压阻式压力传感器
- 格式:doc
- 大小:92.00 KB
- 文档页数:8
压力传感器知识点总结一、压力传感器的概念及分类压力传感器是一种能够将物体外部施加的压力转变成电信号输出的装置。
它可以将压力大小转化为电信号输出,通常用于测量液体、气体或固体的压力。
根据测量原理和测量对象的不同,压力传感器可以分为多种类型,常见的有压阻式压力传感器、压力变送器、电容式压力传感器和压电式压力传感器等。
1. 压阻式压力传感器压阻式压力传感器是利用压阻效应来测量被测压力的装置。
当被测压力作用在敏感元件上时,敏感元件发生形变,从而改变了电阻值。
通过检测电阻值的变化,就可以得到被测压力的大小。
压阻式压力传感器的优点是价格低廉,输出信号稳定,但灵敏度较低,精度一般较低。
2. 压力变送器压力变送器也是一种常见的压力传感器,它一般由感压元件和信号处理电路组成。
感压元件将被测压力转化为位移,再由信号处理电路将位移信号转化为电信号输出。
压力变送器具有输出信号稳定、精度高、灵敏度高等优点,广泛应用于工业自动化领域。
3. 电容式压力传感器电容式压力传感器是利用被测压力作用下的电容值变化来测量压力大小的装置。
当被测压力作用在感应体上时,感应体发生形变,从而改变了电容值。
通过检测电容值的变化,就可以得到被测压力的大小。
电容式压力传感器具有灵敏度高、精度高的特点,但价格较高。
4. 压电式压力传感器压电式压力传感器是利用压电效应来测量被测压力的装置。
当被测压力作用在压电晶体上时,压电晶体产生电荷,从而产生电压信号输出。
压电式压力传感器具有输出稳定、精度高、频率响应快的优点,但价格较高。
二、压力传感器的工作原理1. 压阻式压力传感器的工作原理压阻式压力传感器是利用压阻效应来测量被测压力的装置。
当被测压力作用在敏感元件上时,敏感元件发生形变,从而改变了电阻值。
通过检测电阻值的变化,就可以得到被测压力的大小。
2. 压力变送器的工作原理压力变送器一般由感压元件和信号处理电路组成。
感压元件将被测压力转化为位移,再由信号处理电路将位移信号转化为电信号输出。
压阻式压力传感器工作原理
压阻式压力传感器工作原理是基于电阻的变化原理。
传感器内部含有一个薄膜,该薄膜上涂有导电层,形成一个电阻。
当传感器受到外部压力作用时,薄膜会发生微小的弯曲,导致导电层上电阻的改变。
具体来说,当外部压力增加时,薄膜的弯曲程度会增大,导致电阻的值随之增加。
而当外部压力减小时,薄膜会恢复原状,导致电阻的值随之减小。
这种电阻和压力之间的关系可以通过压力传感器的电路进行测量和转换。
一般情况下,压阻式压力传感器会和一个电桥电路结合使用。
电桥电路由四个电阻组成,其中一个电阻为压阻传感器的电阻,另外三个为已知电阻。
当系统施加一个恒定的电压到电桥上时,电桥会输出一个电压信号,该信号的大小与压阻传感器的电阻值相关。
通过测量和分析电桥的输出信号,就可以得到与外部压力关联的电阻值。
进一步,可以经过校准和转换,将电阻值转换为实际的压力数值。
总的来说,压阻式压力传感器通过测量导电层电阻的变化,实现对外部压力的检测和测量。
这种传感器具有结构简单、成本低廉、响应速度快等优点,广泛应用于各种工业领域和仪器设备中。
压力传感器工作原理压力传感器是一种能够将压力信号转换为电信号输出的传感器,它在工业控制、汽车制造、医疗设备等领域都有着广泛的应用。
压力传感器的工作原理是通过感受外部压力的作用,产生相应的变化,并将这种变化转化为电信号输出。
下面将详细介绍压力传感器的工作原理。
1. 压力传感器的类型压力传感器根据其工作原理和测量范围的不同,可以分为多种类型,包括压阻式压力传感器、压电式压力传感器、电容式压力传感器、共振式压力传感器等。
每种类型的压力传感器都有其特定的工作原理,但其基本原理都是通过感受外部压力的作用,产生相应的变化,并将这种变化转化为电信号输出。
2. 压阻式压力传感器的工作原理压阻式压力传感器是一种通过测量电阻值变化来感知压力的传感器。
其工作原理是利用一些特殊材料的电阻随着受力的不同而发生变化。
当外部压力作用在传感器上时,传感器内部的电阻值会发生相应的变化,这种变化会被转化为电信号输出。
通常压阻式压力传感器的灵敏度较高,能够测量较小范围内的压力变化。
3. 压电式压力传感器的工作原理压电式压力传感器是一种利用压电效应来感知压力的传感器。
其工作原理是利用压电材料在受到外部压力作用时会产生电荷的变化。
当外部压力作用在传感器上时,压电材料会产生相应的电荷变化,这种变化会被转化为电信号输出。
压电式压力传感器具有较高的频率响应特性,能够测量动态压力变化。
4. 电容式压力传感器的工作原理电容式压力传感器是一种利用电容变化来感知压力的传感器。
其工作原理是利用外部压力作用在传感器上时,导致传感器内部电容值发生变化。
这种电容值的变化会被转化为电信号输出。
电容式压力传感器具有较高的精度和稳定性,能够测量较大范围内的压力变化。
5. 共振式压力传感器的工作原理共振式压力传感器是一种利用共振频率的变化来感知压力的传感器。
其工作原理是利用外部压力作用在传感器上时,导致传感器内部的共振频率发生变化。
这种共振频率的变化会被转化为电信号输出。
压阻式压力传感器1. 引言压阻式压力传感器是一种用于测量压力的传感器。
该传感器的工作原理是通过应变电阻的变化来检测受力物体的压力。
它广泛应用于工业控制、汽车制造等许多领域。
本文将介绍压阻式压力传感器的工作原理、特点以及应用。
2. 工作原理压阻式压力传感器的工作原理基于应变电阻效应。
当传感器受到压力作用时,传感器内的金属薄片或薄膜会发生形变,导致金属材料的电阻值发生变化。
通过测量电阻值的变化,我们可以得知受力物体的压力大小。
通常,压阻式压力传感器由两个电极之间夹着一层薄膜或薄片构成。
当压力作用在传感器上时,薄膜或薄片会发生拉伸或压缩,从而改变电流的通道,使电阻值发生变化。
这种变化可以被测量电路检测到并转换为相应的电压或电流信号。
3. 特点压阻式压力传感器具有以下特点:•灵敏度高:由于应变电阻效应是线性的,压阻式压力传感器在测量范围内具有较高的灵敏度。
•稳定性好:传感器内部的金属材料通常经过特殊处理,以增加其稳定性和可靠性。
•宽测量范围:压阻式压力传感器可以适应广泛的测量范围,从几千帕到几百兆帕不等。
•耐用性强:传感器通常采用金属或陶瓷材料制成,具有较好的耐用性。
4. 应用压阻式压力传感器在许多领域有广泛的应用,包括但不限于以下几个方面:4.1 工业控制压阻式压力传感器可用于测量流体压力,如液体或气体。
在工业控制中,压力传感器常被用于监测管道或容器中的压力变化,以确保系统正常运行。
4.2 汽车制造压阻式压力传感器在汽车制造中起着重要作用。
它们可用于测量发动机燃油压力、轮胎气压等数据,以确保汽车的安全性和性能。
4.3 医疗设备压阻式压力传感器在医疗设备中也有应用。
例如,它们可用于测量患者的血压、呼吸气道压力等数据,以协助医生进行诊断和治疗。
4.4 环境监测压阻式压力传感器可用于环境监测,如大气压力、海洋水深等数据的测量。
这些数据对于气象研究、海洋科学等领域非常重要。
5. 总结压阻式压力传感器是一种用于测量压力的重要传感器。
压力传感器的原理压力传感器是一种能够将压力信号转换为电信号输出的传感器,广泛应用于工业自动化控制、汽车电子、医疗设备等领域。
它的原理是利用一定的物理效应,将受力的变化转换为电信号输出,从而实现对压力的测量和控制。
压力传感器的原理主要包括以下几个方面:1. 压阻式原理。
压阻式压力传感器是利用压阻效应来实现对压力的测量。
当外力作用于传感器的敏感元件上时,敏感元件会发生形变,从而改变其电阻值。
通过测量电阻值的变化,就可以得到压力的大小。
这种原理的传感器简单、成本低,但精度较低,易受温度影响。
2. 容性原理。
容性压力传感器利用压力作用于传感器时,会改变传感器内部电容值的特性。
通过测量电容值的变化,就可以得到压力的大小。
这种原理的传感器具有较高的灵敏度和稳定性,但制造工艺复杂,成本较高。
3. 压电原理。
压电压力传感器是利用压电效应来实现对压力的测量。
当外力作用于传感器的压电晶体上时,会产生电荷的分布变化,从而产生电压信号输出。
通过测量电压信号的变化,就可以得到压力的大小。
这种原理的传感器具有高灵敏度、高稳定性和高精度,但制造工艺复杂,成本较高。
4. 光纤原理。
光纤压力传感器是利用光纤的光学原理来实现对压力的测量。
当外力作用于传感器上时,会改变光纤的折射率,从而改变光信号的传输特性。
通过测量光信号的变化,就可以得到压力的大小。
这种原理的传感器具有抗干扰性强、可靠性高的优点,但制造工艺复杂,成本较高。
总结:压力传感器的原理多种多样,每种原理都有其适用的场景和特点。
在实际应用中,需要根据具体的测量要求和环境条件选择合适的压力传感器。
随着科技的不断发展,压力传感器的原理和性能也在不断提升,为各行各业的应用提供了更加可靠和精准的压力测量解决方案。
总结压阻式压力传感器的一般检测方法压阻式压力传感器是一种常用的测量压力的传感器,其原理是基于材料的压阻效应。
为了确保传感器的准确性和稳定性,需要进行一般的检测方法。
以下是总结的一般检测方法:1. 外观检查:首先,对压力传感器进行外观检查,包括检查传感器外壳是否完整、有无损坏,是否有明显的划痕或变形等。
确保传感器外观正常可靠。
2. 线路连接检查:检查传感器的电气连接,包括检查传感器与接收器之间的线路连接是否正确牢固,检查所有电连接器是否无松动或断裂。
确保传感器与电路之间的连接良好。
3. 零点检测:通过此检测方法,测量压力传感器在无压力状态下的输出信号。
将传感器暴露在零压条件下,记录输出信号。
正常情况下,压力传感器在无力作用时应输出稳定的零信号。
4. 线性度检测:线性度是指压力传感器输出与输入压力之间的直线关系。
可通过在一定范围内施加等间隔的压力,记录传感器的输出信号。
然后,根据斜率和截距计算其线性关系。
理想情况下,传感器应该有良好的线性关系。
5. 灵敏度检测:灵敏度是指压力传感器输出信号与输入压力变化之间的关系。
可以通过在不同压力范围内改变输入压力,并记录传感器的输出信号,计算出输出信号相对于输入信号的变化量。
传感器的灵敏度应保持稳定并与规格相符。
6. 温度特性检测:压力传感器的温度特性直接影响其测量的准确性。
进行温度特性检测时,将传感器暴露在不同的温度环境下,并记录传感器的输出信号。
比较传感器在不同温度下的输出,确保传感器对温度的响应在规格范围内。
总之,以上是总结的压阻式压力传感器的一般检测方法,通过这些方法可以确保传感器的质量和性能符合要求,提供可靠准确的压力测量结果。
压阻式压力传感器工作原理压阻式压力传感器是一种常用的压力测量装置,其工作原理基于压阻效应。
在实际应用中,压阻式压力传感器可以用于汽车制动系统、工业自动化控制、医疗设备等领域。
下面我们将详细介绍压阻式压力传感器的工作原理。
1. 压阻效应。
压阻效应是指在材料受到外力作用时,其电阻发生变化的现象。
通常情况下,材料受到压力作用时,其电阻会随之变化。
这种变化可以通过测量电阻的大小来间接地反映受力情况,从而实现压力的测量。
2. 压阻式压力传感器的结构。
压阻式压力传感器通常由压阻薄膜和支撑结构组成。
当受到外力作用时,压阻薄膜会发生形变,从而导致其电阻发生变化。
通过测量电阻的变化,可以得知外力的大小,实现压力的测量。
3. 工作原理。
当压力作用在压阻式压力传感器上时,压阻薄膜会受到压力而发生形变。
这种形变会导致压阻薄膜电阻的变化,进而改变电路中的电流或电压。
通过测量电路中的电流或电压的变化,可以得知压阻薄膜受到的压力大小,从而实现对压力的测量。
4. 特点与应用。
压阻式压力传感器具有灵敏度高、响应速度快、结构简单等特点,因此在工业领域得到广泛应用。
例如,在汽车制动系统中,压阻式压力传感器可以实时监测制动液压力的变化,从而确保制动系统的安全可靠性。
在医疗设备中,压阻式压力传感器可以用于测量血压、呼吸等生理参数,为医生提供诊断依据。
总之,压阻式压力传感器利用压阻效应实现对压力的测量,具有灵敏度高、响应速度快等优点,适用于各种工业和医疗领域。
希望本文能够帮助读者更好地理解压阻式压力传感器的工作原理和应用。
第二节压阻式传感器固体受到作用力后,电阻率就要发生变化,这种效应称为压阻效应。
半导体材料的这种效应特别强。
利用半导体材料做成的压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成的粘贴式应变片;另一类是在半导体材料的基片上用集成电路工艺制成扩散电阻,称扩散型压阻传感器。
压阻式传感器的灵敏系数大,分辨率高。
频率响应高,体积小。
它主要用于测量压力、加速度和载荷参数。
因为半导体材料对温度很敏感,因此压阻式传感器的温度误差较大,必须要有温度补偿。
1.基本工作原理根据式(2-3)式中,项,对金属材料,其值很小,可以忽略不计,对半导体材料,项很大,半导体电阻率的变化为(2-22)式中为沿某晶向的压阻系数,σ为应力,为半导体材料的弹性模量。
如半导体硅材料,, ,则,此例表明,半导体材料的灵敏系数比金属应变片灵敏系数 (1+2μ)大很多。
可近似认为。
半导体电阻材料有结晶的硅和锗,掺入杂质形成P型和N型半导体。
其压阻效应是因在外力作用下,原子点阵排列发生变化,导致载流子迁移率及浓度发生变化而形成的。
由于半导体(如单晶硅)是各向异性材料,因此它的压阻系数不仅与掺杂浓度、温度和材料类型有关,还与晶向有关。
所谓晶向,就是晶面的法线方向。
晶向的表示方法有两种,一种是截距法,另一种是法线法。
1.截距法设单晶硅的晶轴坐标系为x、y、z,如图2-29所示,某一晶面在轴上的截距分别为r、s、t(2-23)1/r、1/s、1/t为截距倒数,用r、s、t的最小公倍数分别相乘,获得三个没有公约数的整数a、b、c,这三个数称为密勒指数,用以表示晶向,记作〈a b c〉,某数(如a)为负数则记作〈 b c〉。
例如图2-30(a),截距为-2、-2、4,截距倒数为-、-、,密勒指数为〈1〉。
图2-30(b)截距为1、1、1,截距倒数仍为1、1、1,密勒指数为〈1 11〉。
图2-30(c)中ABCD面,截距分别为1、∞、∞,截距倒数为1、0、0,所以密勒指数为〈1 0 0〉。
压力传感器的原理和应用压力传感器是一种用于检测和测量压力变化的装置,广泛应用于各个领域。
本文将介绍压力传感器的原理以及其在不同领域的应用。
一、压力传感器的原理压力传感器的基本原理是根据弹性元件的形变来测量外界压力的变化。
弹性元件可以是金属薄膜、金属绞线、气体或液体等,在外界压力的作用下发生形变,通过检测这种形变来测量压力的大小。
1. 金属薄膜压力传感器原理金属薄膜压力传感器是最常见的一种类型。
它由金属薄膜贴附在载体上构成。
当外界压力作用于金属薄膜时,金属薄膜发生形变,形变后的电阻值发生变化,利用电桥测量这种变化可以得出压力的数值。
2. 压阻式压力传感器原理压阻式压力传感器将电阻与弹性元件相结合。
当外界压力作用于弹性元件时,导致电阻值的变化,通过测量电阻值的变化来计算压力大小。
3. 容性式压力传感器原理容性式压力传感器利用弹性体的变形引起的电容量的变化来测量压力。
当外界压力作用于弹性体时,弹性体形变,使电容量发生变化,通过测量电容量的变化来判断压力的大小。
二、压力传感器的应用领域压力传感器在许多领域中都有广泛的应用,下面将介绍其中几个常见的应用领域。
1. 工业自动化领域在工业自动化领域,压力传感器用于监测和控制各种工艺中的气体或液体的压力变化。
例如,在制造业中,通过监测设备中的气压来确保生产过程的稳定性和安全性。
2. 汽车领域压力传感器在汽车领域中扮演着至关重要的角色。
它们用于监测发动机中的油压、冷却系统中的压力以及制动系统中的液压压力。
这些信息可以用来确保发动机的正常运行和提供安全的制动性能。
3. 医疗领域在医疗领域,压力传感器用于监测患者体内的生理参数,如血压、呼吸压力等。
它们还被应用于手术设备和人工呼吸机等医疗设备中,以监测和调节压力。
4. 环境监测领域压力传感器在环境监测领域中的应用越来越广泛。
它们被用于监测气候变化、水位高度、大气压力等参数。
这些数据对于环境保护和天气预测等方面具有重要意义。
压阻压力传感器的主要特点
压阻式压力传感器是一种常见的传感器类型之一,其基本原理是通过检测压力
对薄膜或陶瓷材料的变形程度而测量所感知的压力大小。
压阻压力传感器具有以下几个主要特点:
高精度
压阻压力传感器通常具有高精度的特点,它们可以测量非常微小的压力变化,
例如,小于1kPa的压力变化。
范围广
压阻压力传感器可以应用于各种应用场景,例如,军事、医疗、工业、航空、
汽车等领域。
反应迅速
压阻压力传感器具有非常快速的响应速度,可以对瞬态压力进行准确和及时的
检测。
易于安装
压阻压力传感器的机械结构通常相对简单,安装和维护比其他类型的压力传感
器更加容易。
成本低廉
相对于其他类型的压力传感器,压阻压力传感器通常具有较低的成本,这使得
其在大规模应用中越发具有优势。
耐用性好
压阻压力传感器通常具有较好的耐用性,能够在恶劣的环境条件下长期稳定地
工作。
总之,压阻压力传感器是一种非常实用的压力传感器类型,具有高精度、范围广、反应迅速、易于安装、成本低廉、耐用性好等多种优点。
随着科技的不断进步,它们在工业、军事、医疗、航空、汽车等领域的应用将会越来越广泛,成为现代化工业的不可或缺的重要组成部分。
压力传感器工作原理详解压力传感器是一种广泛应用于工业、医疗、汽车等领域的传感器,它可以测量物体受力后产生的压力变化,并将其转化为电信号输出。
本文将详细介绍压力传感器的工作原理及其应用。
一、压力传感器的基本原理压力传感器的工作原理基于压力对物体的变形产生的影响。
当一个物体受到外力作用时,它会发生形变,而形变的大小与受力的大小成正比。
压力传感器利用这个原理,通过测量物体的形变来间接测量压力的大小。
二、压力传感器的结构压力传感器通常由弹性元件、传感器芯片和信号处理电路组成。
其中,弹性元件是压力传感器的核心部件,它负责接受外界压力的作用,并产生相应的形变。
传感器芯片则用于将形变转化为电信号,而信号处理电路则负责对电信号进行放大、滤波等处理。
三、压力传感器的工作原理压力传感器的工作原理可以分为压阻式、电容式和电感式三种。
1. 压阻式压力传感器压阻式压力传感器利用压阻效应来测量压力。
它的核心部件是一个由压阻材料制成的弹性薄片,当受到外界压力作用时,薄片会发生形变,从而改变其电阻值。
传感器芯片通过测量电阻值的变化来间接测量压力的大小。
2. 电容式压力传感器电容式压力传感器利用电容的变化来测量压力。
它的核心部件是一个由两个金属电极和一个隔离层构成的电容器。
当受到外界压力作用时,隔离层会发生形变,从而改变电容器的电容值。
传感器芯片通过测量电容值的变化来间接测量压力的大小。
3. 电感式压力传感器电感式压力传感器利用电感的变化来测量压力。
它的核心部件是一个由线圈和铁芯构成的电感器。
当受到外界压力作用时,铁芯会发生形变,从而改变电感器的电感值。
传感器芯片通过测量电感值的变化来间接测量压力的大小。
四、压力传感器的应用压力传感器在工业、医疗、汽车等领域具有广泛的应用。
1. 工业领域在工业领域,压力传感器常被用于测量流体管道中的压力变化,以控制流量、监测设备状态等。
它还可以用于测量液体或气体的压力,以确保工业过程的安全性和稳定性。
压阻式压力传感器工作原理
压阻式压力传感器是一种常见的压力传感器,它可以将外界施
加在其上的压力转化为电信号输出,被广泛应用于工业自动化、汽
车电子、医疗器械等领域。
那么,压阻式压力传感器是如何工作的呢?接下来,我们将详细介绍其工作原理。
首先,压阻式压力传感器的核心部件是由敏感材料制成的压阻
薄膜。
当外界施加压力时,压阻薄膜会发生形变,从而改变其电阻值。
这种电阻值的变化与外界压力成正比,因此可以通过测量电阻
值的变化来间接测量外界压力的大小。
其次,压阻式压力传感器通常采用电桥电路来测量压阻薄膜的
电阻值变化。
电桥电路由四个电阻组成,当压阻薄膜的电阻值发生
变化时,会导致电桥电路中的电压变化。
通过测量这种电压变化,
就可以得到外界施加在压阻薄膜上的压力大小。
此外,为了提高测量精度,压阻式压力传感器通常还会配备温
度补偿电路。
由于压阻薄膜的电阻值受温度影响较大,为了消除温
度对测量结果的影响,温度补偿电路会实时监测传感器的工作温度,并根据温度变化来调整电路参数,以保证测量结果的准确性。
最后,压阻式压力传感器的输出信号通常为模拟信号,需要经过模数转换电路转换为数字信号,然后再通过数据处理单元进行处理,最终得到压力的数字化结果。
这样的数字化结果可以直接用于控制系统的反馈控制、数据采集和显示等应用。
总结一下,压阻式压力传感器的工作原理主要包括压阻薄膜的电阻值变化、电桥电路的测量、温度补偿和信号处理等环节。
通过这些环节的协同作用,压阻式压力传感器可以准确、稳定地将外界压力转化为电信号输出,为各种应用提供了可靠的压力测量手段。
压阻式压力传感器原理
压阻式压力传感器是一种常用的压力测量设备,主要基于材料的压阻效应工作原理。
它由一块特殊的薄膜材料制成,薄膜上有一个小细窗口,当外部施加压力时,压力作用在细窗口上,导致薄膜的形状发生微小变化。
薄膜上附着有细小的电阻器,当薄膜发生变形时,电阻器受到拉伸或压缩,其电阻值也相应发生变化。
薄膜上的电阻器构成了一个电阻网络,通过测量这个网络的电阻值变化,就可以间接测量出外部施加在薄膜上的压力。
具体来说,压阻式压力传感器通常采用桥式电路来测量压力对电阻值的影响。
传感器的电阻网络中有一个电桥,包括两个平衡电阻和两个压阻电阻(即变化的电阻)。
当压力传感器没有受到外部压力时,电桥处于平衡状态,输出电压为零。
当外部施加压力时,压阻电阻会发生变化,导致电桥不再平衡。
此时测量电路就会输出一个与压力大小成正比的电压信号。
通过测量输出电压值,就可以获得外部施加在压力传感器上的压力值。
压阻式压力传感器具有结构简单、制作成本低廉的优点,但同时也有一些局限性,例如灵敏度较低,易受到温度影响等。
为了提高其性能,常常需要对其进行温度和线性校准,以确保测量结果的准确性和稳定性。
压阻式压力传感器加工工艺流程
压阻式压力传感器是一种利用电阻值随着受力而发生变化的传感器。
下面是压阻式压力传感器的加工工艺流程的一般步骤:材料准备:
选择适用于制造压阻式压力传感器的材料,通常包括导电材料如硅或聚合物基底。
确保所选材料具有良好的弹性和耐腐蚀性。
基底制备:
切割、成型或加工基底材料,以形成传感器的主体结构。
这可能包括采用厚度均匀的薄片、膜片或其他形式。
导电层制备:
在基底表面或嵌入基底中添加导电层,通常使用导电材料如铜、银或聚合物导电体。
这一层将在受到压力时发生形变,导致电阻变化。
敏感区域设计:
确定传感器上的敏感区域,即在受力时会发生形变的区域。
通常,这是导电层覆盖的区域,形成电阻变化的关键部分。
连接线加工:
添加电极或导线以连接传感器的导电层。
这些连接线将允许电阻变化的信号传递到电子设备中进行测量和分析。
封装和保护:
对传感器进行封装,以保护其免受环境条件的影响,如湿度、腐蚀或物理损伤。
封装通常使用防水、防尘的材料。
校准和测试:
在生产之前,对传感器进行校准,确保其输出与受力的准确关系。
进行必要的功能测试,以验证传感器在各种条件下的性能。
成品检验:
进行整体的成品检验,确保每个传感器都符合规格要求。
测试样品,验证它们在实际使用中的性能。
包装和交付:
将传感器进行包装,以便在运输和存储期间保持其完整性。
将成品交付给客户或下游制造商。
这个流程是一般的压阻式压力传感器制造过程,实际的步骤可能会因制造商和应用而有所不同。
压阻式压力传感器简介压阻式压力传感器是一种常见的传感器,用于测量各种物体的压力。
它采用了压阻效应,当外界施加压力时,传感器的阻值会发生变化,通过测量阻值的变化可以得知压力的大小。
压阻式压力传感器具有灵敏度高、价格低廉等优点,广泛应用于工业控制、汽车电子、医疗设备等领域。
压阻效应压阻效应是指在材料受到外界压力作用下,其电阻发生变化的现象。
这种变化可以通过的压阻式压力传感器来测量和利用。
压阻效应主要有以下两种:1.金属应变效应:当金属受到压力时,其晶格结构会发生变形,导致电阻值的变化。
这种效应是因为金属的电阻率与其晶格结构有关。
2.电子隧穿效应:当两个材料之间存在微小的空隙时,当外界压力作用于这两个材料时,空隙的宽度会发生变化,从而改变了电子的隧穿概率。
这种效应主要用于微小压力的测量,如气体压力传感器。
结构和工作原理一般来说,压阻式压力传感器由以下几个主要部分组成:1.压敏元件:压敏元件是压力传感器的核心部分,其阻值受外界压力的影响而变化。
常见的压敏元件有薄膜电阻、应变片等。
2.扩散层:扩散层用于保护压敏元件免受外界的损害,并使压力能够均匀地传递到压敏元件上。
3.绝缘层:绝缘层用于隔离压敏元件与其他部分,防止电流泄漏和干扰。
4.连接线:连接线用于将压敏元件的阻值变化转化为电信号,并输出给外部设备进行处理。
压阻式压力传感器的工作原理如下:1.当外界施加压力时,压力会通过扩散层传递到压敏元件上。
2.压敏元件的阻值随着压力的变化而变化。
3.连接线将变化的阻值转化为相应的电信号,并输出给外部设备进行处理和显示。
应用领域压阻式压力传感器具有广泛的应用领域,以下是几个常见的应用领域:1.工业控制:压阻式压力传感器被广泛用于工业自动化控制中,用于监测和控制各种工艺参数。
2.汽车电子:压阻式压力传感器在汽车电子中起着重要作用,用于发动机控制、制动系统、气囊系统等。
3.医疗设备:压阻式压力传感器被应用于医疗设备中,用于监测患者的生命体征,如血压测量、呼吸监测等。
压阻式压力传感器原理及其应用压阻式压力传感器是一种常用的力与位移测量装置,利用材料的压阻效应来实现压力的测量。
它的原理是通过将存在压力的物体和传感器的敏感元件之间产生机械接触,使得敏感元件受压弯曲,从而改变其电阻值。
压阻式压力传感器的核心技术就是敏感元件的压阻材料。
压阻材料通常是导电材料,如硅、硅胶、塑胶等。
当材料受到外力压缩时,其电阻值会随之改变。
这是因为在压力作用下,材料内部电荷的分布发生变化,导致材料的电阻值发生变化。
通过测量电阻值的变化,就可以得知压力的大小。
1.精度高:利用材料的压阻效应来进行压力测量,具有较高的测量精度。
2.反应快:由于无需机械部件的运动,响应时间较短。
3.可靠性高:采用固态结构,不易受到外界振动、冲击的影响。
4.安装简单:可以直接安装在被测压力物体之上,使用方便。
1.工业自动化:用于监测液体和气体的压力,广泛应用于工业自动化系统中。
如压力控制、压力调节、管道检测等。
2.汽车工业:用于汽车制动液和胎压的监测。
通过测量汽车轮胎的压力,可以保证行驶安全。
3.医疗设备:用于测量血压、气体浓度等医疗参数,为医疗设备提供准确的数据支持。
4.污水处理:用于监测和控制污水处理系统中的压力和流量,保证系统的正常运行。
5.空调系统:用于监测空调系统中的制冷介质的压力,以调节和控制空调的制冷效果。
6.水压调节:用于监测水源、供水管道和管网的压力,以保证供水的稳定性。
总结来说,压阻式压力传感器利用材料的压阻效应实现压力测量,具有精度高、反应快、可靠性高和安装简单等特点,广泛应用于工业自动化、汽车工业、医疗设备、污水处理、空调系统和水压调节等领域。
压阻式压力传感器
利用单晶硅材料的压阻效应和集成电路技术制成的传感器。
单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。
压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制(见加速度计)。
压阻效应当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。
这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。
硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。
压阻式压力传感器的结构这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。
压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。
硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。
硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。
在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。
硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。
发展状况1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。
早期的硅压力传感器是半导体应变计式的。
后来在N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。
此芯片仍需粘贴在弹性元件上才能敏感压力的变化。
采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。
这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。
70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。
它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器(见单片微型计算机)。
这种新型传感器的优点是:①频率响应高(例如有的产品固有频率达1.5兆赫以上),适于动态测量;②体积小(例如有的产品外径可达0.25毫米),适于微型化;③精度高,可
达0.1~0.01%;④灵敏高,比金属应变计高出很多倍,有些应用场合可不加放大器;⑤无活动部件,可靠性高,能工作于振动、冲击、腐蚀、强干扰等恶劣环境。
其缺点是温度影响较大(有时需进行温度补偿)、工艺较复杂和造价高等。
应用:压阻式传感器广泛地应用于航天、航空、航海、石油化工、动力机械、生物医学工程、气象、地质、地震测量等各个领域。
在航天和航空工业中压力是一个关键参数,对静态和动态压力,局部压力和整个压力场的测量都要求很高的精度。
压阻式传感器是用于这方面的较理想的传感器。
例如,用于测量直升飞机机翼的气流压力分布,测试发动机进气口的动态畸变、叶栅的脉动压力和机翼的抖动等。
在飞机喷气发动机中心压力的测量中,使用专门设计的硅压力传感器,其工作温度达500℃以上。
在波音客机的大气数据测量系统中采用了精度高达0.05%的配套硅压力传感器。
在尺寸缩小的风洞模型试验中,压阻式传感器能密集安装在风洞进口处和发动机进气管道模型中。
单个传感器直径仅2.36毫米,固有频率高达300千赫,非线性和滞后均为全量程的±0.22%。
在生物医学方面,压阻式传感器也是理想的检测工具。
已制成扩散硅膜薄到10微米,外径仅0.5毫米的注射针型压阻式压力传感器和能测量心血管、颅内、尿道、子宫和眼球内压力的传感器。
图3是一种用于测量脑压的传感器的结构图。
压阻式传感器还有效地应用于爆炸压力和冲击波的测量、真空测量、监测和控制汽车发动机的性能以及诸如测量枪炮膛内压力、发射冲击波等兵器方面的测量。
此外,在油井压力测量、随钻测向和测位地下密封电缆故障点的检测以及流量和液位测量等方面都广泛应用压阻式传感器。
随着微电子技术和计算机的进一步发展,压阻式传感器的应用还将迅速发展。
压阻式压力传感器优点:
1. 频率响应高,f0可达1.5M;
2. 体积小、耗电少;
3. 灵敏度高、精度好,可测量到0.1%的精确度;
4. 无运动部件(敏感元件与转换元件一体)。
压阻式压力传感器缺点:
1. 温度特性差;
2. 工艺复杂。
一种压阻式压力传感器温度补偿设计
上传者:张殊凡浏览次数:856
摘要:介绍了一种温度补偿方法的基本原理,其解决了微型压阻式压力传感器温补问题;详细阐述了一种实用的整体补偿电路,并从理论上导出了分析计算公式,最后给出传感器整体的零位和灵敏度温度系数在补偿前后的对比情况。
关键词:压阻式传感器;温度测量;整体温度补偿
一、前言
随着集成电路和半导体技术的发展,出现了以半导体材料的压阻效应为原理制成的半导体力敏传感器,而其中的硅压阻式压力传感器因具有体积小、性能高、廉价等优点得到了广泛应用。
但利用扩散技术形成的电桥阻值易随温度改变,并且压阻元件的压阻系数具有较大的负温度系数,这些易引起电阻值与电阻温度系数的离散,导致压力传感器的热灵敏度漂移和零点漂移[1]。
为此,作者采用设计了一种适用于压阻式压力传感器的整体温度补偿电路,它具有补偿精度高、稳定性能好、调节方便等优点,可达到较为满意的应用结果。
二、误差来源
由于半导体材料对温度十分敏感,压阻式压力传感器的四个检测电阻多接为惠斯登电桥型,其有恒流和恒压两种工作方式。
假设半导体应变片电阻Rt的温度系数为α,灵敏度K的温度系数为β,加在传感器上的电压为Vin,则电阻值、灵敏度随温度改变的表达式分别为:
RT=R0(1+αT) (1);KT=K0(1+βT)
(2)
则传感器输出为[2]:Vout =(△R/R0)Vin = K0(1+βT)eVin (3)
式中,R0—基准温度时传感器的电阻值(初始值); △R—压力引起的电阻变化;
K0—基准温度时灵敏度; e—应变系数。
由此式知,压力随温度的改变量和β的随温度的变化相同,具有较大负温度系数,温度系数为-0.002/℃~ -0.003/℃。
图1给出了不同掺杂浓度下P型硅片的灵敏度系数随温度变化的曲线[3]。
图中,从a 到e 各条曲线对应的掺杂浓度递增。
由图可知,P型应变电阻, 无论是轻掺杂还是重掺杂,其灵敏度系数均随温度的提高而逐渐减小。
由于各应变片阻值不可能匹配,且应变片的电阻温度系数在0.3%/℃左右,会造成零点漂移电压。
三、温度补偿原理与电路设计
1、零位温漂补偿
压阻式压力传感器的四个检测电阻多接为惠斯登电桥形式,其原理如图2(a)所示。
由惠斯登电桥原理可知,零位输出电压为:
Vout=
(4)
则常温下应使R2R4-R1R3=0[3],得零位输出为0。
当外界温度为T时,电桥零位输出变为:
Vout´=
(5)
若R2TR4T-R1TR3T>0,则温漂为正;若R2TR4T-R1TR3T<0,则温漂为负。
故调节零位漂移的关键是改变R2TR4T或 R1TR3T的大小。
采用的方法是在R1上串联电阻Rm或者在R3上并联电阻Rn,分别如图2(b) 、2(c)所示,则调节Rm、Rn阻值大小,可达到调节零位输出的目的。
Rm和Rn的阻值可由下面的公式求得。
(1)求串联电阻Rm值
由电桥原理,则图2(b)中的输出电压为:Vout´=U
(6)
因R1´= R1+Rm并令Vout´=0,代入(1)式,计算可得:Rm=R4。
(2)求并联电阻Rn值理在图2(c)中,
Vout´= U
(7) 因R3´=
,且Vout´=0,根据(6)式可得:
Rn=。
2、灵敏度温度补偿
用整体电路温补的方法来对灵敏度温漂进行补偿,设计电路如图3所示。
图中,A1和A2构成差动放大器,将传感器的输出电信号转变为差动电压,然后由A4作为差动输入单端输出放大器,将电压差信号变为对地输出的电信号。
因传感器的输出电压灵敏度漂移具有负温度系数,则用晶体管基极-发射极间电压Vbe的负温度特性来抵消它。
同时,在A4上的负反馈电阻上并联正温度系数的热敏电阻RT,以达到用增益的正温度特性更好的弥补电桥部分灵敏度负温度特性的目的。
3、整体性能设计
由于在零位补偿中,实际传感器的零位输出Vout一般不为0V,不符合R2R4=R1R3的假
设,故需在图3的处理电路的A4正相输入端接入一个补零位电阻,才可以将零位和温漂一起补回来。
调节VP3改变其阻值大小,使输出电压值经跟随器A4输入到A5的反向端,可以消除零点漂移的影响。
因流经VP3的电流不恒定,所以转换的电压也很多情况下不恒定,因此必须接入集成运放器A3,以增强传感器性能的稳定性。