k 2=1, 解得k=±√24.当k=√24时,将y=√24x+√2代入x 24+y 23=1, 整理得7x 2+8x-8=0,解得x 1,2=-4±6√27.所以|AB|=√1+k 2|x 2-x 1|=187.当k=-√24时,由图形的对称性可知|AB|=187. 综上,|AB|=2√3或|AB|=187.评析 本题考查了求轨迹方程的方法、椭圆的定义和标准方程,考查了直线与圆、椭圆的位置关系及弦长计算等基础知识,考查了运算求解能力和推理论证能力,考查了数形结合思想和分类讨论思想.22.解析 (Ⅰ)连结DE,交BC 于点G.由弦切角定理得∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,所以BE=CE.又因为DB⊥BE,所以DE 为直径,所以∠DCE=90°,由勾股定理可得DB=DC.(Ⅱ)由(Ⅰ)知∠CDE=∠BDE,DB=DC,故DG 是BC 的中垂线,所以BG=√32.设DE 的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF 外接圆的半径等于√32.23.解析 (Ⅰ)将{x =4+5cost ,y =5+5sint消去参数t,化为普通方程为(x-4)2+(y-5)2=25, 即C 1:x 2+y 2-8x-10y+16=0.将{x =ρcosθ,y =ρsinθ代入x 2+y 2-8x-10y+16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(Ⅱ)C 2的普通方程为x 2+y 2-2y=0.由{x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得{x =1,y =1或{x =0,y =2.所以C 1与C 2交点的极坐标分别为(√2,π4),(2,π2). 24.解析 (Ⅰ)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y={-5x , x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(Ⅱ)当x∈[-a2,12)时, f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈[-a2,12)都成立.故-a2≥a-2,即a≤43.从而a的取值范围是(-1,43].。