沪教版六年级数学(上)
- 格式:doc
- 大小:2.22 MB
- 文档页数:101
六年级上学期第一章数的整除1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.会用数轴上的点表示分数2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
沪教版六年级(上)数学辅导教学讲义1.主要复习、拓展小学阶段“行程问题”的解决方法;2.尝试用方程解决其他新类型的应用题;3.强化列方程解应用题的思想.复习回顾上次课的预习思考内容1.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:×=速度×时间=路程2.这个公式又可以演变为:“速度和×时间=”、“速度差×时间=”路程和,路程差3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。
基本公式:速度和×相遇时间=相遇路程4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。
基本公式:速度差×追击时间=追击路程这部分如果学校进度慢,学生没有理解可以举一些例子,通过画图让学生理解基本公式的含义本讲重点复习应用题中最难的一类——行程问题,并且在课内的基础上进行拓展。
同时,也提供了一些没有见过的应用题类型让同学们进行挑战,掌握用方程解应用题的关键。
在解决行程问题时,往往通过“甲路程+乙路程=总路程”或是“甲路程-乙路程=总路程”这类等量关系来解决问题。
要找到这样路程间的关系,辅助的路程线段图就十分重要。
除此之外,“甲路程”“乙路程”则更多是通过“甲路程=甲速度×甲时间”这样的关系来得到。
分析清楚从开始到结果的整个过程,是解决行程问题的关键所在。
在分析行程问题时,还要注意“甲”“乙”的速度、时间之间的关系,往往设出其中一个后,其他都与其相关,能够写清。
所以在设未知数时,往往是设某个人的“时间”或者“速度”作为x,较少会出现设路程为x的情况。
这部分关于行程问题的分析可以强调下,但学生可能感觉不大。
在后面对例题的讲解是可以反过来进行强化。
除此之外,还有许多不属于之前学过的类型的应用题,同样可以用方程来解决。
“找到关键量设x”、“用带x的式子表示其他量”、“找到等量关系列方程”的顺序来解决即可。
1.6公倍数和最小公倍数一、填空题2. 4和7的最小公倍数是,如果两数互素,它们的最小公倍数就是 .4.50以内的正整数中,3和5的公倍数有 .5.5和15的最大公因数是,最小公倍数是 .6. 最小的自然数是,最小的合数是,最小的正奇数是,7.20以内的素数有.8.20以内的数中不是偶数的合数有,不是奇数的素数有.9.在5和25中,是的倍数,是的因数,能被整除.10.在15、36、45、60、135、96、120、180、570、588这十个数中:能同时被2、3整除的数有,能同时被2、5整除的数有,能同时被2、3、5整除的数有.11.下面是一道有余数的整数除法算式:A÷B=C……R,若B是最小的合数,C是最小的素数,则A最大是 ,最小是 .12.三个连续奇数的和是87,这三个连续的奇数分别是,,.13.一个两位数既是偶数,又是5的倍数,同时它的素因数包括3,符合条件的两位数共有个,它们分别是.二、选择题14、27是3和9的()(A)最小公倍数(B)公倍数(C)最大公因数(D)公因数15、已知m=2×3×5, n=2×5×7, 那么m、n的最小公倍数是()(A)10 (B)60 (C)70 (D)21016、用一个数去除以12和18,正好都整除,则这个数最小是()(A)72 (B)36 (C)18 (D) 617、如果整数P是整数Q的2倍,那么下列说法正确的是()(A) P, Q的最小公倍数一定是P (B) P,Q的最小公倍数一定是Q (C)P,Q的最小公倍数一定是P的2倍(D)P,Q的最小公倍数一定是P、Q 之积18、两个数互素,且它们的最小公倍数是72,那么这两个数可能是()(A)3,24 (B)8,9 (C)18,4 (D)36,819. 把24分解素因数应该写成()(A) 2×2×2×3=24 (B) 24=4×6(C) 24=2×2×2×3 (D) 24=2×2×2×3×120. 28=4×7,4和7都是28的()(A)素因数(B)素数(C)因数(D)奇数21. 下面的说法中错误的是()(A) 3和5都是素数(B) 3和5都是60的素因数(C) 3和5都是15的因数(D) 3和5 都是60的分解素因数22. 两个奇数的和()(A)是奇数(B)是素数(C)是偶数(D)是素因数23. 不能被2整除的自然数是()(A)奇数(B)偶数(C)素数(D)合数24. 下面各组数中,第一个数能被第二个数整除的是()(A) 4和8 (B) 18和9 (C) 9和2 (D) 2和0.225.下列每组数中的两个数不是互素的是()(A)5和6 ; (B)21和9; (C)7和11; (D)25和26. 26.下列每组数中的两个数是互素数的是()(A)35和36; (B)27和36; (C)7和21; (D)78和26. 27.甲数=2×3×5,乙数=7×11,甲数和乙数的最大公因数是()(A)甲数;(B)乙数;(C)1;(D)没有.28.下列说法中正确的是()(A)5和6 的最小公倍数是1;(B)21和9的最小公倍数是21×9;(C)7和11没有最小公倍数;(D)甲数=2×2×3,乙数=2×3×3,甲数和乙数的最小公倍数是2×2×3×3.三、求下面每组数的最大公因数和最小公倍数29. 8和9 12和24 11和55 5和45 20和3030. 48和30 36和18 11和12 12和18 12、18和2431. 48和72 30和15 27和36 12和4032. 12和15 32和16 48和72 4、12和2033、求出下列每组分数中分母的最小公倍数(1)43和61 (2)52和92 (3)1511和187四、应用题34、边长是整厘米数,面积是196平方厘米的形状不同的长方形共有多少种?35、用长9厘米宽6厘米的小长方形拼一个正方形,最少要多少个?36. 6年级1班大约有50人左右,排座位时老师发现刚好可以排成6排或8排,求6年级1班的学生人数.37.已知甲数=2×3×5×A,乙数=2×3×7×A,甲乙两数的最大公因数是30,求甲乙两数的最小公倍数.38.74051至少减去多少后,就能被3整除?39.放寒假了,小明总希望让爸爸.妈妈一起带他去科技馆参观,因为听同学说那里可好玩啦!可是他遇到了一个难题,因为他的爸爸.妈妈不在同一天休息.爸爸每上4天班休息一天,妈妈却是上5天班休息一天,如果放假前的一天爸爸妈妈同一天休息,那么小明至少要在放假后第几天才能实现他的愿望?40.有三根绳子,一根长36米,一根长16米,一根长24米.要把它们剪成同样长的小段做跳绳,每小段要尽量长,一共能剪成多少根跳绳?41.大雪后的一天,大亮和爸爸共同步测一个圆形花圃的周长,他俩的起点和走的方向完全相同,大亮每步长54厘米,爸爸每步长72厘米,由于两人脚印有重合,所以各走完一圈后雪地上只留下60个脚印,求花圃的周长.42. 在一根100厘米的木棍上,自右至左每隔5厘米染上一个红点,同时自左至右每隔6厘米也染上一个红点,然后沿红点将木棍逐段锯开,问长度是1厘米的短木棍有多少根?第一章数的整除1.6公倍数和最小公倍数参考答案1. 80 282. 28 它们的积3. 3、6、9、12、15、184. 15、30、455. 5 156. 0 4 17. 2、3、5、7、11、13、17、198. 9、15 29. 25 5 5 25 25 510. 36、60、96、120、180、570、588 60、120、180、570 60、120、180、57011. 11 912. 27 29 3113. 3 30、60、9014. B 15. D 16. B 17. A 18. B 19. C 20. C 21. D22. C 23. A 24. A 25. B 26. A 27. C 28. D29. 8和9最大公因数1,最小公倍数7212和24最大公因数12,最小公倍数2411和55最大公因数11,最小公倍数555和45最大公因数5,最小公倍数4520和30最大公因数10,最小公倍数6030. 48和30最大公因数6,最小公倍数24036和18最大公因数18,最小公倍数3611和12最大公因数1,最小公倍数13212和18最大公因数6,最小公倍数3612、18和24最大公因数6,最小公倍数14431. 48和72最大公因数24,最小公倍数14430和15最大公因数15,最小公倍数3027和36最大公因数9,最小公倍数10812和40最大公因数4,最小公倍数12032. 12和15最大公因数3,最小公倍数6032和16最大公因数16,最小公倍数3248和72最大公因数24,最小公倍数1444、12和20最大公因数4,最小公倍数6033、(1)43和61 分母的最小公倍数是12 (2)52和92分母的最小公倍数是45 (3)1511和187分母的最小公倍数是90 34. 共5种35. 最少要6个36. 48人37. 甲乙两数的最小公倍数为105038. 74051至少减去2后,就能被3整除39.第20天40. 一共能剪成19根跳绳41. 21.6米,提示54cm和72cm的最小公倍数为216cm,大亮和爸爸各走4步和3步,由于两人脚印有重合,走216cm共留下3+4-1=6个脚印,所以花圃的周长为:216cm×(60÷6)=2160cm42. 7根。
沪教版六年级(上)数学辅导教学讲义1.综合复习小学所学的多种类型的应用题解法;2.训练列方程解应用题的熟练程度,提高速度和准确度.在解决和差倍问题时,要注意找到“1倍量”,一般将其设为x后,根据总数的和或差的关系列出方程。
回顾上次课的预习思考内容写出下列应用题中的等量关系:(1) 故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。
天安门广场的面积多少万平方米?___________________=____________________________________________。
(2) 妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。
儿子和妈妈今年分别是多少岁?____________=____________________;____________=____________________。
(3) 甲、乙两人原来存款数相同。
后来甲取出250元,而乙又存入350元,这时乙的存款数正好是甲存款数的4倍。
原来每人存款多少元?___________________=____________________________________________。
案例1:小王原来的钱数是小李的3倍,他们各自买了80元的书之后,小王的钱数变成了小李的5倍,请问小王和小李原来各有多少钱?教法说明:有些应用题会出现前后变化的情况,例如“小王给小李5元,他们的钱就一样多了”之类的条件,遇上这种情况,一定要分清“变化前”和“变化后”这两个时间点的不同,虽然是同一人,不同时间他有的钱数是不同的,也要分清倍数关系所对应的时间。
李之后的钱”。
它们之间的关系如下图所示:利用这个关系图,可以比较方便地列出方程并求解。
参考答案:设小李原来的钱为x元,3x-80=5(x-80)x=1603x=480答:小王和小李原来各有160元和480元。
总结:列方程解应用题的一般步骤:1.审题,迅速理解题意。
2.思考,找到题中的数量关系。
第1课时整数与整除知识精要整数:正整数、零、负整数,统称为整数。
零和正整数统成为自然数。
正整数整数零自然数负整数整除:整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a。
整除的条件:(3整1零)(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。
a÷b,读作a除以b或者b除a;a被b除或者b去除a。
(由第4题引出)凡是整除一定能除尽,但除尽的不一定能整除;除尽包含整除,整除是除尽的一种特殊情况。
(由第5题引出)因数与倍数:如果数a能被数b整除,那么a就叫做b的倍数,b叫做a的因数(也称为约数)。
因数、倍数是互相依存的。
不能说a是倍数、b是因数!一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
1只有一个因数1,除1以外的整数,至少有2个因数。
求法:因数的求法有2种,列乘法算式和列除法算式。
(第6题和第8题引出这一点)一个整数的倍数有无数个,没有最大的倍数,最小的倍数是它本身。
性质:一个整数既是它本身的约数又是它本身的倍数。
1是任何一个整数的因数,任何整数都是1的倍数。
0是任何一个不为0的整数的倍数,任何一个不等于0的整数都是0的因数。
能被2、5整除的数:能被2整除的数的特征是个位上的数字是0、2、4、6、8;能被5整除的数的特征是个位上的数字是5或0;能同时被2、5整除的数的特征是个位上的数字是0.能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数。
能被3整除的数的特征是各个数位上的数字相加的和是3的倍数。
能被6整除的数的特征是各个数位上的数字相加的和是3的倍数而且个位上的数字是0、2、4、6、8。
(既能被2整除又能被3整除)能被9整除的数的特征是各个数位上的数字相加的和是9的倍数.(证明方法在初一课本上)素数、合数与分解素因数:正整数按照因数的个数分类可以分为素数、合数、1.素数(质数)只有1和它本身两个因数;合数至少要有3个因数。
2.1 分数的除法一、知识点梳理:1、把一个总体平均分为n 份后,其中的1份可用______表示,m 份可用_____表示.(其中m 、n 都是正整数,且m n ≥).2、两个正整数p 、q _____,可以用分数表示.即_____p q ÷=,其中p 为______,q 为______.3、q p 读作_________,当___q =时,p qp =. 4、分数可以用数轴上的点来表示,方法是:将数轴上的单位长度_______等分,从0开始自左向右的第________点分点即表示分数q p 二、基础型作业:填空题1、35是_____个15; 8个111是_______. 2、整数a 除以整数b ,如果能够整除,那么结果是____数;如果不能够整除,那么结果可以用小数表示,还可以用___数表示.3、用分数表示除法的商:5÷13=________; 13÷5=____________.4、把分数写成两个数相除的式子:310=_______. 5、把1米长的钢管平均截成3段,每段长是_____米.(用分数表示)6、把三块饼平均分给4个孩子,每个孩子分得______块.(用分数表示)7、在数轴上,把单位长度5等分,从0开始自左向右的第4个分点表示的分数是______,第8个分点表示的分数是_______.8看成整体1,表示分数______.9、 3天占一星期的___________,3天=__________星期.10、某人用8天完成了一件工作,他平均每天完成这件工作的___________.11、在数轴上方空格里填上适当的整数或分数.04321一、知识点梳理:分数的基本性质:分数的分子和分母都乘以或除以______________的数,所得的分数与原分数的大小______.即:a a k a nb b k a n⨯÷==⨯÷________________(填上b 、k 、n 的取值范围) 二、基础型作业:(一)、填空题1、根据商的不变性有:25=2÷5=(2×3)÷(5× )=6__.2、右图中的涂色部分分别占圆的____、____、____,这些分数____.3、一个分数的分子扩大3倍,那么这个分数比原来扩大了___倍.4、一个分数的分母扩大3倍,那么这个分数比原来缩小了___倍.5、在括号内填上适当的数:;) (298) (9249)1(⨯=÷= ;8) () (142)2(== ;100) () (123) (3)3(=== .) (2120) () (124) (2418)4(÷==== 6、分子与分母相等的分数等于__________,分子比分母大的分数一定比__________大. 7、( )1( )115151.60( )60( )====分时,分钟刻钟时,由上得出的等式 8、如果一个分数的分母是49,且与76相等,那么这个分数是__________; 9、如果一个分数的分子是6,且与2418相等,那么这个分数是__________. 10、分数4827与6436相等吗?为什么?11、一个分数的分子扩大为原来的3倍,分母缩小到原来的31,那么这个分数是原来的几分之几?一、知识点梳理:1、分子和分母_________的分数,叫做最简分数.2、把一个分数的分子与分母的______________的过程叫做约分.二、基础型作业:(一)、填空题1、108千克花生可榨油96千克,平均1千克花生能榨油____千克.(结果用最简分数表示)2、用短除法可得: ,那么a b=________. 3、六(1)班共有36名同学,其中男同学有20名,那么女同学人数占全班人数的______;女同学人数是男同学人数的_________.4、一个分数,它的分母是72,化成最简分数是34,这个分数原来是____. 5、分母为12的最简真分数有_________________________.6、在分数365364301151172718218156、、、、、中,最简分数有____________________. 7、用最简分数表示:(1)48分钟=__________小时; (2)6分米=__________米;(3)1250克=__________千克; (4)500平方厘米=__________平方米.8、填空:(1)若15,10==b a ,则a 是b 的__________,b 是a 的__________.(2)若54=÷y x ,则x 是y 的__________,y 是x 的__________. 9、下面是一位同学用常用的约分方法编写的一首顺口溜,请你把它补充完整:末尾偶数用_______约,末位5、0用________约,各位之和为3的倍数,一定可用__________来约。
比的意义和比的基本性质是六年级数学上学期第三章第一节的内容,通过本讲的学习,同学们需要理解比和比值的意义、能区分比和比值、熟练地求解比和比值,同时要理清比与除法、分数等概念之间的联系和区别,也必须理解比的基本性质,并能熟练运用这个性质进行最简整数比的化简和连比的求解.1、 比和比值a 、b 是两个数或两个同类的量,为了把b 和a 相比较,将a 与b 相除,叫做a 与b的比.记作a : b ,或写成ab,其中0b ;读作a 比b ,或a 与b 的比.a 叫做比的前项,b 叫做比的后项. 前项a 除以后项b 所得的商叫做比值. 2、 比、分数和除法的关系比:前项:后项 = 比值;分数:分子分母= 分数值;除法:被除数÷除数 = 商. 比的前项相当于分数的分子和除式中的被除数; 比的后项相当于分数的分母和除式中的除数; 比值相当于分数的分数值和除式的商. 3、 比、分数和除法的区别 比是表示两个数关系的式子,分数是一个数,除法是一种运算.比的意义与性质内容分析知识结构模块一:比的意义知识精讲【例1】在5:4 1.25=中,5是比的______,1.25是比的______.【例2】213=____÷3 =____ : 3.【例3】某班有男生23人,女生22人,则男生人数与女生人数的比为______,女生人数与全班人数的比为______.【例4】求下列各个比的比值:(1)24 : 4;(2)15 : 25;(3)13:24;(4)11:0.52.【例5】下列各数中,与3 : 2不相等的是()A.1.5 B.23C.32D.128【例6】如果甲数是乙数的5倍,那么甲数和乙数的比是______.【例7】比的前项是38,比的后项是223,则它们的比值是______.【例8】王奶奶买了2斤苹果用去10.8元,买了3斤梨用去12元,苹果与梨的单价比的比值是______.例题解析【例9】夏日炎炎,商店需调制一种夏日特饮:青柠雪碧,要求青柠汁与雪碧的质量之为1 : 200,这个比的意义是()A.每200克饮料中含1克青柠汁B.每1克青柠汁配200克雪碧C.青柠汁比雪碧少199克D.雪碧比青柠汁多199克【例10】求下列各个比的比值:(1)40分钟: 1.5小时;(2)16小时: 5天;(3)4千克: 500克;(4)20cm : 0.6m.【例11】一个数的小数点向右移动三位,得到的数与原数的比是______.【例12】甲数是乙数的4倍,乙数是丙数的6倍,求甲数与丙数的比值.【例13】公园有一个湖泊,其余为绿地、建筑物和道路.已知公园面积为215平方千米,绿地面积为公园的23,建筑物和道路的占地总面积是公园面积的118,求湖泊面积和绿地面积的比值.【例14】一根绳子长132米,若按3 : 4分成两段,其中长的一段是多少米?1、 比的基本性质比的前项和后项同时乘以或者除以相同的数(0除外),比值不变. 2、 最简整数比比的前项和后项都是整数且互素,这样的比叫做最简整数比. 注:题目中比的结果都必须化成最简整数比. 3、 三连比的性质1、如果::a b m n =,::b c n k =,那么::::a b c m n k =;2、如果0k ≠,那么::::a b c ak bk ck =.【例15】 化简下列各比:(1)6 : 10;(2)22:35;(3)0.7 : 0.9;(4)10.75:4.【例16】 把10克盐完全溶解在90克水中,则盐与盐水的质量之比是( )A .1 : 10B .10 : 1C .1 : 9D .9 : 1模块二:比的基本性质知识精讲例题解析【例17】甲数除以乙数的商是1.5,则甲数与乙数的最简整数比是____________.【例18】两个数的比值是43,则它们的最简整数比是______;如果比的前项与后项同时乘以3,它们的最简整数比是______.【例19】把下列连比化成最简整数比:(1)20 : 25 : 50;(2)258 :: 369.【例20】比的前项扩大2倍,后项缩小2倍,这个比的比值()A.扩大4倍B.缩小4倍C.比值不变D.以上说法都不正确【例21】以下说法中,正确的个数是()(1)比的前项和后项乘以一个相同的数,比值不变;(2)女同学占全班人数的49,则女同学和男同学的人数之比为4 : 5;(3)把20克糖溶解在100克水中,糖与糖水的质量比为1 : 6;(4)25厘米和15米的比值是53;(5)在4 : 8中,如果前项加上8,要使比值不变,后项应加上8.A.1个B.2个C.3个D.4个【例22】化简下列各比:(1)511:196;(2)60.3::35;【例23】根据已知条件求a : b : c.(1)a : b = 2 : 3,b : c = 3 : 4;(2)a : b = 2 : 3,b : c = 6 : 5;【例24】写同样多的作业,小智用12分钟,小方用15分钟,那么小智与小方速度的最简整数比是____________.【例25】甲数的35等于乙数的14,甲乙两数的比为__________.【例26】一项工程,甲队单独做3天完成,乙队单独做5天完成,丙队单独做6天完成,那么甲、乙、丙三队的工作效率之比为_________________.【例27】5克盐完全溶解在100克水中.(1)求盐与水的质量比;(2)求盐与盐水的质量比;(3)要配制520千克这样的浓度的盐水,需要盐多少千克?【例28】如图,阴影部分的面积是正方形面积的27,是圆面积的316,求正方形与圆的面积之比.【例29】a : b : c = 1 : 3 : 4,a + c = 20,求a + b + c的值.【例30】甲、乙、丙三人去书店买书,共带去54元,甲用去了自己钱的35,乙用去了自己钱的34,丙用去了自己钱的23,各买了一本相同的书,三人用去的钱数正好相等,问这本书的价格是多少?【习题1】下列说法中,不正确的是()A.5与3的比值是5 3B.除法中的被除数相当于比的前项、分数中的分子C.若:3:5a b ,则a = 3,b = 5D.前项和后项是互素的,那么它们的比是最简整数比【习题2】六(2)班春游时,有1人请事假,2人请病假,实际45人参加,缺勤人数与全班人数的比是()A.1 : 15 B.3 : 45 C.1 : 16 D.3 : 48【习题3】一段绳子,原长14米,一次用去了2.8米,余下的绳长与原来的绳长的最简整数比是______.【习题4】一个比的前项是15,比值是114,则这个比的后项是______.【习题5】求下列各比的比值:(1)123:125;(2)3小时: 150分.【习题6】化简下列各比:(1)511:163;(2)2平方米: 4320平方厘米;(3)4:0.4:25(4)120分: 1.2小时: 1小时20分钟.随堂检测【习题7】比的前项是2.5,比的后项是5.25,如果比的前项增加1.5,那么比的后项增加______时,比值不变.【习题8】根据已知条件,求下列各比.(1)已知:15:4x y=,:5:12z y=,求::x y z;(2)已知11:1:223a b=,:2:3b c=,求::a b c.【习题9】现有黄沙、水泥、石子各12吨,根据施工要求,将黄沙、水泥、石子按2 : 3 : 5拌成混凝土,当水泥用完时,黄沙用了几吨?石子还缺几吨?【习题10】某中学460名学生分成三组参加植树活动,第一组与第二组人数比是3 : 4,第一组与第三组人数比是2 : 3,第三组比第二组多多少人?64.5甲乙【作业1】 6和9这两个数的最大公因数与它们的最小公倍数的比是( )A .1 : 12B .12 : 1C .1 : 6D .6 : 1【作业2】 一个比的前项是最小的素数,后项是最小的合数,这个比的比值是______.【作业3】 小正方形与大正方形的边长之比为2 : 5,则小正方形与大正方形的面积之比为____________.【作业4】 如图,甲、乙两个三角形的面积之比为____________.【作业5】 求下列各比的比值:(1)1.2 : 1.8;(2)2.4 m : 30 dm .【作业6】 根据已知条件,求下列各比.(1)已知11::23x y =,:2:3z x =,求::x y z ;(2)已知()12::1:2:33x y z ⎛⎫= ⎪⎝⎭,求::x y z .课后作业7k 7k5kPDCBA乙甲【作业7】 一个长方体的长和宽的比是5 : 6,宽与高的比是4 : 7,如果长方体的长是20厘米,求它的体积.【作业8】 如图所示,有三种物体:圆球、圆柱、正方体,每一种物体的大小、质量相同.若两个天平都平衡,三个球体的重量等于几个正方体的重量?【作业9】 如图,ABCD 是梯形,底边为AB 和CD ,P 是AD 的中点,CP 把梯形分成甲、 乙两个部分,它们的面积之比为12 : 7,求:上底AB 与下底CD 长的比.。
1、复习圆的周长、及圆的弧长公式。
2、在基础训练部分,着重复习公式及计算的方法技巧;在巩固训练部分,加强对图形的分析,由易到难,解决平时学生易犯错误的题目,加深理解。
3、在教学中让学生感受到几何图形的美。
圆的周长与弧长一、上节回顾(课前回顾)圆的认识:O.r圆心:我们把圆中心的这一点叫做圆心.圆心一般用字母O表示.半径:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r 表示.(在同一个圆里有无数条半径,所有半径的长度都相等.)直径:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母d来表示。
结论:在同一圆内(或等圆)有无数条半径,无数条直径,所有的直径都相等,所有的半径都相等,直径是半径2倍,也就是“d = 2r”。
二、本节内容知识点一:圆的周长用字母C表示圆的周长,d表示直径,那么C= πd 或C= 2πr .(直径大小一般用字母∅表示)。
基础练习:(1)圆的周长总是它的直径的倍多一些。
这个倍数是个固定的数,把它叫做,用字母表示。
(2)一个圆的半径是2.5厘米,它的直径是厘米,圆的周长是厘米。
(3)一个圆的周长是50.24分米,它的直径是分米,半径是分米。
(4)一个圆的半径是2厘米,半径扩大3倍,直径扩大倍,圆的周长就扩大倍。
(5)两圆的半径之比为3∶2,则它们的周长之比为;(6)周长为6π的圆的半径为。
经典例题:例1、(1)一个时钟的时针长10cm,时针尖12小时走了cm。
62.8(2)一个半圆形的窗户,它的直径是1米,这个半圆形的一周用米材料。
2.57(3)如果圆的直径扩大原来的5倍,那么圆的周长扩大为原来的倍;5如果圆的半径增加3cm,那么圆的周长增加cm。
18.84一个直径为2cm的圆的周长,正好等于另一个圆周长的1,则另一个圆的半径是cm。
44例2、如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系式是()AA.a=b B.a<b C.a>b D.不能确定例3、一辆自行车车轮的外直径是75cm,如果车轮以每分钟100圈的速度行驶,那么通过1413m的公路需要多少分钟?6分钟例4、两个皮带轮用皮带相连,大轮的直径是1.5m,小轮的直径是0.5m,大轮转一圈,小轮转几圈?3例5、在一个边长为4厘米的正方形内画一个最大的圆,并在其余部分涂上阴影,求阴影部分的周长。
六年级数学(上)目录第一章数的整除第一周 1.1 整数与整除的意义-1.3 能被2,5整除的数 (1)第二周 1.4 素数、合数与分解素因数 (5)第三周 1.5 公因数与最大公因数(1)-1.6 公倍数与最小公倍数 (9)一月一考第一章数的整除 (13)第二章分数第四周 2.1 分数与除法(1)-2.2 分数的基本性质(2) (17)第五周 2.2 分数的基本性质(3)-2.3 分数的大小比较 (21)第六周 2.4 分数的加减法(1)-(3) (25)第七周 2.4 分数的加减法(4)-(5) (29)一月一考第二章分数(2.1 分数与除法-2.4 分数的加减法) (33)第八周 2.5 分数的乘法-2.6 分数的除法 (37)第九周 2.7 分数与小数的互化-2.8 分数、小数的四则运算(2) (41)第十周 2.8 分数、小数的四则运算(3)-2.9 分数运算的应用 (45)一月一考第二章分数(2.5分数的乘法-2.9分数运算的应用) (49)第三章比和比例第十一周 3.1 比的意义-3.2 比的基本性质 (53)第十二周 3.3 比例-3.4 百分比的意义 (57)第十三周 3.5 百分比的应用(1)-3.5 百分比的应用(3) (61)第十四周 3.5 百分比的应用(4)-3.6 等可能事件 (65)一月一考第三章比和比例 (69)第四章圆和扇形第十五周 4.1 圆的周长-4.3 圆的面积(1) (73)第十六周 4.3 圆的面积(2)-4.4 扇形的面积 (77)一月一考第四章圆和扇形 (81)期中测试 (85)期末测试 (89)参考答案 (93)第一章 数的整除1.1 整数与整除的意义--1.3 能被2,5整除的数一、填空题(每题3分,共30分)1.最小的自然数是 ,小于3的自然数是 .2.最小的正整数是 ,小于4的正整数是 .3.20以内能被3整除的数有 .4.15的因数有 ,100以内15的倍数有 .5.24的因数有 .6.个位上是 的整数都能被5整除.7.523至少加上 才能被2整除,至少加上 才能被5整除.89.两个奇数的积一定是 ,两个偶数的积一定是 ,一个奇数与一个偶数的积一定是 .(填“奇数”或“偶数”).10.1到36的正整数中,能被5整除的数共有 个.二、选择题(每题4分,共16分)11.下列算式中表示整除的算式是………………………( )(A )0.8÷0.4=2;(B)16÷3=5……1;(C )2÷1=2; (D )8÷16=0.5.12. 下列说法中正确的是…………………………………( )(A )任何正整数的因数至少有两个; (B )1是所有正整数的因数;(C )一个数的倍数总比它的因数大; (D )3的因数只有它本身.13. 下列说法中错误的是…………………………………( )(A )任何一个偶数加上1之后,得到的都是一个奇数;(B )一个正整数,不是奇数就是偶数;(C )能被5整除的数一定能被10整除;(D )能被10整除的数一定能被5整除;14.下列各数中既能被2整除又能被5整除的数是………( )(A )12; (B )15;(C )2; (D )130.三、简答题15.从下列数中选择适当的数填入相应的圈内.(9分)-200、17、-6、0、1.23、76、2006、-19.6、9、83 负整数 自然数 整数16.下面各组数中,如果第一个数能被第二个数整除,请在()内打“√”,否则打“×”. (4分)①27和3()②3.6和1.2()17.按要求把下列各数填入圈中:1、2、3、4、6、8、9、12、15、18、21、24、27、30、33、36.(10分)72的因数 3的倍数18.说出下列哪些数能被2整除.(5分)2,12,48,11,16,438,750,30,55.19.说出下面哪些数能被5整除,哪些数能被10整数:(12分)105、34、75、1、215、1000、80、126、2495、1500、106、2000、478 能被5整除的数:能被10整除的数:20.把下列各数填入适当的圈内(每个数字只能用一次):(8分)36、90、75、102、10、20、290、985.2的倍数 5的倍数既是2的倍数又是5的倍数的数21.如果a是一个奇数,那么与a相邻的两个偶数是:.(6分)22.(附加题)(10分)填空,使所得的三位数能满足题目要求(1)3□2能被3整除,则□中可填入(2)32□既能被3整除,又能被2整除,则□中可填入(3)□3□能同时被2,3,5整除,则这个三位数可能是1.4 素数、合数与分解素因数一、填空题(每空1分,共24分)1.素数有 个因数,合数至少有 个因数,1有 个因数.2.1到20的正整数中,素数有 .3.1既不是 也不是 ,唯一的一个既是偶数又是素数的数是 .4. 36的全部素因数是 .12的因数是 .6. 把24分解素因数得 ,24的因数是 .7.24和32公有的素因数有 ,公有的因数有 .8.18的因数有 ,其中奇数有 ,偶数有 ,素数有 ,合数有 ,最小的奇素数是 ,最小的合数是 .9.把51分解素因数得 ,把91分解素因数得 .10. 把10表示成不同素数的和为 .二、选择题(16分)11.下列说法中正确的是…………………………………( )(A )合数都是偶数; (B )素数都是奇数;(C )自然数不是素数就是合数; (D )不存在最大的合数.12.两个素数相乘的积一定是……………………………( )(A )奇数; (B )偶数; (C )素数;(D )合数.13.A=2×2×3×5,B=2×2×3×7,A与B相同的素因数是………()(A)2;(B)2和3;(C)2,3,5,7;(D)2,2和3.14.下列是12的素因数的是…………………………()(A)1,2,3,4;(B)2,3;(C)2,2,3;(D)1,2,3,4,6,12.三、解答题15.把1到20的正整数按要求填入下图(12分)奇数质数偶数合数既是奇数又是质数的数既是偶数又是合数的数16.判断39、51、57、97是素数还是合数.(8分)17.分解素因数(12分)(1)用“树枝分解法”分解素因数:46、30、52;(2)用“短除法”分解素因数:72、84、40.18.把下列数按要求填入下图(8分)1,2,9,10,21,23,29,31,39,51,91,97素数合数19.分解素因数(6分)32 60 7520. 在下列三个□中分别填入一个素数,使等式成立.(只要求写出一种填法即可)(6分)□+□+□=5021. 四个小朋友的年龄一个比一个大一岁,他们年龄的乘积是1680,问这四个小朋友的年龄各是多少岁?(8分)1.5公因数与最大公因数—1.6公倍数与最小公倍数一、填空题(每空2分,28分)1. 如果两数互素,它们的最大公因数就是 .2.两个数中,如果某个数是另一个数的因数,那么这个数就是这两个数的 .“不是”).5. 甲数=2×2×3,乙数=2×3×3,甲数和乙数的最大公因数是 .7. 4和7的最小公倍数是 ,如果两数互素,它们的最小公倍数就是 .9.50以内的正整数中,3和5的公倍数有 .10.5和15的最大公因数是 ,最小公倍数是 .二、选择题(16分)11.下列每组数中的两个数不是互素的是…………………………………( )(A )5和6 ; (B )21和9; (C )7和11; (D )25和26.12.下列每组数中的两个数是互素数的是…………………………………( )(A )35和36; (B )27和36; (C )7和21; (D )78和26.13.甲数=2×3×5,乙数=7×11,甲数和乙数的最大公因数是………( )(A )甲数; (B )乙数; (C )1; (D )没有.14.下列说法中正确的是…………………………………()(A)5和6 的最小公倍数是1;(B)21和9的最小公倍数是21×9;(C)7和11没有最小公倍数;(D)甲数=2×2×3,乙数=2×3×3,甲数和乙数的最小公倍数是2×2×3×3.三、填图题15.按要求完成下图(8分)12的因数 18的因数12和18的公因数四、解答题16.求下列各题中两数的最大公因数(8分)(1)36和48 (2)42和5617.求下列各题中两数的最大公因数(12分)(1)45和75 (2)36和90 (3)48和7218.求下列各题中两数的最小公倍数(12分)(1)8和12;(2)42和14;(3)16和24.19. 求下列每组数最大公因数和最小公倍数. (10分)(1)15和65 (2)24和3020. 6年级1班大约有50人左右,排座位时老师发现刚好可以排成6排或8排,求6年级1班的学生人数. (6分)21.(附加题)(10分)已知甲数=2×3×5×A,乙数=2×3×7×A,甲乙两数的最大公因数是30,求甲乙两数的最小公倍数.第一章 数的整除(90分钟,满分100分)一、填空题(每小题3分,满分36分)1.在能够被2整除的两位数中,最小的是 .2. 和 统称为自然数.3.12和3,其中 是 的因数, 是 的倍数.4.写出2个能被5整除的两位数: .5.写出2个既能被5整除,又能被2整除的数: .6.写出2个2位数的素数: .7.在11到20的整数中,合数有: .8.分解素因数:24= .9.8和12的最大公因数是 .10.18和30的最大公因数是 .11.3和15的最小公倍数是 .12.已知A =2×2×3×5,B =2×3×3×7,则A 、B 的最小公倍数是 , 最大公因数是 .二、选择题(每题3分,满分12分)13.对20、4和0这三个数,下列说法中正确的是……………………( )(A)20能被4整除; (B)20能被0整除;(C)4能被20整除; (D)4能被0整除.14.下列说法中,正确的是…………………………………………………( )(A)1是素数; (B)1是合数;(C)1既是素数又是合数; (D)1既不是素数也不是合数.15.下列说法中,正确的是…………………………………………………()(A)奇数都是素数;(B)偶数都是合数;(C)合数不都是偶数;(D)素数都是奇数.16.下列各式中表示分解素因数的式子是…………………………………()(A) 2×3=6;(B)28=2×2×7;(C)12=4×3×1;(D)30=5×6.三、解答题(17、18题每题6分,19~23题每题8分,满分52分)17.分解素因数.(1)120(2)23818.写出下列各数的所有约数.(1)6(2)10519.求下列各组数的最大公因数和最小公倍数.(1)12和18(2)24和3620.写出最小的8个不同的素数.21.写出最小的8个不同的合数.22.在3至14的自然数中,哪些数与其它11个数都互素?23.求两个自然数,使它们的和为84,它们的最大公约数为12.24. (附加题10分)(1)有A、B、C、D四个数,已知A、C的最大公因数是72,B、D的最大公因数是90,这四个数的最大公因数是多少?(2)某班同学到图书馆借书,若借40本,平均分发给每个同学还差2本;若借65本,平均分发给每个同学后还剩2本;若借83本,平均分发给每个同学则还差1本.这个班最多有多少名同学?第二章分数2.1分数与除法—2.2分数的基本性质(2)一、填空题(20分) 1.35是_____个15; 8个111是_______. 2.整数a 除以整数b ,如果能够整除,那么结果是____数;如果不能够整除,那么结果可以用小数表示,还可以用___数表示.3.用分数表示除法的商:5÷13=________; 13÷5=____________.4.把1米长的钢管平均截成3段,每段长是_____米.(用分数表示).5.根据商的不变性有:25=2÷5=(2×3)÷(5× )=6__. 6.右图中的阴影部分分别占圆的____、____、____,这些分数____. 7. 10102518182÷===⨯ . 8.把一个分数的分子与分母的_________约去的过程,称为_____. 9.分数2772、1751、4297中,最简分数是 . 10.六(1)班共有36名同学,其中男同学有20名,那么女同学人数占全班人数的______;女同学人数是男同学人数的_________.二、选择题(16分)11. 下列各题,用分数表示图中阴影部分与整体的关系,正确的个数有( )1471025 33(A )1个; (B ) 2个; (C ) 3个; (D ) 4个.() () ()12. 在15355,,,25152515中,和13相等的分数是( ). (A ) 1525; (B )315; (C )525; (D )515. 13.下列说法中,正确的是( ).(A )分数的分子和分母都乘以同一个数,分数的大小不变;(B )一个分数的分子扩大2倍,分母缩小2倍,分数的值扩大4倍;(C )(0)a a m m b b m+=≠+; (D )5含有10个15. 14.100千克的糖水中,糖有20千克,水占糖水的 ( ) (A )14; (B )15; (C )45 ; (D )34.三、解答题15.学校粉刷墙壁需要10天完成,平均每天完成这项工程的几分之几?(9分)16.小丽要把一根5米长的绳子,平均分成4段,那么每段是全长的几分之几?每段长是多少米?(9分)17.在数轴上画出分数34,43,125所对应的点.(12分)18.把25和830分别化成分母都是15且与原分数大小相等的分数. (10分)19.下列分数中哪些是最简分数?把不是最简分数的分数化为最简分数. (12分)12 16,3895,74,11121,916.321 020.一条公路长1500米,己修好900米,还需修全长的几分之几? (12分)21.(附加题10分) 如图,将长方形ABCD 平均分成三个小长方形,再将三个小长方形分别平均分成2份、3份、4份,试问阴影部分面积是长方形ABCD 面积的几分之几?H G F E D CBA2.2分数的基本性质(3)—2.3分数的大小比较一、填空题(20分)1.六(1)班一次数学测验,不及格的有2人,及格的有46人,其中得优良的有20人.那么,不及格人数占全班人数的几分之几________; 优良人数占全班人数的几分之几______; 不及格人数是及格人数的几分之几___________.2.100克清水中放入15克糖,那么糖是糖水的几分之几_________.3.小明今年12岁,小杰比他大3岁,三年后,小明年龄是小杰年龄的几分之几___________.4. 一台冰箱原价是2500元,现在削价250元供应,现价是原价的几分之几_____________.5.比较下列同分母分数的大小: 79_____ 89; 1213_____ 513.6.比较下列异分母分数的大小: 23___ 67; 1324____38; 925___ 415.7.把34, 57和79通分得: 34=______;57=_______;79=_______.8.写出大于13而小于12的一个分数___________.9.己知3455x <<,则x 可以是_______, x 的取值可以有___ __个.10.在9364545,,,13485070中,最小的一个分数是________. 二、选择题(12分)11.一只书架上有两种书,其中故事书150本,科技书80本,下列说法正确的是( )(A )故事书占158; (B )科技书占815; (C )科技书是故事书的815; (D )科技书是故事书的158.12.分数13与35通分时,公分母只需取 ( )(A )5; (B )6 ; (C )15; (D )30.13.下列各式中正确的是( )(A )213>313; (B )5567<; (C )112<536; (D )23154>.14.小明抄写一篇课文用32小时,小杰抄同样的课文用了53小时,小明比小杰的速度( )(A )快; (B )慢; (C )一样; (D )无法确定. 三、解答题15.填表: 六年级(4)班学生视力情况调查结果(12分)16.某初级中学男女生人数情况如图,看图回答: (1)男生人数是全校学生数的几分之几?(2)女生人数是男生人数的几分之几?(3)六年级的学生数占全校学生总数的几分之几?(4)九年级的女生数是全校女生数的几分之几? (12分)17.把下列每组中的的两个分数通分,并比较大小: (12分)(1)512和34; (2)87和2321; (3)513和37;18.写出在19和79之间且分母是9的所有的最简分数. (8分)806019.比较三个数的大小: (12分)(1)317,,4210; (2)545,,6512; (3)36,,145;20.小明花15元买了20千克苹果,小丽花12元买了18千克苹果,他俩谁买的苹果便宜一些? (12分)21.(附加题10分)(1)我们可以用下面的方法比较两个分数的大小(对角相乘法):分别用每一个分数的分子去乘另一个分数的分母,哪个分子乘得的积大,这个分数就大.比如:比较213与35的大小.因为25313⨯<⨯,所以23135<.请用这种方法比较两个分数的大小: 322_____433;549_____348.(2).观察:①你能总结出什么规律?②比较20042005与20052006的大小.12112213+=+213314+=+314415+=+2.4 分数的加减法(1)--(3)一、填空题(20分)2. 20062006-= , =+42 . 3.9121312- , =-1751 .4. 在分数412,45,43中,其中真分数是 ,假分数是 ,带分数是 .5. 一个带分数的整数部分是2,分数部分是32,写成假分数是 .6.比较大小:433___415,8314. 7.以7为分母的真分数有;比分数1331小的最大整数是 .9.=-525 , =+62123 .10.=-15161582 ,=+5623 .二、选择题(12分)11.下列运算正确的是…………………………………( )(A )522131=+; (B )11271183=-;(C )21431215=-;(D )6131211=--. 12.下列说法中正确的是…………………………………()(A )假分数的值大于1 ; (B )真分数一定是最简分数; (C )假分数一定不是整数; (D )假分数的值一定不小于1.13.下列分数中介于整数5与6之间的是 ……………( )(A )523; (B )623; (C ) 423; (D )723. 14.下列比较大小正确的是…………………………………( ) (A ) 727653>; (B )65)3121(1>--; (C )13123>-; (D )103112115323<++.三、解答题15.先通分,再加减(12分)(1). 2418131++ (2). 71432827-- (3). 1075321-+16. 小明带若干元钱去超市购物,他用其中的41买图书,用其中的51买零食,剩 下的部分购买了航模材料,问购买航模材料的钱占总数的几分之几?(10分)17.化以下的带分数化为假分数,假分数化为带分数(12分) (1). 12113 (2). 977(3). 200612 (4). 12112 (5). 855(6).1112318. 用分数表示下列数轴上的点A 、B 、C 所表示的数. (6分)19. 如果6x是真分数,求整数x 的值. (5分) 20. 比较827 与720的大小. (5分)21. 计算(18分) (1). 6556+ (2). 911972+(3). 4111212- (4). 7111833+(5). 117311441112++ (6). 61123312++22.(附加题10分)(1).数轴上点A 表示的数是213,点B 在点A 的左边312个单位,求点B 表示的数.(2). 以16为分母的最大真分数是 ,最小真分数是 ,最简真分数是 ,所有以16为分母的最简真分数的和是 .2.4 分数的加减法(4)--(5)一、填空题(20分)3. 比较大小:31____.5.小明8分钟行走了35米,那么小明平均每分钟行走了 米. 6.用30元钱买了16斤鱼,则平均每斤鱼的价格是 元.7. 比213小311的数是 . 8. 与213的和是5的数是 .9.方程2134=-x 的解是 .10.一个数加上29等于10,这个数是 .二、选择题(16分)11.甲3分钟跑16米,乙4分钟跑21米,则下列说法正确的……………( ) (A )甲的速度快; (B )乙的速度快; (C )两人速度一样快; (D )不能确定.12.甲、乙二人合作完成某项工作,若甲实际完成了总工作量的41,乙实际完成了总工作量的54,则下列说法正确的是…………………………………( )(A)二人没有完成工作任务; (B ) 二人正好完成工作任务;(C )二人超额完成了工作任务; (D ) 不可能确定.13. 一个数与325的差是512,设这个数为y ,则下面列方程正确的是…( ) (A )y =-512325; (B )512325=-y ;(C )512315=+y ; (D )512315+=y .14.已知523432,653312=+=+y x ,则下列说法正确的 …………( )(A ) y x > (B )y x < (C ) y x = (D )x 、y 的大小不能确定三、解答题15. 星期天小明用了311小时打篮球,小李用了65小时打篮球,问小明比小李多用了多少时间打篮球?(8分)16. 一块科技试验田中,313亩用来培育水稻,72亩用来培育水果,问用来培育水稻与水果的总亩数是多少?(8分)17. 某班学生的31参加了科技兴趣小组,另有班级学生的52参加了体育兴趣小组,问没有参加这两个兴趣组的学生是班级总人数的多少?(8分)18. 在某次数学测验中,六(1)班38人共得总分3220分,六(2)班35人共得总分3020分,问哪个班的平均分较高?(8分)19. 解方程(15分) (1). 713732=+x ; (2). 31256=-x ;(3). 21413=-x . 20. 217正好是一个数与318的差,这个数是多少?(8分)21. 一个数减去611的差同722与313的和相等,这个数是多少?(9分)23.(附加题)(10分)一块试验田,第一试验组想用其中的52用来种水果,第二试验组想用其中的83用来种花木,第三试验组想用其中的72种玉米,试问他们的计划能否实行?为什么?第二章 分数(2.1分数与除法—2.4分数的加减法)90分钟,100分一、填空题(12×2分=24分)1. 用分数表示除法的商:1217÷ =__________.2. 写出下列图中的阴影部分面积各占总面积的几分之几.3. 一段公路5千米,8天修完,平均每天修_____千米,每天修这段公路的_______.4. )(920)(43==÷.5. 分数2772、1751、4297中,最简分数是 . 6.计算:=+9291 ,=-5254 .7.计算:=-5.0431 ,=+3174 .8.计算:=-87311 ,=+92297 .9. 某班男同学有20人,女同学有25人,该班男同学人数占全班人数的_______.10.比较大小:34___1012(填“>”或“<”) 11.若3546x <<,且x 是分母为48的最简分数,则x =_________.12.加工同样多的零件,王师傅用了1314小时,张师傅用了1213小时,李师傅用了1516小时,____师傅最快.( )( )二、选择题(4×3分=12分)13.下列说法中正确的是( )(A )分数的分子和分母中一个是奇数,另一个是偶数,这个分数一定是最简分数; (B )一个分数的分子与分母是两相邻的正整数,这个分数一定是最简分数; (C )一个分数的分子、分母都是合数时,这个分数一定不是最简分数;(D )因为13>8,29>9,所以138299>. 14.下列各数中,大于13且小于12的数是( )(A )512; (B )413; (C )712; (D )612.15.下列算式中,结果与107433.0411-+-相等的是………………( )(A) ;7.03.043411+-+ (B) ;43)7.03.0(411+++ (C) );7.03.0(43411+-+ (D) );7.03.0(43411+--16.一种混凝土由水泥、黄沙和石子组成,其中黄沙占,水泥占石子占51,21 ……………………………………………( ) (A) 71; (B) 75; (C) 107; (D) 103.三、解答题17.在数轴上标出以下各点,并把各点所表示的数按从小到大的顺序排列. A 点表示的数为23,B 点表示的数为4,C 点表示的数为54,D 点表示的数为125.(8分)18. 先通分,再比较每组中分数的大小. (9分) (1)241785和 (2) 1271811和 (3) 94、2158和4519. 计算:(2分+2分+3分+3分+4分+4分=18分) (1)5131+; (2)12565- (3)812874- (4)213317+ (5)⎪⎭⎫ ⎝⎛-+125432214 (6)922121813+-20. 小萍找来三根铁丝做手工作业,第一根铁丝的长度是第二根的2倍,第三根铁丝长度是第二根的6倍,第一根铁丝的长度是第三根的几分之几?(7分)21.某班一次数学测验的成绩统计如下表所示,求80~100分的人数占全班人数的几分之几?不及格人数占全班人数的几分之几? (7分)22.超市有一批苹果150千克,一天卖出50千克,还剩这批水果的几分之几? (7分)23.一根竹竿长3.5米,插入河底泥中41米,露出水面85米,这条河水深多少米?(8分)24.(附加题10分) 一个分数的分子,分母相差3,如果分子、分母同时加上13后,可约简成76,求原分数.2.5 分数的乘法—2.6分数的除法一、填空题(每空1分,20分)2. (1) 87⨯= ; (2)=⨯013 .3.(1) 131131⨯ ; (2)7532⨯= .4.(1)9112⨯= ;(2)75⨯ . (2(3)1____5=⨯.6.比较大小:(1)127___65127⨯. (2)1211___561211⨯322的倒数是 .8.(1)._____222⨯=÷ (2).___151⨯=÷(210.方程228=x 的解是 .二、选择题(16分)11.下列计算结果正确的是…………………………………( )(A )24168332=⨯; (B )2526135=⨯; (C )132123=⨯;(D)20710091135=⨯.12.下列说法中正确的是…………………………………( ) (A )任何一个数都有倒数; (B )311的倒数是3;(C )任何正整数的倒数都小于1; (D )乘积为1的两个数互为倒数.13.一个数的32是732,求这个数.下列列式正确的是………………( ) (A ) 73232⨯; (B )73232÷; (C ) 32732÷; (D )73232+.14.小丽用125小时行了834千米,小明用167小时行了854千米,下列说法正确的是…………………………………( )(A )小丽的平均速度较快; (B )小明的平均速度较快; (C )两人平均速度一样快; (D )小明比小丽每小时多行41千米. 三、解答题15.计算(12分) (1). 72132⨯ (2). 3322⨯ (3). 433125⨯16. (12分) (1) 求7个43是多少?(2) 求522的5倍是多少?(3). 求边长为65cm的正方形的周长是多少?17. (15分) (1)求3公斤的52是多少公斤?(2)小红每天在校练琴43小时,5天她在学校练琴多少小时?(3)一块试验田的53种水果,而种西瓜的田又占种水果的田的41,问种西瓜的田占总试验田的几分之几?18.计算(12分) (1).11111211⨯ (2). 512512÷ (3). 41154⨯(4). 543÷(5). 871÷ (6). 1872÷19.(4分+4分+5分) (1)322是x 的一半,求x 的值.(2) 一个数的297是8,求这个数(3)小明去超市购了50元的货物,用去了所带钱款的54,求小明带了多少钱款去超市购物?20.(附加题)(10分)(1)计算:)1011)(911)(811)(711)(611()511()411()311()211(-----⨯-⨯-⨯-⨯-(2). 已知735的倒数为m ,n 的倒数为732,求m +n 的倒数.2.7分数与小数的互化--2.8分数、小数的四则混合运算(2)一、填空题(20分)2. 比较下列两组数的大小:05.0___20,376.3____83.3.一个最简分数能化为有限小数的条件是分母的因素中只含有 .该小数用简便方法可写作 .5.化下列分数为循环小数:=31,34= .6.比较大小:612.0____16.0∙.(2=+25.0 . (2)=-375.23 .(210.(1)=⨯+755.(2)=⨯-836 .二、选择题(16分)11.下列说法中正确的是…………………………………( )(A )任何分数都能化为有限小数; (B )任何有限小数都能化为最简分数; (C )分数141能化为有限小数; (D )将小数2.12化为分数是253. 12.下列说法中正确的是…………………………………( )(A )小数0.121221222…是循环小数; (B )分数总可以化为循环小数; (C )2232323.0…的循环节是“223”; (D )循环小数不一定小于1.13.小明星期天用了20分钟做语文作业,用了43小时做英语作业,那么小明完成这两样作业共花时间为…………………………( ) (A )2019小时; (B ) 95分钟; (C )1213小时; (D )75分钟. 14.下列运算正确的是…………………………………( ) (A )2771251211=⨯-; (B )4333143=⨯÷; (C )211)2131(311=+-; (D )71)7656(125=-⨯.三、解答题15.将下列分数化为有限小数,若不能化为有限小数,则将结果保留三位小数.(8分)(1)87(2) 1215 (3)254 (4)75116. 将下列小数化为最简分数(9分).(1)2.14 (2)5.375 (3)0.8417. 求下列分数化为循环小数(9分). (1)92 (2)916 (3)121118. 将5952,1513,68.0,86.0∙∙从小到大排列(8分).19. 计算:(9分) (1)6.0313- (2)813875.0+ (3))41612(433--20. 学校运动会上,学生体操表演用了52小时,武术表演用了12分钟,教师文艺表演用了127小时,那么师生表演这三个节目共用了多少小时?(7分)21.计算(9分) (1)54324÷÷ (2)5153114-⨯ (3))8121712(1211⨯÷22. 小明用65小时行了12千米,那么他按这样的速度行走4145千米需要多少小时?(5分)23.(附加题)(10分)(1) 计算:)123.0765(12137131211-+++(2). 计算:÷÷÷÷÷544332211 (2008)2007÷2.8分数、小数的四则混合运算(3)--2.9分数运算的应用2. 1-()53-= ,=+⨯)96(2 .3.=⨯4.287 ,=⨯766.5 .4.=-⨯)711(11 ,=-÷)11(2 .7.1小时的5是 分钟. 10. 一课本厚约为42cm ,这样的课本38本叠在一起大约高为 cm . 二、选择题(16分)11.下列运算过程正确的是……………………………………………………( ) (A )63511321)185137(721-=-⨯; (B )2111321)183137(721-=-⨯; (C ) 12121581571212=+⨯ ; (D )121981571212=-⨯.12.一件物品以原价的32出售,价格为12元,求原价.下列列式计算正确的是………………………………………………………………………………………()(A )3212⨯; (B )3512⨯; (C )3212÷ ; (D )3512÷.13.一件物品将进价加价72后出售,售价为120元,求进价.设进价为x 元,那么列方程正确的是…( )(A ) 12072=x ; (B ))721(120+⨯=x ; (C ) 120)721(=-x ; (D )120)721(=+x .14.小丽计划用三天时间读完一本书的32,她第一天读了全书的53,第二天读了第一天的61,求小丽第三天应读全书的几分之几?下列列式正确的是…………………( ) (A )61531--; (B ) 615332--; (C )67531⨯-; (D )675332⨯-. 三、解答题15.计算(8分) (1))413121(12+-⨯ (2)117)751211(⨯-16.用简便方法计算(8分) (1)50504910⨯; (2)6.5)8372(⨯+.17. 六(1)班男生占全班总人数的53,求女生占男生的几分之几?(8分)18.一群年轻人去郊外旅游,共用了 小时,其中坐车用了2小时10分钟,吃午饭用了0.5小时. 那么他们实际在一起游玩的时间是多少小时?(8分)19. 求图中输出的结果. (8分)20. 小明用6118分钟跑完了100米的路程,求他按此速度跑120米所需的时间是多少?(8分)21. 在某次捐款活动中,甲班38人捐款420元,乙班39人捐款429元,求甲班平均每人捐款金额比乙班平均每人捐款金额多多少元?(8分)43522. 一个水果店五月一号出售的三种水果的价格和销售量如下表:(8分)求(1)这天三种水果的销售总额是多少元?(2)苹果和梨的销售额的和占销售总额的几分之几?23.(附加题)(10分) (1)计算:+⨯+⨯+⨯+⨯541431321211 (2008)20071⨯+(2). 两件物品均以200元的价格出售,其中一件盈利52,另一件亏损52,问最终商家是赚了钱还是亏了?赚或亏的金额是多少?第二章 分 数(2.5-2.9)(时间90分钟,满分100分)一、填空题(本题共12小题,每题3分,满分36分)1、把下列分数化成小数:532= ;2034= ;875= . 2、把下列小数化成最简分数:1.05= ;1.625= .3、3.25小时=( )小时( )分,265分钟=( )小时(填分数)4、在8383.2,38.2,84.2,652∙∙中,从大到小排列为 .5、如果每根水管长432米,那么8根这样的水管长为 米.6、六年级某班共有45名学生,一次体格检验后,老师宣布全班92的同学体重超标,那么这个班体重超标的学生有 名.7、小明今年15岁,比她爸爸小30岁,5年后小明的年龄是她爸爸年龄的()()? 8、仓库有货810吨,9天运走全部的53,平均每天运走 吨. 9、比较大小:54 65;1.875 871.10、上海“金贸大厦”的高度约是420米,共有88层,那么它每层的平均高度是 米.11、“沪宁高速公路”开通前汽车从上海到南京要319小时,开通后只需213小时,这样从上海到南京可以节省 小时.12、小王身高175厘米,小丁比小王矮51,那么小丁身高 厘米. 二、选择题(本题共4小题,每小题3分,满分12分)。
百分比的应用是六年级数学上学期第三章第2节的内容.在生产和工作中常用的百分率有、增长率、盈利率、亏损率、税率和利率等,本讲主要讲解及格率、合格率、出勤率等常用的百分率,以及增长率和下降率、涨价和降价在实际生产生活中的应用,以提高学习的积极性.1、在生产和工作中常用的百分率及格率= 100%⨯及格人数总人数;合格率= 100%⨯合格产品数产品总数;出勤率= 100%⨯实际出勤人数应该出勤的人数;……“某某”率= “某某”的数量占总的数量的百分之几= 100%⨯“某某”的数量总的数量.百分比的应用(一)内容分析知识结构模块一:常用的百分率知识精讲【例1】 六(2)班共45名同学,期中考试,数学成绩及格的人数有36人,则及格率为______.【难度】★【答案】80%.【解析】361008045⨯=%%. 【总结】此题主要考查了有关百分率的应用,此题的关键是及格率100%=⨯及格人数总人数.【例2】 一批产品的废品率是百分之零点六,写成百分率是______,这批产品的合格率是 ______. 【难度】★【答案】0.6%;99.4%.【解析】一批产品的废品率是百分之零点六,写成百分率是0.6%,这批产品的合格率是10.699.4-=%%.【总结】此题主要考查了有关百分数的意义、读写及应用,应明确:合格率+废品率=1.【例3】 六年级有学生150人,今天缺勤4人,那么计算出勤率的算式是( )A .4100%150⨯B .4100%1504⨯+ C .1504100%1004-⨯- D .1504100%150-⨯ 【难度】★【答案】D .【解析】出勤率100%=⨯实际出勤人数应该出勤的人数. 【总结】此题主要考查了有关出勤率的应用.例题解析【例4】 体育达标率85%,指的是______人数是______人数的85%.【难度】★【答案】体育达标;总. 【解析】达标率100%=⨯体育达标人数总人数. 【总结】此题主要考查了有关达标率的应用.【例5】 把4克盐溶解在100克水中,盐水的含盐率是______.【难度】★【答案】3.8%. 【解析】4100 3.84+100⨯≈%%. 【总结】此题主要考查了有关含盐率应用,应注意=+纯盐量含盐率纯盐量水量.【例6】 植树400棵,其中15棵未成活,则成活率为______%.【难度】★【答案】96.25. 【解析】4001510096.25400-⨯=%%. 【总结】此题主要考查了有关成活率的应用.【例7】 某学校组织学生参加春秋两季的植树绿化活动,春季植树360棵,秋季植树440 棵,成活了760棵,则成活率是______. 【难度】★★【答案】95%. 【解析】76010095360440⨯=+%%. 【总结】此题主要考查了有关成活率的应用.【例8】 某射击运动员一次训练时,一共打了5组子弹,每组10发子弹,其中有3发子弹 没有命中目标.求射击运动员训练时的命中率.【难度】★★【答案】94%. 【解析】510310094510⨯-⨯=⨯%%. 【总结】此题主要考查了有关命中率的应用.【例9】 有一批种子的发芽率为98.5%,播种下3000粒种子,可能会有多少粒种子没发芽?【难度】★★【答案】45粒.【解析】()3000198.545⨯-=%(粒)【总结】此题主要考查了有关发芽率的应用.【例10】某工厂生产一批零件,经检验合格率是98%,合格零件共98件,求这批汽车 零件中不合格的零件数.【难度】★★【答案】2件.【解析】9898982÷-=%(件).【总结】此题主要考查了有关合格率的应用.【例11】检验员检验一批电脑的合格率是98%,不合格的电脑有98台,求合格的电脑 有几台?【难度】★★【答案】4802台.【解析】()98198984802÷--=%(台).【总结】此题主要考查了有关合格率的应用.【例12】六年级某班一次数学测验成绩统计表如下:求:(1)该班本次数学测验成绩的优秀率(不低于90分为优秀);(2)该班本次数学测验成绩的及格率.【难度】★★★【答案】(1)45%;(2)92.5%.【解析】(1)班级总人数为:216694340+++++=(人)优秀率:2161004540+⨯=%%;(2)班级及格人数为:21669437++++=(人)及格率:3710092.540⨯=%%.【总结】此题主要考查了有关优秀率和及格率的应用.【例13】100个零件,次品率为3%,从中取出25个合格的零件后,次品率变为多少?【难度】★★★【答案】4%.【解析】10031004 10025⨯⨯=-%%%.【总结】此题主要考查了有关次品率的应用,注意取出25个合格的零件后总数发生了改变.【例14】在600千克含盐20%的盐水中加入40千克的盐,求现在的含盐率.【难度】★★★【答案】25%.【解析】60020401002560040⨯+⨯=+%%%.【总结】此题主要考查了有关含盐率的应用,综合性较强,注意溶质和溶液的量的变化.1、 增长率:即增长了百分之几增长率 = 100%⨯增长的量基础的量. 2、 下降率:即下降了百分之几下降率 = 100%⨯下降的量基础的量.【例15】 某机床厂今年计划生产2200台数控机床,比去年增产200台,按计划,产量的增长率为______.【难度】★【答案】10%.【解析】200100102200200⨯=-%%. 【总结】本题主要考查了有关增长率的实际应用,增长率100%=⨯增长的量基础的量.【例16】 某机床厂今年实际生产1800台数控机床,比去年减产200台,则实际产量的下降率为______.【难度】★【答案】10%.【解析】200100101800200⨯=+%%. 【总结】本题主要考查了有关下降率的实际应用,下降率100%=⨯下降的量基础的量.模块二:增长率&下降率 知识精讲 例题解析【例17】 某工厂去年计划产值2400万元,采用新设备后,实际产值比计划增长60%,实际产值多少万元?【难度】★★【答案】3840万元.【解析】()24001603840⨯+=%(万元).【总结】本题主要考查了有关增长率的实际应用,已知原来的量和增长率,求现在的量用乘法.【例18】 某工厂去年实际产值2400万元,比计划增长60%,计划产值多少万元?【难度】★★【答案】1500万元.【解析】()24001601500÷+=%(万元).【总结】本题主要考查了有关增长率的实际应用,已知现在的量和增长率,求原来的量用除法.【例19】某煤矿公司去年产值2400万元,今年产值下降了40%,则今年的产值为多少万元? 【难度】★★【答案】1440万元.【解析】()24001401440⨯-=%(万元).【总结】本题主要考查了有关下降率的实际应用已知现在的量和增长率,求原来的量 用除法.【例20】某煤矿公司今年产值2400万元,比去年下降了40%,则去年的产值为多少万元? 【难度】★★【答案】4000万元.【解析】()24001404000÷-=%(万元).【总结】本题主要考查了有关下降率的实际应用,已知现在的量和增长率,求原来的量用除法.1、“折数”“打八折”指现价是原价的80%,“打对折”指现价是原价的50%,“打七五折”指现价是原价的75%.2、“成数”成数是以10为分母的的分数.如一成就是110,即10%;75%可以称为七成五.【例21】比较大小:二成五______七五折.(填“>”、“<”或“=”) 【难度】★【答案】<.【解析】二成五就是25%,七五折就是75%.【总结】本题主要考查了有关“成数”与“折数”的概念.【例22】一双运动鞋原价480元,换季时打六折出售,实际售价为多少元?【难度】★【答案】288元.【解析】48060288⨯=%(元).【总结】本题主要考查了有关百分数的实际应用,关键是理解“折”的意义,几折就是百分之几十.模块三:涨价&降价 知识精讲例题解析【例23】一双运动鞋原价480元,换季时打折出售,实际售价为360元,则这双运动鞋 打了几折?【难度】★【答案】七五折. 【解析】36010075480⨯=%%,所以这双运动鞋打了七五折. 【总结】本题主要考查了有关折数与百分数的关系.【例24】 商店以六五折优惠供应一批商品,现在售价比原来降低了______%.【难度】★★【答案】35.【解析】16535-=%%.【总结】本题主要考查了有关降低率的实际应用.【例25】 一件商品先涨价20%,再降价20%,现价是原价的______%.【难度】★★【答案】96.【解析】(120)(120)96+-=%%%.【总结】本题主要考查了有关“涨价与降价”的实际应用,解答此题的关键是分清两个单位“1”的区别,再根据分数乘法的意义求出现价与原价的关系.【例26】 一件商品先降价20%,再涨价20%,现价是原价的______%.【难度】★★【答案】96.【解析】()()12012096-⨯+=%%%.【总结】本题主要考查了有关“涨价与降价”的实际应用,解答此题的关键是分清两个单位“1”的区别,再根据分数乘法的意义求出现价与原价的关系.【例27】 一件商品先涨价25%,要恢复原价,需降价______%.【难度】★★【答案】20.【解析】()1112520-÷+=%%.【总结】本题主要考查了有关“涨价与降价”的实际应用.【例28】 一件商品先降价20%,要恢复原价,需涨价______%.【难度】★★【答案】25.【解析】()1120125÷--=%%.【总结】本题主要考查了有关“涨价与降价”的实际应用.【例29】一件衣服打八八折的售价比原来售价少72元,随后又打了九折,这时这件衣 服的售价是多少元?【难度】★★★【答案】475.2元.【解析】()721880.880.9475.2÷-⨯⨯=%(元).【总结】本题主要考查了有关打折的实际应用.【例30】某种型号的电视机由于销售不畅,厂家决定降价出售,如果打九折出售,可盈 利215元,若打八折出售,会亏损125元,问这种电视机的成本价是多少元?【难度】★★★【答案】2845元.【解析】设成本价是x 元,出售价为y 元,则由题意可得0.92150.8125y x y x -=⎧⎨+=⎩,解得28453400x y =⎧⎨=⎩, ∴种电视机的成本价是2845元.【总结】本题主要考查了有关折数的实际应用,综合性较强,注意对题意的理解.【习题1】在全班40位同学中,有28位同学投票给小北,小北的得票率是______.【难度】★【答案】70%.【解析】281007040⨯=%%.【总结】此题主要考查了有关得票率的应用.【习题2】全班共50人,体育锻炼达标的有48人,达标率是多少?未达标的人数占全班的百分之几?【难度】★【答案】96%;4%.【解析】达标率为:481009650⨯=%%;未达标的人数所占百分比为:1964-=%%.【总结】此题主要考查了有关达标率的应用,还考查了一个数占另一个数的百分之几的应用.【习题3】“对折”出售一批商品,就是按原价的______成出售,也就是按原价的______%出售.【难度】★【答案】五;50.【解析】“打对折”,就是按原价的五成,也指现价是原价的50%.【总结】本题主要考查了有关百分数的实际应用,关键是理解“折”的意义,几折就是百分之几十.随堂检测【习题4】 某工厂去年的产值是250万元,今年的产值预计为280万元,今年的产值比去年的产值增产______%.【难度】★【答案】12.【解析】28025010012250-⨯=%%.【总结】此题主要考查了有关增产率的应用.【习题5】 如果某种奶粉含脂肪率为25%,那么350克奶粉中含脂肪______克. 【难度】★★ 【答案】87.5克.【解析】3502587.5⨯=%(克).【总结】此题主要考查了有关百分率的应用.【习题6】 某商品先涨价10%,再降价10%,则现价是原价的______%. 【难度】★★ 【答案】99.【解析】()()110110199+⨯-÷=%%%.【总结】本题主要考查了有关“涨价与降价”的实际应用,解答此题的关键是分清两个单位“1”的 区别,再根据分数乘法的意义求出现价与原价的关系.【习题7】 电脑提价10%出售,就是提价了______成,现价是原价的______%. 【难度】★★ 【答案】一,110.【解析】电脑提价10%,就是提价一成,现价是原价的()1101110+÷=%%. 【总结】此题主要考查了一个数是另一个数的百分之几的应用.915 224人数到校方式自 行 车公 交 车步 行其 他【习题8】 如图是一学校某班学生到校方式调查图.根据图表中的数据,分别计算: (1)步行到校的人数占学生总人数的百分之几?(2)骑自行车到校的人数占坐公交车到校的人数的百分之几?(3)坐公交车到校的人数比骑自行车到校的人数多百分之几?【难度】★★ 【答案】(1)44%; (2)60%;(3)66.7%.【解析】(1)2210044915224⨯=+++%%;(2)91006015⨯=%%;(3)15910066.79-⨯≈%%. 【总结】此题主要考查了一个数占另一个数的百分之几的应用.【习题9】 张先生向商店订购某种商品80件,每件定价100元,张先生向商店经理说: “如果你肯降价,每降1元,我就多订购4件.”商店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样的利润.问:这种商品的成本是多少元?【难度】★★★ 【答案】75元.【解析】设这种商品的成本是x 元,则 商品降价10055⨯=%元,则多订购4520⨯=件, 所以降价后商品定价为95元,订购100件, 由题意得()()801001001005x x -=--,解得75x =,所以这种商品的成本是75元.【总结】此题主要考查了有关利润的应用.【作业1】 某学校去春季植树80棵,其中存活78棵,存活率是______. 【难度】★【答案】97.5%.【解析】7810097.580⨯=%%.【总结】此题主要考查了有关存活率的应用.【作业2】 用2000千克花生仁榨出花生油760千克,求花生仁的出油率. 【难度】★【答案】38%.【解析】760100382000⨯=%%.【总结】此题主要考查了有关出油率的应用.【作业3】 为响应国家节能减排的号召,一大型购物中心决定在商场的最顶层安装太阳能 电池板,计划可将商场内每平方米的耗电量由20 kWh 降到16 kWh ,则每平方米的耗电量下降率为______.【难度】★【答案】20%.【解析】20161002020-⨯=%%.【总结】此题主要考查了有关降低率的应用,注意对公式的准确运用.【作业4】 某班有50位学生,一次数学测试的合格率是98%,那么不合格的人数为______. 【难度】★★ 【答案】1.【解析】()501981⨯-=%(人).【总结】此题主要考查了有关合格率的应用.课后作业良好优秀中等不及格 【作业5】 下列说法正确的是( ) A .105棵树苗全部成活,成活率为105%B .将10千克黄豆榨得2.5千克油,出油率为2.5%C .全班50人,参加劳动有42人,则该班的参与率为84%D .若甲数比乙数多20%,则乙数比甲数少20%【难度】★★ 【答案】C .【解析】全班50人,参加劳动有42人,则该班的参与率为421008450⨯=%%. 【总结】此题主要考查了各种百分率的应用,注意对相关量的准确理解.【作业6】 一件商品按八五折出售,这件商品降价( )A .8.5%B .85%C .15%D .1.5%【难度】★★ 【答案】C .【解析】18515-=%%.【总结】此题主要考查了有关打折的问题.【作业7】 某商品先打对折,欲恢复原价,需涨价______%. 【难度】★★ 【答案】100.【解析】1501100÷-=%%.【总结】此题主要考查了有关折数的应用.【作业8】 如图是某校六年级学生第一学期数学期终考试成绩的扇形统计图,其中表示优 秀、良好、中等的中心角分别是72°、162°、90°,请分别求出优秀率、及格率和不及格率.【难度】★★★【答案】优秀率20%,及格率90%,不及格率10%.【解析】优秀率为:7210020360︒⨯=︒%%;及格率为:721629010090360︒+︒+︒⨯=︒%%;不及格率为:19010-=%%.【总结】此题主要考查了有关优秀率、及格率的有关应用.【作业9】 某校六年级共有学生250人,其中25是女生,全体六年级学生参加体育锻炼 达标测验,结果男生中的10%和女生中的15%未达标,问六年级体育锻炼达标率是多少?【难度】★★★ 【答案】88%.【解析】达标人数:()()22250115250111022055⎛⎫⨯⨯-+⨯-⨯-= ⎪⎝⎭%%(人)达标率是:22010088250⨯=%%. 【总结】此题主要考查了有关达标率的应用,综合性较强,要认真分析题意.【作业10】 某种商品按原价出售,每件利润为成本的25%,后来按原定价打九折出售, 结果每天售出的件数比降价前增加了1.5倍,每天经营这种商品的总利润比降价前增加了百分之几?【难度】★★★ 【答案】25%.【解析】打九折后的的售价是原价的:()12590 1.125+⨯=%%(倍) 打九折后的利润为:()()1.1251 1.510.3125-⨯+=, 增加了:()0.31250.250.2525-÷=%.答:经营这种商品的总利润比降价前增加了25%.【总结】此题主要考查了有关利润和成本的问题,综合性较强.。
六年级上册数学沪教版分数运算的应用分数运算的应用是六年级数学上学期第二章第二节内容,主要包含几种常见的类型。
其中最重要的类型是第三种,即一个数比另一个数多(或少)几分之几的应用。
通过这节课的研究,学生可以复前面学过的内容,提升分数计算能力,并且通过解决实际问题,激发学生对数学研究的兴趣。
求一个数的几分之几是多少是本节课的第一个模块。
应用题的数量关系是:单位“1”的量×几分之几=几分之几的具体量。
例如,求一个数a的b是多少,可以用a×b来计算。
本节课的例题包括以下内容:1.一袋糖2千克,它的$\frac{1}{5}$是多少?2.某年级有198人,其中女同学人数占全年级的$\frac{2}{5}$,则该年级有女生多少人?3.一堆煤720吨,用去了它的$\frac{3}{5}$,第二周卖出余下的,第二天卖出大米多少吨,还剩余多少吨?4.粮店有4000千克大米,第一周卖出$\frac{1}{4}$,第二天卖出$\frac{1}{5}$,第三天全部售完,问第三天售出多少台?5.要修一条公路,第一天修了1056千米,第二天修了$\frac{1}{3}$,第三天修的恰好是前两天的三倍,三天一共修多少千米?6.某商厦国庆期间出售一批电视机共500台,第一天售出全部的$\frac{5}{9}$,第二天售出第一天的$\frac{1}{3}$,第三天全部售完,问第三天售出多少台?7.某水果店XXX的售价为每千克9.6元,XXX买了6千克,XXX买的XXX的千克数是XXX所买的$\frac{3}{4}$。
两人各自付钱,XXX付给收银员一张50元的人民币,收银员应找零多少元人民币?8.为了加固河堤,需要向河中打入木桩,一根防洪木桩长7米,插入河中后,露出水面的长度是$\frac{5}{7}$米,在河底的泥土中,则河水深多少米?9.一捆电线50米,第一次用去全长的$\frac{1}{3}$,第二次用去余下的少10米,第三次用去剩下的,还剩几米?10.某校初三学生在体育达标测试中,有250人参加,其中$\frac{5}{12}$是女生,其余是男生,结果男生中的$\frac{1}{4}$以及女生中的$\frac{2}{5}$未达标。
分数的意义和性质是初中数学六年级上学期第2章第1节的内容.通过本讲的学习,我们需要根据具体的情境理解分数的意义,从而掌握分数的表达方式及分数与除法的关系,进而根据除法的基本性质理解并掌握分数的基本性质,为后面学习分数的约分、通分、比较大小和计算做好准备.1、分数与除法的关系(1)用文字表示是:被除数÷除数= 被除数除数;(2)用字母表示是:两个正整数p、q相除,可以用分数pq表示,读作q分之p.即pp qq÷=,其中p为分子,q为分母.特别地,当q = 1时,ppq=,例如3 ÷ 1 =31=3.【例1】 用分数表示下列除法的商.(1)56÷;(2)74÷; (3)21÷; (4)93÷.【例2】 把下列分数写出两个数相除的式子:(1)54; (2)35; (3)1519; (4)42.【例3】 59读作_________,分子是_________,分母是_________; 95读作_________,5是分_________,9是分_________.【例4】 如果把下列各图形的总体用1表示,那么请用分数表示下列各图形中的阴影部分.【例5】 把一个西瓜平均分成5份,每一份是这个西瓜的______.【例6】“一箱橙子吃去了34.”这是把____________看做单位“1”,把它平均分成了________份,吃去的橙子占________份,由此可以推出剩下这箱橙子的() ().【例7】37是______个17,4个15是______.【例8】下图中,卡车占全部交通工具的______.(填几分之几)【例9】在数轴下方的空格里填上适当的分数.【例10】在数轴上画出分数25、85所对应的点.【例11】把9米长的绳子平均分成11段,每段长多少米?每段绳子长是这段绳子长的几分之几?【例12】六(2)班共有43名学生,其中男生21名,则女生占全班人数的几分之几?【例13】把一根绳子对折3次,这时每段绳子长是全长的()A.12B.13C.18D.19【例14】6厘米是1厘米的______(填几分之几);6厘米是1米的______(填几分之几);20分钟是2小时的______(填几分之几);4小时是一昼夜的______(填几分之几).【例15】如果☆☆☆表示1,那么☆☆☆☆☆表示的分数是______.【例16】要使712变成1,还需要增加____________个112.【例17】一块烧饼的34,与3块烧饼的()()相等;1千克的25,与2千克的()()一样重.【例18】在数轴上方空格里填上适当的整数或分数.A B CE H 【例19】如图,将长方形ABCD 平均分成三个小长方形,再将三个小长方形分别平均 分成2份、3份、4份,试问阴影部分面积是长方形ABCD 面积的几分之几?【例20】如图,ABC ∆中,BE = EC ,AG = GH = HC ,那么ABE ∆的面积是ABC ∆的面 积的几分之几?EGH ∆的面积是AEC ∆的面积的几分之几?1、分数的基本性质分数的分子和分母都乘以或都除以同一个不为零的数,所得的分数与原分数的大小相等.即:a a k a nb b k b n⨯÷==⨯÷(0b≠,0k≠,0n≠)【例21】要使分数3x有意义,则()A.3x≠B.1x≠C.0x≠D.以上都不对【例22】分别将图中的阴影部分用分数表示,这些分数有什么关系?【例23】试举出三个与35大小相等的分数.【例24】在括号内填上适当的数使等式成立:(1)62155⨯=⨯()();(2)()()()287⨯=⨯;(3)()()()3212⨯=⨯;(4)()()()30204÷=÷.【例25】在括号中填上适当的数: (1)()1312=; (2)()4728=; (3)()33322=; (4)()1532=.【例26】 把54和2560分别化为分母为12且与原分数大小相等的分数.【例27】下列说法中正确的是( )A .分数的分子和分母都乘以同一个数,分数的大小不变B .一个分数的分子扩大为原来的2倍,分母缩小至原来的一半,分数的值扩大为原来的4倍C .a a m b b m +=+(0m ≠)D .5含有10个15【例28】填空: (1)()()()55266⨯==+;(2)()()()252553030-==-; (3)()()()9962424-==÷.【例29】23中有______个115,35中有______个120.【例30】(1)完成填空: ()()()()1+1+1+1+1====22+42+62+82+10; ()()()()4+4+44+164+20====77+147+217+7+. (2)从上面的两个等式中找规律,如果0a ≠,则()()=b b a a ++必然成立.【习题1】1712÷用分数表示是____________;25写成除法形式是____________.【习题2】把3米长的塑料管平均截成8段,每段长是______米,每段占全长的______.(用分数表示)【习题3】(1)()()()()128416525====;(2)一个分数的分子乘以8,要使其大小不变,分母应________.【习题4】一本300页的小说书,小红计划20天看完,那么她5天看了这本书的()A.14B.15C.110D.120【习题5】20克是3克的______(填几分之几);20克是1千克的______(填几分之几).【习题6】 与分数3648相等,且分母小于48的分数有______个.【习题7】 填空: (1)()()()44772+==⨯; (2)()()()121261818-==-; (3)()()()1515363624÷==-.【习题8】 小智用20分钟走了1千米路,平均每分钟走多少米?平均每分钟走了全程的 几分之几?最后7分钟走了全程的几分之几?【习题9】 把三个形状、大小都一样的长方形拼在一起成为一个大长方形.如下图所示, 并把第二个长方形平均分成2份,把第三个长方形平均分成3份.求阴影部分面积占大长方形面积的几分之几?【习题10】如图,用黑白两种大小相等的小立方体堆成一个大立方体,那么在所有的小立方体中,白色的占总数的几分之几?黑色的占总数的几分之几?1 2251314【作业1】判断:(1)把单位“1”平均分成8份,取其中的5份,用58来表示.()(2)一堆煤,已经烧了27,是把这堆煤看作单位“1”.()(3)把12个足球平均分给6个班,每班分得的足球数占总数的112.()(4)4吨的15和1吨的45同样重.()【作业2】一块矩形花圃的面积是4平方米,平均分成5块,每块的面积是()A.45B.45平方米C.54D.54平方米【作业3】一盒巧克力共有15块,每块巧克力是这盒巧克力的______.把这盒巧克力平均分给5位同学,每人分得______块,是这盒巧克力的______(填几分之几).【作业4】将一张正方形纸片连续对折n次后得到的图形的面积是这个正方形面积的__________.(填几分之几)【作业5】下列各图,用分数表示图中阴影部分与整体的关系,正确的个数有()A.1个B.2个C.3个D.4个6 1211 24【作业6】在12,25,38,411,514,…这一列数中的第9个数是______.【作业7】在一条数轴上分别用点表示12,24,48,你能得到什么结论?【作业8】试写出3个与下列分数分母不同而大小相等的分数:(1)13;(2)64;(3)59;(4)1624.【作业9】在括号里填上适当的分数或者整数:80千克= ________ 吨259毫升= ________ 升6分米= ________ 米24分钟= ________ 小时78秒= ________ 分钟48小时= ________ 天7890立方分米= ________ 立方米42角= ________ 元【作业10】如下图,两个相同的长方形,分别看作单位“1”,请在图中给格子涂色,用阴影部分表达其下方的分数.。
沪教版六年级(上)数学辅导教学讲义1.会求是互素数或有倍数关系的两个数的最大公因数与最小公倍数;掌握两个数的最小公倍数与最大公约数的关系,并会处理相关问题;2.会求三个数的最大公因数与最小公倍数;3.复习数的整除章节知识点.知识点1:整除、因数、倍数1.下列算式中,被除数能被除数整除的是()A、25÷4B、25÷0.5C、25÷25D、0.4÷0.4A、11÷5=2……1B、27÷3=9C、18÷4=4.5D、2.4÷0.6=43.12的因数有;4.一个数最小的倍数是;知识点2:奇数、偶数、素数5.既是素数又是偶数的数是;6.下列关于1的叙述,不正确的是()A、1是最小的自然数;B、1既不是素数也不是合数;C、1是奇数;D、1的因数只有1个知识点3:能被2、5整除的特征7.在18,27,30,46,51,65,102这些数中,能被2整除的数是;能被5整除的数是;8.能同时被2、5整除的最小三位数是;9.能被5整除的数,个位数字一定是;10.能同时被2、3、5整除的最小三位数是;11.在75,42,50,88,40中,既是2的倍数又能被5整除的数有;知识点4:分解素因数12.把18分解素因数;13.30的素因数有;14.已知A=2×2×5,则它的所有因数有个;15.24、50和75分别分解素因数,发现它们公共的素因数是()A、2B、5C、2和5D、2、3和5知识点5:公因数、公倍数、最大公因数与最小公倍数16.如果数A=2×2×5,B=2×3×3,那么A和B的最小公倍数是;最大公因数是;17.两个连续奇数的和是24,那么这两个数的最小公倍数是;参考答案:1、C;2、B;3、1,2,3,4,6,12;4、本身;5、2;6、A;7、18,30,46,102;30,65;8、100;9、0或5;10、120;11、50,40;12、18=2×3×3;13、2,3,5;14、6;15、A;16、180,2;17、143;例题1:问题1:观察:(1)3和5的最大公因数是;1所以最大公因数是2,最小公倍数是180;归纳总结:1、三个数的最大公因数要找三个数的公有的素因数,如果其中的两个商还有素因数,也不要往下除;2、最小公倍数的计算要把三个数的公有素因数和独有素因数都要找全,最后除到两两互素为止。
2024年沪教版数学小学六年级上学期期末复习试题(答案在后面)一、选择题(本大题有6小题,每小题2分,共12分)1、下列数中,不是质数的是()A. 23B. 29C. 39D. 412、一块底面周长为20厘米的正方形铁板,要把它剪成一个圆形,请问这个圆形的面积是多少平方厘米?(π取3.14)A. 31.4B. 25C. 19.625D. 503、一个长方形的长是6分米,宽是4分米,()是长方形的周长。
A. 16分米B. 18分米C. 20分米D. 22分米4、一个正方体的棱长是a,()是它的体积。
A. a²B. a³C. 3a²D. 4a²5、若一个正方形的边长增加了一倍,则其面积增加了多少倍?A. 2倍B. 3倍C. 4倍D. 8倍6、如果两个数的最大公约数是15,最小公倍数是90,其中一个数是45,那么另一个数是多少?A. 15B. 30C. 45D. 60二、填空题(本大题有6小题,每小题4分,共24分)1、一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是______cm。
2、一个圆的直径是12cm,那么这个圆的半径是 ______cm。
3、一个长方体的长、宽、高分别为12cm、10cm、5cm,那么这个长方体的体积是______cm³。
4、一个圆的半径增加了50%,那么这个圆的面积增加了 _____%。
5、已知一个长方形的长是8cm ,宽是5cm ,那么这个长方形的周长是 ______cm 。
6、一个正方体的棱长是6cm ,那么这个正方体的体积是 ______cm³。
三、计算题(本大题有5小题,每小题4分,共20分)1、计算下列各题的结果。
25 × 125 + 3750 ÷ 252、化简下列分数并计算。
(38+14−12) 3、计算题:化简下面的分数加法,并将结果化为最简形式。
(1)3/8 + 5/124、计算题:下面的组合乘除法运算,写出详细的计算过程,并化简结果。
沪教版六年级(上)数学辅导教学讲义1.主要复习、拓展小学阶段“行程问题”的解决方法;2.尝试用方程解决其他新类型的应用题;3.强化列方程解应用题的思想.复习回顾上次课的预习思考内容1.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:×=速度×时间=路程2.这个公式又可以演变为:“速度和×时间=”、“速度差×时间=”路程和,路程差3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。
基本公式:速度和×相遇时间=相遇路程4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。
基本公式:速度差×追击时间=追击路程这部分如果学校进度慢,学生没有理解可以举一些例子,通过画图让学生理解基本公式的含义本讲重点复习应用题中最难的一类——行程问题,并且在课内的基础上进行拓展。
同时,也提供了一些没有见过的应用题类型让同学们进行挑战,掌握用方程解应用题的关键。
在解决行程问题时,往往通过“甲路程+乙路程=总路程”或是“甲路程-乙路程=总路程”这类等量关系来解决问题。
要找到这样路程间的关系,辅助的路程线段图就十分重要。
除此之外,“甲路程”“乙路程”则更多是通过“甲路程=甲速度×甲时间”这样的关系来得到。
分析清楚从开始到结果的整个过程,是解决行程问题的关键所在。
在分析行程问题时,还要注意“甲”“乙”的速度、时间之间的关系,往往设出其中一个后,其他都与其相关,能够写清。
所以在设未知数时,往往是设某个人的“时间”或者“速度”作为x,较少会出现设路程为x的情况。
这部分关于行程问题的分析可以强调下,但学生可能感觉不大。
在后面对例题的讲解是可以反过来进行强化。
除此之外,还有许多不属于之前学过的类型的应用题,同样可以用方程来解决。
“找到关键量设x”、“用带x的式子表示其他量”、“找到等量关系列方程”的顺序来解决即可。
六年级数学(上)目录第一章数的整除第一周 1.1 整数与整除的意义-1.3 能被2,5整除的数 (1)第二周 1.4 素数、合数与分解素因数 (5)第三周 1.5 公因数与最大公因数(1)-1.6 公倍数与最小公倍数 (9)一月一考第一章数的整除 (13)第二章分数第四周 2.1 分数与除法(1)-2.2 分数的基本性质(2) (17)第五周 2.2 分数的基本性质(3)-2.3 分数的大小比较 (21)第六周 2.4 分数的加减法(1)-(3) (25)第七周 2.4 分数的加减法(4)-(5) (29)一月一考第二章分数(2.1 分数与除法-2.4 分数的加减法) (33)第八周 2.5 分数的乘法-2.6 分数的除法 (37)第九周 2.7 分数与小数的互化-2.8 分数、小数的四则运算(2) (41)第十周 2.8 分数、小数的四则运算(3)-2.9 分数运算的应用 (45)一月一考第二章分数(2.5分数的乘法-2.9分数运算的应用) (49)第三章比和比例第十一周 3.1 比的意义-3.2 比的基本性质 (53)第十二周 3.3 比例-3.4 百分比的意义 (57)第十三周 3.5 百分比的应用(1)-3.5 百分比的应用(3) (61)第十四周 3.5 百分比的应用(4)-3.6 等可能事件 (65)一月一考第三章比和比例 (69)第四章圆和扇形第十五周 4.1 圆的周长-4.3 圆的面积(1) (73)第十六周 4.3 圆的面积(2)-4.4 扇形的面积 (77)一月一考第四章圆和扇形 (81)期中测试 (85)期末测试 (89)参考答案 (93)一周一练第一章数的整除1.1 整数与整除的意义--1.3 能被2,5整除的数一、填空题(每题3分,共30分)1.最小的自然数是,小于3的自然数是.2.最小的正整数是,小于4的正整数是.3.20以内能被3整除的数有.4.15的因数有,100以内15的倍数有.5.24的因数有.6.个位上是的整数都能被5整除.7.523至少加上才能被2整除,至少加上才能被5整除.8.不超过54的正整数中,奇数有个,偶数有个.9.两个奇数的积一定是,两个偶数的积一定是,一个奇数与一个偶数的积一定是.(填“奇数”或“偶数”).10.1到36的正整数中,能被5整除的数共有个.二、选择题(每题4分,共16分)11.下列算式中表示整除的算式是………………………()(A)0.8÷0.4=2;(B)16÷3=5……1;(C )2÷1=2; (D )8÷16=0.5.12. 下列说法中正确的是…………………………………( )(A )任何正整数的因数至少有两个; (B )1是所有正整数的因数;(C )一个数的倍数总比它的因数大; (D )3的因数只有它本身.13. 下列说法中错误的是…………………………………( )(A )任何一个偶数加上1之后,得到的都是一个奇数;(B )一个正整数,不是奇数就是偶数;(C )能被5整除的数一定能被10整除;(D )能被10整除的数一定能被5整除;14.下列各数中既能被2整除又能被5整除的数是………( )(A )12; (B )15;(C )2; (D )130.三、简答题15.从下列数中选择适当的数填入相应的圈内.(9分)-200、17、-6、0、1.23、76、2006、-19.6、9、83 负整数 自然数 整数16.下面各组数中,如果第一个数能被第二个数整除,请在()内打“√”,否则打“×”. (4分)①27和3()②3.6和1.2()17.按要求把下列各数填入圈中:1、2、3、4、6、8、9、12、15、18、21、24、27、30、33、36.(10分)72的因数 3的倍数18.说出下列哪些数能被2整除.(5分)2,12,48,11,16,438,750,30,55.19.说出下面哪些数能被5整除,哪些数能被10整数:(12分)105、34、75、1、215、1000、80、126、2495、1500、106、2000、478 能被5整除的数:能被10整除的数:20.把下列各数填入适当的圈内(每个数字只能用一次):(8分)36、90、75、102、10、20、290、985.2的倍数 5的倍数既是2的倍数又是5的倍数的数21.如果a是一个奇数,那么与a相邻的两个偶数是:.(6分)22.(附加题)(10分)填空,使所得的三位数能满足题目要求(1)3□2能被3整除,则□中可填入(2)32□既能被3整除,又能被2整除,则□中可填入(3)□3□能同时被2,3,5整除,则这个三位数可能是一周一练1.4 素数、合数与分解素因数一、填空题(每空1分,共24分)1.素数有个因数,合数至少有个因数,1有个因数.2.1到20的正整数中,素数有.3.1既不是也不是,唯一的一个既是偶数又是素数的数是.4. 36的全部素因数是.5. 分解素因数12=,12的因数是.6. 把24分解素因数得,24的因数是.7.24和32公有的素因数有,公有的因数有.8.18的因数有,其中奇数有,偶数有,素数有,合数有,最小的奇素数是,最小的合数是.9.把51分解素因数得,把91分解素因数得.10. 把10表示成不同素数的和为.二、选择题(16分)11.下列说法中正确的是…………………………………()(A)合数都是偶数;(B)素数都是奇数;(C)自然数不是素数就是合数;(D)不存在最大的合数.12.两个素数相乘的积一定是……………………………()(A)奇数;(B)偶数;(C)素数;(D)合数.13.A=2×2×3×5,B=2×2×3×7,A与B相同的素因数是………()(A)2;(B)2和3;(C)2,3,5,7;(D)2,2和3.14.下列是12的素因数的是…………………………()(A)1,2,3,4;(B)2,3;(C)2,2,3;(D)1,2,3,4,6,12.三、解答题15.把1到20的正整数按要求填入下图(12分)奇数质数偶数合数既是奇数又是质数的数既是偶数又是合数的数16.判断39、51、57、97是素数还是合数.(8分)17.分解素因数(12分)(1)用“树枝分解法”分解素因数:46、30、52;(2)用“短除法”分解素因数:72、84、40.18.把下列数按要求填入下图(8分)1,2,9,10,21,23,29,31,39,51,91,97素数合数19.分解素因数(6分)32 60 7520. 在下列三个□中分别填入一个素数,使等式成立.(只要求写出一种填法即可)(6分)□+□+□=5021. 四个小朋友的年龄一个比一个大一岁,他们年龄的乘积是1680,问这四个小朋友的年龄各是多少岁?(8分)一周一练1.5 公因数与最大公因数—1.6公倍数与最小公倍数一、填空题(每空2分,28分)1.如果两数互素,它们的最大公因数就是.2.两个数中,如果某个数是另一个数的因数,那么这个数就是这两个数的.3.两个数的最大公因数是1,这两个数叫做.4.15和22的最大公因数是,所以15和22 互素数(填“是”或“不是”).5.甲数=2×2×3,乙数=2×3×3,甲数和乙数的最大公因数是.6.16和20的最小公倍数是,7和28的最小公倍数是.7. 4和7的最小公倍数是,如果两数互素,它们的最小公倍数就是.8.20以内的正整数中,3的倍数有.9.50以内的正整数中,3和5的公倍数有.10.5和15的最大公因数是,最小公倍数是.二、选择题(16分)11.下列每组数中的两个数不是互素的是…………………………………()(A)5和6 ; (B)21和9; (C)7和11; (D)25和26.12.下列每组数中的两个数是互素数的是…………………………………()(A)35和36; (B)27和36; (C)7和21; (D)78和26.13.甲数=2×3×5,乙数=7×11,甲数和乙数的最大公因数是………()(A)甲数;(B)乙数;(C)1;(D)没有.14.下列说法中正确的是…………………………………()(A)5和6 的最小公倍数是1;(B)21和9的最小公倍数是21×9;(C)7和11没有最小公倍数;(D)甲数=2×2×3,乙数=2×3×3,甲数和乙数的最小公倍数是2×2×3×3.三、填图题15.按要求完成下图(8分)12的因数 18的因数12和18的公因数四、解答题16.求下列各题中两数的最大公因数(8分)(1)36和48 (2)42和5617.求下列各题中两数的最大公因数(12分)(1)45和75 (2)36和90 (3)48和7218.求下列各题中两数的最小公倍数(12分)(1)8和12;(2)42和14;(3)16和24.19. 求下列每组数最大公因数和最小公倍数. (10分)(1)15和65 (2)24和3020. 6年级1班大约有50人左右,排座位时老师发现刚好可以排成6排或8排,求6年级1班的学生人数. (6分)21.(附加题)(10分)已知甲数=2×3×5×A,乙数=2×3×7×A,甲乙两数的最大公因数是30,求甲乙两数的最小公倍数.一月一考第一章数的整除(90分钟,满分100分)一、填空题(每小题3分,满分36分)1.在能够被2整除的两位数中,最小的是.2.和统称为自然数.3.12和3,其中是的因数,是的倍数.4.写出2个能被5整除的两位数:.5.写出2个既能被5整除,又能被2整除的数:.6.写出2个2位数的素数:.7.在11到20的整数中,合数有:.8.分解素因数:24=.9.8和12的最大公因数是.10.18和30的最大公因数是.11.3和15的最小公倍数是.12.已知A=2×2×3×5,B=2×3×3×7,则A、B的最小公倍数是, 最大公因数是.二、选择题(每题3分,满分12分)13.对20、4和0这三个数,下列说法中正确的是……………………()(A)20能被4整除;(B)20能被0整除;(C)4能被20整除;(D)4能被0整除.14.下列说法中,正确的是…………………………………………………()(A)1是素数;(B)1是合数;(C)1既是素数又是合数;(D)1既不是素数也不是合数.15.下列说法中,正确的是…………………………………………………()(A)奇数都是素数;(B)偶数都是合数;(C)合数不都是偶数;(D)素数都是奇数.16.下列各式中表示分解素因数的式子是…………………………………()(A) 2×3=6;(B)28=2×2×7;(C)12=4×3×1;(D)30=5×6.三、解答题(17、18题每题6分,19~23题每题8分,满分52分)17.分解素因数.(1)120(2)23818.写出下列各数的所有约数.(1)6(2)10519.求下列各组数的最大公因数和最小公倍数.(1)12和18(2)24和3620.写出最小的8个不同的素数.21.写出最小的8个不同的合数.22.在3至14的自然数中,哪些数与其它11个数都互素?23.求两个自然数,使它们的和为84,它们的最大公约数为12.24. (附加题10分)(1)有A、B、C、D四个数,已知A、C的最大公因数是72,B、D的最大公因数是90,这四个数的最大公因数是多少?(2)某班同学到图书馆借书,若借40本,平均分发给每个同学还差2本;若借65本,平均分发给每个同学后还剩2本;若借83本,平均分发给每个同学则还差1本.这个班最多有多少名同学?第二章分数2.1分数与除法—2.2分数的基本性质(2)一、填空题(20分) 1.35是_____个15; 8个111是_______. 2.整数a 除以整数b ,如果能够整除,那么结果是____数;如果不能够整除,那么结果可以用小数表示,还可以用___数表示.3.用分数表示除法的商:5÷13=________; 13÷5=____________.4.把1米长的钢管平均截成3段,每段长是_____米.(用分数表示).5.根据商的不变性有:25=2÷5=(2×3)÷(5× )=6__. 6.右图中的阴影部分分别占圆的____、____、____,这些分数____.7. 10102518182÷===⨯ . 8.把一个分数的分子与分母的_________约去的过程,称为_____. 9.分数2772、1751、4297中,最简分数是 . 10.六(1)班共有36名同学,其中男同学有20名,那么女同学人数占全班人数的______;女同学人数是男同学人数的_________.二、选择题(16分)11. 下列各题,用分数表示图中阴影部分与整体的关系,正确的个数有( )14 710 25 33(A )1个; (B ) 2个; (C ) 3个; (D ) 4个.一周一练() () ()12. 在15355,,,25152515中,和13相等的分数是( ). (A ) 1525; (B )315; (C )525; (D )515. 13.下列说法中,正确的是( ).(A )分数的分子和分母都乘以同一个数,分数的大小不变;(B )一个分数的分子扩大2倍,分母缩小2倍,分数的值扩大4倍;(C )(0)a a m m b b m+=≠+; (D )5含有10个15. 14.100千克的糖水中,糖有20千克,水占糖水的 ( ) (A )14; (B )15; (C )45 ; (D )34.三、解答题15.学校粉刷墙壁需要10天完成,平均每天完成这项工程的几分之几?(9分)16.小丽要把一根5米长的绳子,平均分成4段,那么每段是全长的几分之几?每段长是多少米?(9分)17.在数轴上画出分数34,43,125所对应的点.(12分)18.把25和830分别化成分母都是15且与原分数大小相等的分数. (10分)19.下列分数中哪些是最简分数?把不是最简分数的分数化为最简分数. (12分)12 16,3895,74,11121,916.321 020.一条公路长1500米,己修好900米,还需修全长的几分之几? (12分)21.(附加题10分) 如图,将长方形ABCD 平均分成三个小长方形,再将三个小长方形分别平均分成2份、3份、4份,试问阴影部分面积是长方形ABCD 面积的几分之几?H G F E D CBA2.2分数的基本性质(3)—2.3分数的大小比较一、填空题(20分)1.六(1)班一次数学测验,不及格的有2人,及格的有46人,其中得优良的有20人.那么,不及格人数占全班人数的几分之几________;优良人数占全班人数的几分之几______;不及格人数是及格人数的几分之几___________.2.100克清水中放入15克糖,那么糖是糖水的几分之几_________.3.小明今年12岁,小杰比他大3岁,三年后,小明年龄是小杰年龄的几分之几___________.4. 一台冰箱原价是2500元,现在削价250元供应,现价是原价的几分之几_____________.5.比较下列同分母分数的大小:79_____89;1213_____513.6.比较下列异分母分数的大小:23___67;1324____38;925___415.7.把34,57和79通分得:34=______;57=_______;79=_______.8.写出大于13而小于12的一个分数___________.9.己知3455x<<,则x可以是_______, x的取值可以有___ __个.10.在9364545,,,13485070中,最小的一个分数是________.二、选择题(12分)一周一练11.一只书架上有两种书,其中故事书150本,科技书80本,下列说法正确的是( )(A )故事书占158; (B )科技书占815; (C )科技书是故事书的815; (D )科技书是故事书的158.12.分数13与35通分时,公分母只需取 ( )(A )5; (B )6 ; (C )15; (D )30.13.下列各式中正确的是( )(A )213>313; (B )5567<; (C )112<536; (D )23154>.14.小明抄写一篇课文用32小时,小杰抄同样的课文用了53小时,小明比小杰的速度( )(A )快; (B )慢; (C )一样; (D )无法确定. 三、解答题15.填表: 六年级(4)班学生视力情况调查结果(12分)16.某初级中学男女生人数情况如图,看图回答: (1)男生人数是全校学生数的几分之几?(2)女生人数是男生人数的几分之几?(3)六年级的学生数占全校学生总数的几分之几?(4)九年级的女生数是全校女生数的几分之几? (12分)17.把下列每组中的的两个分数通分,并比较大小: (12分)(1)512和34; (2)87和2321; (3)513和37;18.写出在19和79之间且分母是9的所有的最简分数. (8分)806019.比较三个数的大小: (12分)(1)317,,4210; (2)545,,6512; (3)36,,145;20.小明花15元买了20千克苹果,小丽花12元买了18千克苹果,他俩谁买的苹果便宜一些? (12分)21.(附加题10分)(1)我们可以用下面的方法比较两个分数的大小(对角相乘法):分别用每一个分数的分子去乘另一个分数的分母,哪个分子乘得的积大,这个分数就大.比如:比较213与35的大小.因为25313⨯<⨯,所以23135<.请用这种方法比较两个分数的大小: 322_____433;549_____348.(2).观察:①你能总结出什么规律?②比较20042005与20052006的大小.12112213+=+213314+=+314415+=+2.4 分数的加减法(1)--(3)一、填空题(20分)1.=+5351 , =+8581 . 2. 2006120062005-= , =+4121 . 3.9121312- , =-1751 .4. 在分数412,45,43中,其中真分数是 ,假分数是 ,带分数是 .5. 一个带分数的整数部分是2,分数部分是32,写成假分数是 .6.比较大小:433___415,8314. 7.以7为分母的真分数有 ;比分数1331小的最大整数是 .8. =-313213 , =-2729 .9.=-5325 , =+6121213 .10.=-15161582 ,=+5623 .二、选择题(12分)11.下列运算正确的是…………………………………( )(A )522131=+; (B )11271183=-;(C )21431215=-;(D )6131211=--. 12.下列说法中正确的是…………………………………( )(A )假分数的值大于1 ; (B )真分数一定是最简分数; (C )假分数一定不是整数; (D )假分数的值一定不小于1.13.下列分数中介于整数5与6之间的是 ……………( )一周一练(A )523; (B )623; (C ) 423; (D )723. 14.下列比较大小正确的是…………………………………( ) (A ) 727653>; (B )65)3121(1>--; (C )13123>-; (D )103112115323<++.三、解答题15.先通分,再加减(12分)(1). 2418131++ (2). 71432827-- (3). 1075321-+16. 小明带若干元钱去超市购物,他用其中的41买图书,用其中的51买零食,剩 下的部分购买了航模材料,问购买航模材料的钱占总数的几分之几?(10分)17.化以下的带分数化为假分数,假分数化为带分数(12分) (1). 12113 (2). 977(3). 200612 (4). 12112 (5). 855 (6). 1112318. 用分数表示下列数轴上的点A 、B 、C 所表示的数. (6分)19. 如果6x是真分数,求整数x 的值. (5分) 20. 比较827 与720的大小. (5分)21. 计算(18分) (1). 6556+ (2). 911972+(3). 4111212- (4). 7111833+(5). 117311441112++ (6). 61123312++22.(附加题10分)(1).数轴上点A 表示的数是213,点B 在点A 的左边312个单位,求点B 表示的数.(2). 以16为分母的最大真分数是 ,最小真分数是 ,最简真分数是 ,所有以16为分母的最简真分数的和是 .2.4 分数的加减法(4)--(5)一、填空题(20分)1. 1-=-5231 . 2. =--1014152 .3. 比较大小:831____724.4. 六年级一班男生是全班总人数的32,则女生是全班总人数的 . 5.小明8分钟行走了35米,那么小明平均每分钟行走了 米. 6.用30元钱买了16斤鱼,则平均每斤鱼的价格是 元.7. 比213小311的数是 . 8. 与213的和是5的数是 .9.方程2134=-x 的解是 .10.一个数加上29等于10,这个数是 .二、选择题(16分)11.甲3分钟跑16米,乙4分钟跑21米,则下列说法正确的……………( ) (A )甲的速度快; (B )乙的速度快; (C )两人速度一样快; (D )不能确定.12.甲、乙二人合作完成某项工作,若甲实际完成了总工作量的41,乙实际完成了总工作量的54,则下列说法正确的是…………………………………( ) (A )二人没有完成工作任务; (B ) 二人正好完成工作任务;(C )二人超额完成了工作任务; (D ) 不可能确定.一周一练13. 一个数与325的差是512,设这个数为y ,则下面列方程正确的是…( ) (A )y =-512325; (B )512325=-y ;(C )512315=+y ; (D )512315+=y .14.已知523432,653312=+=+y x ,则下列说法正确的 …………( )(A ) y x > (B )y x < (C ) y x = (D )x 、y 的大小不能确定三、解答题15. 星期天小明用了311小时打篮球,小李用了65小时打篮球,问小明比小李多用了多少时间打篮球?(8分)16. 一块科技试验田中,313亩用来培育水稻,72亩用来培育水果,问用来培育水稻与水果的总亩数是多少?(8分)17. 某班学生的31参加了科技兴趣小组,另有班级学生的52参加了体育兴趣小组,问没有参加这两个兴趣组的学生是班级总人数的多少?(8分)18. 在某次数学测验中,六(1)班38人共得总分3220分,六(2)班35人共得总分3020分,问哪个班的平均分较高?(8分)19. 解方程(15分) (1). 713732=+x ; (2). 31256=-x ;(3). 21413=-x . 20. 217正好是一个数与318的差,这个数是多少?(8分)21. 一个数减去611的差同722与313的和相等,这个数是多少?(9分)23.(附加题)(10分)一块试验田,第一试验组想用其中的52用来种水果,第二试验组想用其中的83用来种花木,第三试验组想用其中的72种玉米,试问他们的计划能否实行?为什么?第二章 分数(2.1分数与除法—2.4分数的加减法)90分钟,100分一、填空题(12×2分=24分)1. 用分数表示除法的商:1217÷ =__________.2. 写出下列图中的阴影部分面积各占总面积的几分之几.3. 一段公路5千米,8天修完,平均每天修_____千米,每天修这段公路的_______.4. )(920)(43==÷.5. 分数2772、1751、4297中,最简分数是 . 6.计算:=+9291 ,=-5254 .7.计算:=-5.0431 ,=+3174 .8.计算:=-87311 ,=+92297 .9. 某班男同学有20人,女同学有25人,该班男同学人数占全班人数的_______.10.比较大小:34___1012(填“>”或“<”) 11.若3546x <<,且x 是分母为48的最简分数,则x =_________.12.加工同样多的零件,王师傅用了1314小时,张师傅用了1213小时,李师傅用了1516小时,____师傅最快.一月一考( )( )二、选择题(4×3分=12分)13.下列说法中正确的是( )(A )分数的分子和分母中一个是奇数,另一个是偶数,这个分数一定是最简分数; (B )一个分数的分子与分母是两相邻的正整数,这个分数一定是最简分数; (C )一个分数的分子、分母都是合数时,这个分数一定不是最简分数;(D )因为13>8,29>9,所以138299>. 14.下列各数中,大于13且小于12的数是( )(A )512; (B )413; (C )712; (D )612.15.下列算式中,结果与107433.0411-+-相等的是………………( )(A) ;7.03.043411+-+ (B) ;43)7.03.0(411+++ (C) );7.03.0(43411+-+ (D) );7.03.0(43411+--16.一种混凝土由水泥、黄沙和石子组成,其中黄沙占,水泥占石子占51,21 ……………………………………………( ) (A) 71; (B) 75; (C) 107; (D) 103.三、解答题17.在数轴上标出以下各点,并把各点所表示的数按从小到大的顺序排列. A 点表示的数为23,B 点表示的数为4,C 点表示的数为54,D 点表示的数为125.(8分)18. 先通分,再比较每组中分数的大小. (9分) (1)241785和 (2) 1271811和 (3) 94、2158和4519. 计算:(2分+2分+3分+3分+4分+4分=18分) (1)5131+; (2)12565- (3)812874- (4)213317+ (5)⎪⎭⎫ ⎝⎛-+125432214 (6)922121813+-20. 小萍找来三根铁丝做手工作业,第一根铁丝的长度是第二根的2倍,第三根铁丝长度是第二根的6倍,第一根铁丝的长度是第三根的几分之几?(7分)21.某班一次数学测验的成绩统计如下表所示,求80~100分的人数占全班人数的几分之几?不及格人数占全班人数的几分之几? (7分)22.超市有一批苹果150千克,一天卖出50千克,还剩这批水果的几分之几? (7分)23.一根竹竿长3.5米,插入河底泥中41米,露出水面85米,这条河水深多少米?(8分)24.(附加题10分) 一个分数的分子,分母相差3,如果分子、分母同时加上13后,可约简成76,求原分数.2.5 分数的乘法—2.6分数的除法一、填空题(每空1分,20分)1. (1)=⨯1051 ; (2)=⨯7243 . 2. (1) 8773⨯= ; (2)=⨯01312.3.(1) 131131⨯ ; (2)7532⨯= .4.(1)144911312⨯= ; (2)8765⨯ . 5. (1)=⨯211213 ; (2)=⨯87316 ;(3)1____52=⨯.6.比较大小:(1)127___65127⨯. (2)1211___561211⨯7. 没有倒数, 322的倒数是 .8.(1)._____2322⨯=÷ (2).___317531⨯=÷9. (1)41)(41513⨯=÷. (2))(52115⨯=÷.10.方程2218=x 的解是 .二、选择题(16分)11.下列计算结果正确的是…………………………………( )(A )24168332=⨯; (B )2526135=⨯; (C )132123=⨯; (D )20710091135=⨯.12.下列说法中正确的是…………………………………( ) (A )任何一个数都有倒数; (B )311的倒数是3;(C )任何正整数的倒数都小于1; (D )乘积为1的两个数互为倒数.一周一练13.一个数的32是732,求这个数.下列列式正确的是………………( ) (A ) 73232⨯; (B )73232÷; (C ) 32732÷; (D )73232+.14.小丽用125小时行了834千米,小明用167小时行了854千米,下列说法正确的是…………………………………( )(A )小丽的平均速度较快; (B )小明的平均速度较快; (C )两人平均速度一样快; (D )小明比小丽每小时多行41千米. 三、解答题15.计算(12分) (1). 72132⨯ (2). 3322⨯ (3). 433125⨯16. (12分) (1) 求7个43是多少?(2) 求522的5倍是多少?(3). 求边长为65cm的正方形的周长是多少?17. (15分) (1)求3公斤的52是多少公斤?(2)小红每天在校练琴43小时,5天她在学校练琴多少小时?(3)一块试验田的53种水果,而种西瓜的田又占种水果的田的41,问种西瓜的田占总试验田的几分之几?18.计算(12分) (1).11111211⨯ (2). 512512÷ (3). 41154⨯(4). 543÷ (5). 871÷ (6). 1872÷19.(4分+4分+5分) (1)322是x 的一半,求x 的值.(2) 一个数的297是8,求这个数(3)小明去超市购了50元的货物,用去了所带钱款的54,求小明带了多少钱款去超市购物?20.(附加题)(10分)(1)计算:)1011)(911)(811)(711)(611()511()411()311()211(-----⨯-⨯-⨯-⨯-(2). 已知735的倒数为m ,n 的倒数为732,求m +n 的倒数.2.7分数与小数的互化--2.8分数、小数的四则混合运算(2)一、填空题(20分)1. 将分数41化为小数是 ,分数43化为小数是 . 2. 比较下列两组数的大小:05.0___201,376.3____833.3.一个最简分数能化为有限小数的条件是分母的因素中只含有 .4. 循环小数0.1232323…的循环节是 ,该小数用简便方法可写作 .5.化下列分数为循环小数:=31 ,34= . 6.比较大小:612.0____16.0•.7. (1)=+85375.0 . (2) =+25.031. 8. (1)=-6.0814 . (2)=-375.2833 .9. (1)=⨯⨯766532 . (2)=⨯⨯21432 .10.(1)=⨯+745154 . (2)=⨯-853265 .二、选择题(16分)11.下列说法中正确的是…………………………………( )(A )任何分数都能化为有限小数; (B )任何有限小数都能化为最简分数; (C )分数141能化为有限小数; (D )将小数2.12化为分数是253. 12.下列说法中正确的是…………………………………( )(A )小数0.121221222…是循环小数; (B )分数总可以化为循环小数; (C )2232323.0…的循环节是“223”; (D )循环小数不一定小于1.一周一练13.小明星期天用了20分钟做语文作业,用了43小时做英语作业,那么小明完成这两样作业共花时间为…………………………( ) (A )2019小时; (B ) 95分钟; (C )1213小时; (D )75分钟. 14.下列运算正确的是…………………………………( ) (A )2771251211=⨯-; (B )4333143=⨯÷; (C )211)2131(311=+-; (D )71)7656(125=-⨯.三、解答题15.将下列分数化为有限小数,若不能化为有限小数,则将结果保留三位小数.(8分)(1)87(2) 1215 (3)254 (4)75116. 将下列小数化为最简分数(9分).(1)2.14 (2)5.375 (3)0.8417. 求下列分数化为循环小数(9分). (1)92 (2)916 (3)121118. 将5952,1513,68.0,86.0••从小到大排列(8分).19. 计算:(9分) (1)6.0313- (2)813875.0+ (3))41612(433--20. 学校运动会上,学生体操表演用了52小时,武术表演用了12分钟,教师文艺表演用了127小时,那么师生表演这三个节目共用了多少小时?(7分)21.计算(9分) (1)54324÷÷ (2)5153114-⨯ (3))8121712(1211⨯÷22. 小明用65小时行了12千米,那么他按这样的速度行走4145千米需要多少小时?(5分)23.(附加题)(10分)(1) 计算:)123.0765(12137131211-+++(2). 计算:÷÷÷÷÷544332211 (2008)2007÷2.8分数、小数的四则混合运算(3)--2.9分数运算的应用一、填空题(20分)1. =+⨯)4361(12 ,=⨯+15)324.2( .2. 1-()5232-= ,=+⨯)9461(23 .3.=⨯4.287 ,=⨯766.5 .4.=-⨯)67611(1311 ,=-÷)6131(32 .5. 20公斤的43是 .6. 一件物品按原价的九折出售,就是指将原来价格乘以 .7.1小时的125是 分钟. 8. 长方形的面积为321cm2,长为511cm,那么它的周长为 cm.9. 一块试验田的32种水果,而种西瓜的试验田又是水果田的72,那么种西瓜的田占总试验田的 .10. 一课本厚约为412cm ,这样的课本38本叠在一起大约高为 cm . 二、选择题(16分)11.下列运算过程正确的是……………………………………………………( ) (A )63511321)185137(721-=-⨯; (B )2111321)183137(721-=-⨯; (C ) 12121581571212=+⨯ ; (D )121981571212=-⨯.12.一件物品以原价的32出售,价格为12元,求原价.下列列式计算正确的是………………………………………………………………………………………( )(A )3212⨯; (B )3512⨯; (C )3212÷ ; (D )3512÷. 一周一练13.一件物品将进价加价72后出售,售价为120元,求进价.设进价为x 元,那么列方程正确的是…( )(A ) 12072=x ; (B ))721(120+⨯=x ; (C ) 120)721(=-x ; (D )120)721(=+x .14.小丽计划用三天时间读完一本书的32,她第一天读了全书的53,第二天读了第一天的61,求小丽第三天应读全书的几分之几?下列列式正确的是…………………( ) (A )61531--; (B ) 615332--; (C )67531⨯-; (D )675332⨯-. 三、解答题15.计算(8分) (1))413121(12+-⨯ (2)117)751211(⨯-16.用简便方法计算(8分) (1)50504910⨯; (2)6.5)8372(⨯+.17. 六(1)班男生占全班总人数的53,求女生占男生的几分之几?(8分)18.一群年轻人去郊外旅游,共用了 小时,其中坐车用了2小时10分钟,吃午饭用了0.5小时. 那么他们实际在一起游玩的时间是多少小时?(8分)19. 求图中输出的结果. (8分)20. 小明用6118分钟跑完了100米的路程,求他按此速度跑120米所需的时间是多少?(8分)21. 在某次捐款活动中,甲班38人捐款420元,乙班39人捐款429元,求甲班平均每人捐款金额比乙班平均每人捐款金额多多少元?(8分)43522. 一个水果店五月一号出售的三种水果的价格和销售量如下表:(8分)求(1)这天三种水果的销售总额是多少元?(2)苹果和梨的销售额的和占销售总额的几分之几?23.(附加题)(10分) (1)计算:+⨯+⨯+⨯+⨯541431321211 (2008)20071⨯+(2). 两件物品均以200元的价格出售,其中一件盈利52,另一件亏损52,问最终商家是赚了钱还是亏了?赚或亏的金额是多少?第二章 分 数(2.5-2.9)(时间90分钟,满分100分)一、填空题(本题共12小题,每题3分,满分36分)1、把下列分数化成小数:532= ;2034= ;875= . 2、把下列小数化成最简分数:1.05= ;1.625= .3、3.25小时=( )小时( )分,265分钟=( )小时(填分数)4、在8383.2,38.2,84.2,652••中,从大到小排列为 .5、如果每根水管长432米,那么8根这样的水管长为 米.6、六年级某班共有45名学生,一次体格检验后,老师宣布全班92的同学体重超标,那么这个班体重超标的学生有 名.7、小明今年15岁,比她爸爸小30岁,5年后小明的年龄是她爸爸年龄的()()8、仓库有货810吨,9天运走全部的53,平均每天运走 吨. 9、比较大小:54 65;1.875 871.10、上海“金贸大厦”的高度约是420米,共有88层,那么它每层的平均高度是 米.11、“沪宁高速公路”开通前汽车从上海到南京要319小时,开通后只需213小时,这样从上海到南京可以节省 小时.12、小王身高175厘米,小丁比小王矮51,那么小丁身高 厘米. 二、选择题(本题共4小题,每小题3分,满分12分)一月一考。