动能定理平抛运动及圆周运动
- 格式:doc
- 大小:256.00 KB
- 文档页数:2
《动能动能定理》知识清单一、动能1、定义物体由于运动而具有的能量叫做动能。
2、表达式动能的表达式为:$E_{k} =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
3、理解动能(1)动能是一个状态量,它与物体的运动状态(速度)相对应。
(2)动能具有相对性,其数值与参考系的选取有关。
一般情况下,我们选取地面为参考系。
(3)动能是标量,只有大小,没有方向。
4、单位在国际单位制中,动能的单位是焦耳(J)。
二、动能定理1、内容合外力对物体所做的功等于物体动能的变化量。
2、表达式$W_{合} =\Delta E_{k} = E_{k2} E_{k1}$其中,$W_{合}$表示合外力做的功,$E_{k2}$表示末动能,$E_{k1}$表示初动能。
3、理解动能定理(1)“合外力做的功”指的是包括重力、弹力、摩擦力等所有外力做功的代数和。
(2)动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功。
(3)动能定理中涉及的物理量有位移、速度、力和功,这些物理量可以在不同的参考系中选取,但动能定理的表达式不变。
4、应用动能定理的步骤(1)确定研究对象和研究过程。
(2)对研究对象进行受力分析,求出各力做功的代数和,即合外力做的功$W_{合}$。
(3)确定初、末状态的动能$E_{k1}$和$E_{k2}$。
(4)根据动能定理$W_{合} = E_{k2} E_{k1}$列出方程求解。
三、动能定理的优越性1、不涉及加速度和时间在一些问题中,如果不关心运动过程中的加速度和时间,直接运用动能定理可以更简便地解决问题。
2、适用于变力做功对于变力做功的情况,使用牛顿运动定律和运动学公式往往难以求解,但动能定理可以轻松应对。
3、便于求多个力做功的总功当物体受到多个力的作用时,分别计算每个力做功往往比较复杂,而通过动能定理,只需要求出合外力做的功即可。
四、动能定理与其他知识的综合应用1、与机械能守恒定律的综合机械能守恒定律是在只有重力或弹力做功的情况下,动能和势能相互转化,但机械能的总量保持不变。
2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
动能定理的几种典型应用应用一:动能定理解决匀变速直线运动问题例1、一个质量m=2kg 的小物体由高h=1.6m 倾角︒=30α的斜面顶端从静止开始滑下,物体到达斜面底端时速率是4m/s ,那么物体在下滑的过程中克服摩擦力做功是多少焦耳?由公式20222v v aS -=可知222022/5.22.3242s m S v v a =⨯=-= 对物体受力分析并由牛顿第二定律可知:ma f mg =-αsin 所以N N ma mg f 55.2221102sin =⨯-⨯⨯=-=α J J fS W f 16)1(2.35180cos -=-⨯⨯=︒= 解法二:由动能定理221mv W mgh f =+ 可得:J J mgh mv W f 166.110242212122-=⨯⨯-⨯⨯=-= 应用二:动能定理解决曲线运动问题例2、在离地面高度h=10m 的地方,以s m v /50=水平速度抛出,求:物体在落地时的速度大小? 解法一:由221gt h =得 s s g h t 2101022=⨯== 所以s m s m gt v y /210/210=⨯== 所以s m s m v v v y /15/)210(522220=+=+=解法二:由动能定理可得 20222121mv mv mgh -=所以:s m s m v gh v /15/51010222202=+⨯⨯=+= 两种方法计算的结果完全一致,可见:动能定理同样适用于曲线运动。
并且可以求变力的功,如下题。
例3.质量m=2kg 的物体从高h=1.6m 的曲面顶部静止开始下滑,到曲面底部的速度大小为4m/s 。
求物体在下滑过程中克服摩擦力所做的功?应用3:利用动能定理求解多个力做功的问题例4、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。
F 大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m 时速度的大小。
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。
1平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:求:(1)A 、C 两点的高度差;两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s 下落高度h ==0.8 m (2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°cos 53°))=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R 代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,设小物块刚好滑到木板右端时与木板达到共同速度,大小为大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2, a 2=μmg M=1 m/s 2 速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度. 2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,抛运动的物体,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,可可使轮子连续转动,使轮子连续转动,输出动力.输出动力.当该系统工作稳定时,当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h =5.6 m ,轮子半径R =1 m .调整轮轴O 的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)问:问:(1)水流的初速度v 0大小为多少?大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?若不计挡水板的大小,则轮子转动的角速度为多少? 答案 (1)7.5 m/s (2)12.5 rad/s 解析 (1)水流做平抛运动,有h -R sin 37°=12gt 2解得t =2(h -R sin 37°)g=1 s所以v y =gt =10 m/s ,由图可知: v 0=v y tan 37°=7.5 m/s.(2)由图可知:v =v 0sin 37°=12.5 m/s , 根据ω=v R 可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m Rv C 2(2分) 所以v C =5 m/s(1分) (2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分) 在D 点:mg +F N =m v D2r(2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t(1分) 解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m(3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m =30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空点无初速度地自由滑下,不计空 气阻力.求:气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小;的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小.的大小.答案 (1)4.4 m/s 2(2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma① 又F f =μF N ② F N =mg cos θ③ 联立①②③式解得:a =4.4 m/s 2④(2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N .⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2① 在水平方向上有s =v 0t ②由①②式解得v 0=sg2H 代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 02R③ f m =μN =μmg ④ 由③④式得μ=v 02gR代入数据得μ=0.26、(2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与,手与球之间的绳长为34d ,重力加速度为g 忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)(2)11113mg(3)d 2 2 33d解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2=52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 12R 得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 32l ,解得v 3=83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:试求:(1)小球在C 点对滑杆的压力;点对滑杆的压力;(2)小球在B 点的速度大小;点的速度大小;(3)BC 过程小球克服摩擦力所做的功.过程小球克服摩擦力所做的功.答案 (1)32mg ,方向竖直向下,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg③ 小球从A 到B 由动能定理有:F cos 37°cos 37°··s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:,试求:(1)摩擦力对小物块做的功;摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小;点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 12R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 22R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510 s设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α= 3 所以:α=60°由几何关系得:θ=α=60°60°. .9、水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,相切,一小球以初速度v 0沿直轨道向右运动.沿直轨道向右运动.如图如图3所示,所示,小球进入圆小球进入圆小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的点,然后小球做平抛运动落在直轨道上的 d 点,则点,则( ) A .小球到达c 点的速度为gRB .小球到达b 点时对轨道的压力为5mgC .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确; 小球由b 到c 过程中,由机械能守恒定律得:12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得 F N=6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2R g ,x =2R ,C 、D 项正确.1010、如图所示,、如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则与竖直方向的夹角.则( )A .tan θ2tan θ1=2B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2 D .tan θ1tan θ2=2 答案 B解析 由题意可知:tan θ1=v y v x =gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B 正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:求:(1)物块离开A 点时水平初速度的大小;点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离.间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2ghv y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2 P A 间的距离x P A =v A 22a=1.5 m. 1212、如图所示,半径、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求:试求: (1)物块经过轨道上的C 点时对轨道的压力;点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°sin 37°))=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R 联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.1313、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,示,赛车从起点赛车从起点A 出发,出发,沿水平直线轨道运动沿水平直线轨道运动L 后,由B 点进入点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg ,通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动.问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得 mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2min ,由此解得t =2.53 s。
习题课2 动能定理的应用[学习目标] 1.进一步理解动能定理,领会应用动能定理解题的优越性.2.会利用动能定理分析变力做功、曲线运动以及多过程问题.一、利用动能定理求变力的功1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W 变+W 其他=ΔE k .例1 如图1所示,质量为m 的小球自由下落d 后,沿竖直面内的固定轨道ABC 运动,AB 是半径为d 的14光滑圆弧,BC 是直径为d 的粗糙半圆弧(B 是轨道的最低点).小球恰能通过圆弧轨道的最高点C .重力加速度为g ,求:图1(1)小球运动到B 处时对轨道的压力大小. (2)小球在BC 运动过程中,摩擦力对小球做的功. 答案 (1)5mg (2)-34mgd解析 (1)小球下落到B 点的过程由动能定理得2mgd =12m v 2,在B 点:F N -mg =m v 2d ,得:F N =5mg ,根据牛顿第三定律:F N ′= F N =5mg .(2)在C 点,mg =m v C2d 2.小球从B 运动到C 的过程:12m v C 2-12m v 2=-mgd +W f ,得W f =-34mgd . 针对训练 如图2所示,某人利用跨过定滑轮的轻绳拉质量为10 kg 的物体.定滑轮的位置比A 点高3 m.若此人缓慢地将绳从A 点拉到B 点,且A 、B 两点处绳与水平方向的夹角分别为37°和30°,则此人拉绳的力做了多少功?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计滑轮的摩擦)图2答案 100 J解析 取物体为研究对象,设绳的拉力对物体做的功为W .根据题意有h =3 m. 物体升高的高度Δh =h sin 30°-h sin 37°.①对全过程应用动能定理W -mg Δh =0.② 由①②两式联立并代入数据解得W =100 J. 则人拉绳的力所做的功W 人=W =100 J. 二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和. 例2 如图3所示,右端连有一个光滑弧形槽的水平桌面AB 长L =1.5 m ,一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的A 端由静止开始向右运动,木块到达B 端时撤去拉力F ,木块与水平桌面间的动摩擦因数μ=0.2,取g =10 m/s 2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽); (2)木块沿弧形槽滑回B 端后,在水平桌面上滑动的最大距离.答案 (1)0.15 m (2)0.75 m解析 (1)设木块沿弧形槽上升的最大高度为h ,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升的最大高度处,由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f Lmg=(1.5-1.0)×1.50.5×10m =0.15 m(2)设木块离开B 点后沿桌面滑动的最大距离为x .由动能定理得: mgh -F f x =0所以:x =mgh F f =0.5×10×0.151.0 m =0.75 m三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =0. ②没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =gR . 例3 如图4所示,一可以看成质点的质量m =2 kg 的小球以初速度v 0沿光滑的水平桌面飞出后,恰好从A 点沿切线方向进入圆弧轨道,其中B 为轨道的最低点,C 为最高点且与水平桌面等高,圆弧AB 对应的圆心角θ=53°,轨道半径R =0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g 取10 m/s 2.图4(1)求小球的初速度v 0的大小;(2)若小球恰好能通过最高点C ,求在圆弧轨道上摩擦力对小球做的功. 答案 (1)3 m/s (2)-4 J解析 (1)在A 点由平抛运动规律得: v A =v 0cos 53°=53v 0.①小球由桌面到A 点的过程中,由动能定理得 mg (R +R cos θ)=12m v A 2-12m v 0 2②由①②得:v 0=3 m/s.(2)在最高点C 处有mg =m v C2R ,小球从桌面到C 点,由动能定理得W f =12m v C 2-12m v 02,代入数据解得W f =-4 J.1.(用动能定理求变力的功) 如图5所示,质量为m 的物体与水平转台间的动摩擦因数为μ,物体与转轴相距R ,物体随转台由静止开始转动.当转速增至某一值时,物体即将在转台上滑动,此时转台开始匀速转动.设物体的最大静摩擦力近似等于滑动摩擦力,则在整个过程中摩擦力对物体做的功是( )图5A.0B.2μmgRC.2πμmgRD.μmgR2答案 D解析 物体即将在转台上滑动但还未滑动时,转台对物体的最大静摩擦力恰好提供向心力,设此时物体做圆周运动的线速度为v ,则有μmg =m v 2R.①在物体由静止到获得速度v 的过程中,物体受到的重力和支持力不做功,只有摩擦力对物体做功,由动能定理得:W =12m v 2-0.②联立①②解得W =12μmgR .2.(利用动能定理分析多过程问题)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图6是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O点,圆心角为60°,半径OC 与水平轨道CD 垂直,水平轨道CD 段粗糙且长8 m.某运动员从轨道上的A 点以3 m /s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧形轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为60 kg ,B 、E 两点到水平轨道CD 的竖直高度分别为h 和H ,且h =2 m ,H =2.8 m ,g 取10 m/s 2.求:图6(1)运动员从A 点运动到达B 点时的速度大小v B ; (2)轨道CD 段的动摩擦因数μ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,则最后停在何处?答案 (1)6 m/s (2)0.125 (3)不能回到B 处,最后停在D 点左侧6.4 m 处(或C 点右侧1.6 m 处) 解析 (1)由题意可知:v B =v 0cos 60°解得:v B =6 m/s.(2)从B 点到E 点,由动能定理可得: mgh -μmgx CD -mgH =0-12m v B 2代入数据可得:μ=0.125.(3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处,根据动能定理得: mgh -mgh ′-μmg ·2x CD =0-12m v B 2解得h ′=1.8 m<h =2 m所以第一次返回时,运动员不能回到B 点设运动员从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得: mgh -μmgs =0-12m v B 2④解得:s =30.4 m因为s =3x CD +6.4 m ,所以运动员最后停在D 点左侧6.4 m 处或C 点右侧1.6 m 处. 3.(动能定理在平抛、圆周运动中的应用) 如图7所示,一个质量为m =0.6 kg 的小球以初速度v 0=2 m /s 从P 点水平抛出,从粗糙圆弧ABC 的A 点沿切线方向进入(不计空气阻力,进入圆弧时无动能损失)且恰好沿圆弧通过最高点C ,已知圆弧的圆心为O ,半径R =0.3 m ,θ=60°,g =10 m/s 2.求:图7(1)小球到达A 点的速度v A 的大小; (2)P 点到A 点的竖直高度H ;(3)小球从圆弧A 点运动到最高点C 的过程中克服摩擦力所做的功W . 答案 (1)4 m/s (2)0.6 m (3)1.2 J解析 (1)在A 点由速度的合成得v A =v 0cos θ,代入数据解得v A =4 m/s(2)从P 点到A 点小球做平抛运动,竖直分速度v y =v 0tan θ① 由运动学规律有v y 2=2gH ② 联立①②解得H =0.6 m (3)恰好过C 点满足mg =m v C 2R由A 点到C 点由动能定理得 -mgR (1+cos θ)-W =12m v C 2-12m v A 2代入数据解得W =1.2 J.课时作业一、选择题(1~7为单项选择题,8~9为多项选择题)1.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A.mgh -12m v 2-12m v 0 2B.12m v 2-12m v 0 2-mghC.mgh +12m v 0 2-12m v 2D.mgh +12m v 2-12m v 0 2答案 C解析 选取物块从刚抛出到正好落地时的过程,由动能定理可得: mgh -W f 克=12m v 2-12m v 0 2解得:W f 克=mgh +12m v 0 2-12m v 2.2.如图1所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( )图1A.12μmgR B.12mgR C.-mgR D.(1-μ)mgR答案 D解析 设物体在AB 段克服摩擦力所做的功为W AB ,物体从A 运动到C 的全过程,根据动能定理,有mgR -W AB -μmgR =0.所以有W AB =mgR -μmgR =(1-μ)mgR .3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2所示,则拉力F 所做的功为( )图2A.mgl cos θB.mgl (1-cos θ)D.Fl sin θ 答案 B解析 小球缓慢移动,时时都处于平衡状态,由平衡条件可知,F =mg tan θ,随着θ的增大,F 也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于物体缓慢移动,动能保持不变,由动能定理得:-mgl (1-cos θ)+W =0,所以W =mgl (1-cos θ).4.质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧最右端O 相距s ,如图3所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(不计空气阻力)( )图3A.12m v 0 2-μmg (s +x )B.12m v 0 2-μmgxC.μmgsD.μmgx答案 A解析 设物体克服弹簧弹力所做的功为W ,则物体向左压缩弹簧过程中,弹簧弹力对物体做功为-W ,摩擦力对物体做功为-μmg (s +x ),根据动能定理有-W -μmg (s +x )=0-12m v 0 2,所以W =12m v 0 2-μmg (s +x ).5.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgR C.12mgR D.mgR解析 小球通过最低点时,设绳的张力为F T ,则 F T -mg =m v 1 2R ,6mg =m v 1 2R①小球恰好过最高点,绳子拉力为零,这时mg =m v 2 2R ②小球从最低点运动到最高点的过程中,由动能定理得 -mg ·2R -W f =12m v 2 2-12m v 1 2③由①②③式联立解得W f =12mgR ,选C.6.如图5所示,假设在某次比赛中运动员从10 m 高处的跳台跳下,设水的平均阻力约为其体重的3倍,在粗略估算中,把运动员当作质点处理,为了保证运动员的人身安全,池水深度至少为(不计空气阻力)( )图5A.5 mB.3 mC.7 mD.1 m答案 A解析 设水深为h ,对运动全程运用动能定理可得: mg (H +h )-F f h =0,mg (H +h )=3mgh .所以h =5 m.7.如图6所示,小球以初速度v 0从A 点沿粗糙的轨道运动到高为h 的B 点后自动返回,其返回途中仍经过A 点,则经过A 点的速度大小为( )图6A.v 0 2-4ghB.4gh -v 0 2C.v 0 2-2ghD.2gh -v 0 2答案 B解析 从A 到B 运动过程中,重力和摩擦力都做负功,根据动能定理可得mgh +W f =12m v 0 2,从B 到A 过程中,重力做正功,摩擦力做负功(因为是沿原路返回,所以两种情况摩擦力做功大小相等),根据动能定理可得mgh -W f =12m v 2,两式联立得再次经过A 点的速度为4gh -v 0 2,故B 正确.8.在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图7所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )图7A.F ∶F f =1∶3B.W 1∶W 2=1∶1C.F ∶F f =4∶1D.W 1∶W 2=1∶3答案 BC解析 对汽车运动的全过程,由动能定理得:W 1-W 2=ΔE k =0,所以W 1=W 2,选项B 正确,选项D 错误;由动能定理得Fx 1-F f x 2=0,由图象知x 1∶x 2=1∶4.所以 F ∶F f =4∶1,选项A 错误,选项C 正确.9.如图8所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )图8答案 AB解析 对小环由动能定理得mgh =12m v 2-12m v 02,则v 2=2gh +v 0 2.当v 0=0时,B 正确.当v 0≠0时,A 正确.二、非选择题10.如图9所示,光滑水平面AB 与一半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点,重力加速度为g .求:图9(1)弹簧弹力对物块做的功;(2)物块从B 到C 克服阻力所做的功;(3)物块离开C 点后,再落回到水平面上时的动能.答案 (1)3mgR (2)12mgR (3)52mgR 解析 (1)由动能定理得W =12m v B 2 在B 点由牛顿第二定律得7mg -mg =m v B 2R解得W =3mgR(2)物块从B 到C 由动能定理得12m v C 2-12m v B2=-2mgR +W ′ 物块在C 点时mg =m v C 2R解得W ′=-12mgR ,即物块从B 到C 克服阻力做功为12mgR . (3)物块从C 点平抛到水平面的过程中,由动能定理得2mgR =E k -12m v C 2,解得E k =52mgR . 11.如图10所示,绷紧的传送带在电动机带动下,始终保持v 0=2 m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =10 kg 的工件轻轻地放在传送带底端,由传送带传送至h =2 m 的高处.已知工件与传送带间的动摩擦因数μ=32,g 取10 m/s 2.图10(1)通过计算分析工件在传送带上做怎样的运动?(2)工件从传送带底端运动至h =2 m 高处的过程中摩擦力对工件做了多少功?答案 (1)工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动 (2)220 J解析 (1)工件刚放上传送带时受滑动摩擦力:F f =μmg cos θ,工件开始做匀加速直线运动,由牛顿运动定律:F f -mg sin θ=ma 可得:a =F f m-g sin θ =g (μcos θ-sin θ)=10×⎝⎛⎭⎫32cos 30°-sin 30° m/s 2 =2.5 m/s 2.设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得:x =v 0 22a =222×2.5 m =0.8 m <h sin θ=4 m 故工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动.(2)在工件从传送带底端运动至h =2 m 高处的过程中,设摩擦力对工件做功为W f ,由动能定理得W f -mgh =12m v 0 2, 可得:W f =mgh +12m v 0 2=10×10×2 J +12×10×22 J =220 J. 12.如图11所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 长度l BC =1.1 m ,CD 为光滑的14圆弧,半径R =0.6 m.一个质量m =2 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC间的动摩擦因数μ=0.2,轨道在B、C两点光滑连接.当物体到达D点时,继续竖直向上运动,最高点距离D点的高度h=0.2 m.sin 53°=0.8,cos 53°=0.6.g取10 m/s2.求:图11(1)物体运动到C点时的速度大小v C;(2)A点距离水平面的高度H;(3)物体最终停止的位置到C点的距离s.答案(1)4 m/s(2)1.02 m(3)0.4 m解析(1)物体由C点运动到最高点,根据动能定理得:-mg(h+R)=0-122m v C代入数据解得:v C=4 m/s(2)物体由A点运动到C点,根据动能定理得:12-0=mgH-μmgl BC2m v C代入数据解得:H=1.02 m(3)从物体开始下滑到停下,根据动能定理得:mgH-μmgs1=0代入数据,解得s1=5.1 m由于s1=4l BC+0.7 m所以,物体最终停止的位置到C点的距离为:s=0.4 m.。
动能定理与圆周运动 平抛运动班级 姓名 得分1.如图所示,物体沿一个光滑曲面从A 点无初速度滑下,滑至曲面最低点B 时,下滑的高度为5m. 求物体在B 点的速度。
2.如图所示,物体沿一曲面从A 点无初速度滑下,滑至曲面最低点B 时,下滑的高度为5m.若物体的质量为1㎏,到B 点的速度为6m/s,则在下滑过程中克服阻力所做的功是多少?3、光滑的水平面AB 与光滑的半圆形轨道相接触,直径BC 竖直,圆轨道半径为R 一个质量为m 的物体放在A 处,AB=2R ,物体在水平恒力F 的作用下由静止开始运动,当物体运动到B 点时撤去水平外力之后,物体恰好从圆轨道的定点C 水平抛出,求水平力F 的大小4.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求(1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?(3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解:RO m B C4.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求(1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?(3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解: (1)m :A →B 过程:∵动能定理2B 102mgR mv =- 2KB B 12E mv mgR ∴== ① (2) m :在圆弧B 点:∵牛二律2B B v N mg m R -= ② 将①代入,解得 N B =3mg在C 点:N C =mg(3) m :A →D :∵动能定理211022D mgR mv =-D v ∴=30.B CB R/C D。
尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。
双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。
下面分三类情况进行分析。
[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。
若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。
【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。
(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。
(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。
[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。
一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。
动能定理和圆周运动相结合临界例题1如图所示,小球用不可伸长的长为L的轻绳悬于O点,小球在最低点的速度必需为多大时,才能在竖直平面内做完整个圆周运动? (2)若所给的速度逐渐增大时,绳子在最高点时拉力变化?(3)最低点和最高点的拉力变化多少?拓展:若绳子改为杆的圆形轨道,小球RB进入半径为变式训练1-1如图所示,小球自斜面顶端A由静止滑下,在斜面底端试求整个过程中摩擦力对小球所做的功。
3R,A、B两点间高度差为已知刚好能通过圆形轨道的最高点C,的竖直,圆轨道半径为R一个质量为m例题2如图,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC点时撤去水平外力之F的作用下由静止开始运动,当物体运动到BA物体放在处,AB=2R,物体在水平恒力后,物体恰好从圆轨道的顶点C水平抛出,求水平力点的水平位移为BD点距点平抛,落地点如果在上题中,物体不是恰好过变式训练2-1C点,而是在C 4R,求水平力。
点时撤去外力,又变式训练2-2如图上题,滑块在恒定外力作用下从水平轨道上的AB点由静止出发到滑块脱离半圆形轨道后又刚好落到原出发C,且恰好通过轨道最高点沿竖直面内的光滑半圆形轨道运动,点A段运动过程中的加速度。
,试求滑块在AB1BRAOAD点端与圆心为水平面,例题3如图所示,竖直平面内的3/4圆弧形光滑轨道半径为等高,,BOAA点进入圆轨道并恰能到达点正上方由静止释放,自由下落至在点。
求:的正上方,一个小球在A点的竖直高度;⑴释放点距AC落点点的水平距离。
与⑵BO DC ADBRO是圆管例题4如图上题图所示,四分之三周长圆管的半径=0.4m,管口在同一水平面上,和圆心EDBEBCCE段光滑;直径稍小于圆管内径、段存在摩擦,段动摩擦因数相同,和的最高点,其中半圆周CHAmB,=2.5m处的的小球从距时的速率为正上方高处自由下落,到达圆管最低点质量6m/s=0.5kg D飞出,恰能再次进入圆管,假定小球再次进入圆管时不计碰撞能量损失,并继续运动直到圆管的最高点2g取重力加速度,求=10m/s A D点时的速度小球飞离(1)DB(2)小球从点过程中克服摩擦所做的功点到C)(3小球再次进入圆管后,能否越过点?请分析说明理由H DB O ERC处,在O点正下方Pm变式训练4-1如图所示,质量为的小球用不可伸长的细线悬于O点,细线长为L那么钉子到悬处的钉子作圆周运动。
高一物理必修二练习题
1.平抛运动是 ( )
A .匀速率曲线运动
B .匀变速曲线运动
C .加速度不断变化的曲线运动
D .加速度恒为重力加速度的曲线运动
2.以速度v 0水平抛出一物体,当其竖直分位移与水平分位移相等时,此物的( )
A .竖直分速度等于水平分速度 B.瞬时速度为05v C.运动时间为g v 02
D .发生的位移为g v 2022 3、小球在离地面h 处以初速度v 水平抛出,球从抛出到着地,速度变化量的大小和方向为:
A 、gh v 22+方向竖直向下
B 、gh 2方向竖直向下
C 、gh v 22+方向斜向下
D 、gh 2方向斜向下
4、质量为m 的物体与水平面间的动摩擦因数为μ,现用与水平面成θ角的力拉物体,使物体沿水平面匀速前进s ,这个力对物体做的功为 ( )
A .mgs μ
B .θμcos ⋅mgs
C .)sin /(cos cos θμθθμ+mgs
D .)sin /(cos θμθμ+mgs
5.美国的NBA 篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场0.1s 的时候,运动员把球投出且准确命中,获得比赛胜利.如果运动员投篮过程中对篮球做功为W ,出手高度为h 1,篮筐距地面高度为h 2,球的质量为m ,空气阻力不计,则篮球进筐时的动能为 ( )
A .W +21mgh mgh -
B .W +12mgh mgh -
C .21mgh mgh +-W
D .12mgh mgh --W
6、如图所示,细绳的一端固定在O 点,另一端系一小球,开始时细绳被拉直,并使小球处在与O 点等高的A 位置,现将小球由静止释放,它由A 运动到最低点B 的过程中,小球所受重力的瞬时功率变化的情况是( )
A .一直在增大
B .一直在减小
C .先增大后减小
D .先减小后增大
7. 关于地球上物体随地球自转的,下列说法正确的是( )
A.在赤道上的向心加速度最大;
B.在两极上的向心加速度最大;
C.在地球上各处的向心加速度相同;
D.随纬度的增加向心加速度逐渐增大。
8.如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( )
A.球A的线速度一定大于球B 的线速度
B.球A的角速度一定小于球B 的角速度
C.球A的运动周期一定小于球B 的运动周期
D.球A对筒壁的压力一定大于球B 对筒壁的压力
9.如图9所示,质量为m=2kg的小球系在轻弹簧的一端,另一端固定在悬点
O处,将弹簧拉至水平位置A处(弹簧无形变)由静止释放,小球到达距0点下方
h=0.5 m处的B点时速度为2 m/s.求小球从A运动到B的过程中弹簧弹力做
的功.
10. 质量为0.1kg的光滑小球沿倾角为30°的直轨道A处由静止下滑,然后进入与直轨道光滑连接的竖直的圆弧形轨道,已知最低点B与A的高度差为1.25m, 圆弧半径R为0.5m, 试问:(1)在B处轨道对小球的支持力有多大;
(2)小球到达C处时的速度大小是多少;
(3)小球能到达圆弧最高点D处吗?
11.如图所示,A、B两球的质量分别为m1与m2,用一劲度系数为k的弹簧相连,一长为l1的细线与A球相连,置于水平光滑桌面上,细线的另一端拴在竖直轴OO′上.当A球与B球均以角速度ω绕OO′轴作匀速圆周运动时,弹簧长度为l2.问:(1)此时弹簧伸长量多大?绳子张力多大?(2)将线突然烧断瞬间,两球加速度各多大?
12、一物体做平抛运动,在落地前1 s内,它的速度与水平方向的夹角由37°变为53°求(1)物体抛出时的初速度(2)物体在这一秒内下落的高度. (g=10 m/s2)
图9
A
B
θ。