3.2.2《基本初等函数的导数公式》(第1课时)
- 格式:ppt
- 大小:728.00 KB
- 文档页数:13
托克旗高级中学高二年级数学科导学案 文科选修1-1 第三章导数及其应用§3.2.2基本初等函数的导数公式及导数的运算法则 苏海霞 编写 第20周 第 1页(共 2 页) 第 2页(共 2 页)主动 自信 合作 探究 发展自己 成就未来 安全是幸福家庭的保证,事故是人生悲剧的祸根姓名: 班级: 小组: 小组评价: 教师评价:§3.2.2基本初等函数的导数公式及导数的运算法则第1 课时 上课时间:【教学目标】1. 熟练的记忆导数的计算公式;学会用导数的计算公式计算的函数的导数.2.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 3理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 【重点难点】1.导数的计算公式,导数的计算公式的应用2.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;3.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 一、知识链接1.函数()y f x c ==的导数2.函数()y f x x ==的导数;3.函数1()y f x x==的导数; 4.函数2()y f x x ==的导数二、独立预习1.基本初等函数的导数公式:①='C ②=)'(nx ③=)'(sin x ④=)'(cos x⑤=')(x a ⑥=')(x e ⑦='][log x a ⑧=')(ln x2.导数的运算法则:①()()[]=±'x g x f ②()()[]='x g x f③()()=⎥⎦⎤⎢⎣⎡'x g x f ④ ()[]='x cf 三、合作交流探究任务一、基本初等函数的导数公式: 根据常见函数的导数公式计算下列导数(1)6y x = (2)y =(3)21y x =(4)y =四、探究展示探究任务:两个函数的和(或差)积商的导数新知:[()()]()()f x g x f x g x '''±=±; [()()]()()()()f x g x f x g x f x g x '''=+2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'=; 例1.根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数.变式:(1)522354y x x x =-+-; (2)3cos 4sin y x x =-.五、反馈总结1、 求下列函数的导数:(1)2log y x =; (2)2xy e =; (3)32log y x x =+; (4)n xy x e =; (5)31sin x y x-=2、(1)323y x x =-+ (2)sin y x x =⋅; (3)2(251)x y x x e =-+⋅; (4)4xx y =;3. 函数1y x x =+的导数是( ) A .211x - B .11x - C .211x + D .11x+4. 函数sin (cos 1)y x x =+的导数是( ) A .cos 2cos x x - B .cos 2sin x x + C .cos 2cos x x + D .2cos cos x x +5. cos xy x =的导数是( )A .2sin x x-B .sin x -C .2sin cos x x x x +- D .2cos cos x x x x +- 6. 函数2()138f x x =-,且0()4f x '=,则0x =7. 已知2()f x x =,则(3)f '=( )A .0B .2xC .6D .9[小结] 六、课后反思。
人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思一、教学目标通过本节课的学习,让学生: 1. 熟练掌握基本初等函数的导数公式; 2. 掌握导数的常数因子、和差、积、商的运算法则; 3. 能够应用所学知识求出初等函数的导数; 4. 培养学生的逻辑思维能力和应用能力。
二、教学内容2.1 基本初等函数的导数公式(1)常数函数的导数公式:[C]′=0(2)幂函数的导数公式:[x n]′=nx n−1(3)指数函数的导数公式:[e x]′=e x(4)对数函数的导数公式:$[\\ln{x}]'=\\dfrac{1}{x}(x>0)$ (5)三角函数的导数公式:$$\\begin{aligned} [\\sin{x}]'&=\\cos{x}\\\\[\\cos{x}]'&=-\\sin{x}\\\\ [\\tan{x}]'&=\\sec^2{x} (x\ eq n\\pi+\\frac{\\pi}{2})\\\\ [\\cot{x}]'&=-\\csc^2{x} (x\ eq n\\pi) \\end{aligned}$$2.2 导数的运算法则(1)常数因子法则:设C为常数,则[Cf(x)]′=Cf′(x)(2)和差法则:$[f(x)\\pm g(x)]'=f'(x)\\pm g'(x)$ (3)积法则:[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)(4)商法则:$[\\dfrac{f(x)}{g(x)}]'=\\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} (g(x)\ eq0)$三、教学过程3.1 导入教师通过数字游戏,引导学生探讨“导数”的概念,并由此引出本节课的教学内容。
3.2 讲授教师对基本初等函数的导数公式以及导数的运算法则进行一一讲解,强调注意事项和易错点。
高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1的全部内容。
几个常用函数的导数与基本初等函数的导数公式(25分钟60分)一、选择题(每小题5分,共25分)1.下列各式中正确的是( )A。
(lnx)′=x B。
(cosx)′=sinxC。
(sinx)′=cosx D.(x-8)′=-x—9【解析】选C。
因为(lnx)′=,(cosx)′=—sinx,(x-8)′=-8x-9=—,所以A,B,D均不正确,C正确。
2.若y=lnx,则其图象在x=2处的切线斜率是()A.1 B。
0 C。
2 D.【解析】选D。
因为y′=,所以当x=2时,y′=,故图象在x=2处的切线斜率为.3.(2015·西安高二检测)运动物体的位移s=3t2—2t+1,则此物体在t=10时的瞬时速度为( )A.281B.58 C。
85 D.10【解析】选B。
因为s=3t2-2t+1,所以s′=6t-2.当t=10时,s′=6×10—2=58.即此物体在t=10时的瞬时速度为58。
4。
正弦曲线y=sinx上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是()A.∪B。
1.2.2 基本初等函数的导数公式及运算法则1.函数y =cos x 1-x 的导数是 ( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ).A.193B.103C.133D.1633.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x,则f ′(x )等于 ( ). A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )2 4.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为_______5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y =(x -a )(x -b )在x =a 处的导数为 ( ).A .abB .-a (a -b )C .0D .a -b8.当函数y =x 2+a 2x (a >0)在x =x 0处的导数为0时,那么x 0=( ).A .aB .±aC .-aD .a 29.若f (x )=(2x +a )2,且f ′(2)=20,则a =________.10.函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为________.11.曲线y =e 2x ·cos 3x 在(0,1)处的切线与直线L 的距离为5,求直线L 的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.1解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2 =cos x -sin x +x sin x (1-x )2. 答案 C2解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103.答案 B3解析 令1x =t ,则f (t )=1t1+1t =11+t ,∴f (x )=11+x ,f ′(x )=⎝ ⎛⎭⎪⎫11+x ′=-1(1+x )2. 答案 D4解析 s ′=(t sin t )′=sin t +t cos t ,∴s ′(2)=sin 2+2cos 2.答案 sin 2+2cos 25解析 f ′(x )=[log 3(x -1)]′=1(x -1)ln 3,∴f ′(2)=1ln 3.答案 1ln 36解 ∵(e x )′=e x ,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,∴所求切线方程为y -e x 0=e x 0(x -x 0).∵切线过原点,∴-e x 0=-x 0·e x 0,x 0=1.∴切点为(1,e),斜率为e.7解析 ∵y =x 2-(a +b )x +ab ,∴y ′=2x -(a +b ),∴y ′|x =a =2a -(a +b )=a -b .答案 D8解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .答案 B9解析 f ′(x )=2(2x +a )·2=4(2x +a ),f ′(2)=16+4a =20,∴a =1. 答案 110解析 f ′(x )=3x 2+4,f ′(1)=7,f (1)=10,∴y -10=7(x -1),当y =0时,x =-37.答案 -3711解 y ′=(e 2x )′·cos 3x +e 2x ·(cos 3x )′=2e 2x ·cos 3x -3e 2x ·sin 3x,∴y ′|x =0=2.∴经过点(0,1)的切线方程为y -1=2(x -0),即y =2x +1.设适合题意的直线方程为y =2x +b , 根据题意,得5=|b -1|5,∴b=6或-4.∴适合题意的直线方程为y=2x+6或y=2x-4.12证明设f(x)是奇函数,则f(-x)=-f(x),两边对等求导,得f′(-x)·(-x)′=-f′(x),即-f′(-x)=-f′(x),∴f′(-x)=f′(x).故命题成立.。
§3.2导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一)课时目标1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.1.函数y=f(x)=c的导数为____________,它表示函数y=c图象上每一点处,切线的斜率为0.若y=c表示路程关于时间的函数,则y′=0可以解释为某物体的____________始终为0,即一直处于________状态.函数y=f(x)=x的导数为__________,它表示函数y =x图象上每一点处切线的斜率为1.若y=x表示路程关于时间的函数,则y′=1可以解释为某物体做____________为1的______________运动.2.常见基本初等函数的导数公式:(1)若f(x)=c(c为常数),则f′(x)=______;(2)若f(x)=xα (α∈Q*),则f′(x)=________;(3)若f(x)=sin x,则f′(x)=________;(4)若f(x)=cos x,则f′(x)=________;(5)若f(x)=a x,则f′(x)=________ (a>0);(6)若f(x)=e x,则f′(x)=________;(7)若f(x)=log a x,则f′(x)=________ (a>0,且a≠1);(8)若f(x)=ln x,则f′(x)=________.一、选择题1.下列结论不正确的是()A.若y=3,则y′=0B.若y=1x,则y′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′=32.下列结论:①(cos x )′=sin x ;②⎝⎛⎭⎫sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( )A .0个B .1个C .2个D .3个3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1eC .-eD .e 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A .⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C .⎣⎡⎦⎤π4,3π4 D .⎣⎡⎦⎤0,π4∪⎣⎡⎦⎤π2,3π4 5.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1)C .(2,8)D .⎝⎛⎭⎫-12,-18 6.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( )A .12523B .110523C .25523D .110523题 号 1 2 3 4 5 6 答 案 二、填空题7.曲线y =cos x 在点A ⎝⎛⎭⎫π6,32处的切线方程为__________________________.8.已知f (x )=x a ,a ∈Q ,若f ′(-1)=-4,则a =________________________________________________________________________. 9.若函数y =f (x )满足f (x -1)=1-2x +x 2,则y ′=f ′(x )=________. 三、解答题10.求下列函数的导数: (1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =10x .11.求过点(2,0)且与曲线y =x 3相切的直线方程.能力提升12.设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lg x n,则a1+a2+…+a99的值为________.13.求过曲线y=e x上点P(1,e)且与曲线在该点处的切线垂直的直线方程.1.准确记忆八个公式是求函数导数的前提.2.求函数的导数,要恰当选择公式,保证求导过程中变形的等价性.3.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计算.§3.2 导数的计算3.2.1 几个常用函数的导数 3.2.2 基本初等函数的导数公式及导数的运算法则(一)知识梳理1.y ′=0 瞬时速度 静止 y ′=1 瞬时速度 匀速直线2.(1)0 (2)αx α-1 (3)cos x (4)-sin x(5)a x ln a (6)e x (7)1x ln a (8)1x作业设计1.B [y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32=-12x x .]2.B [直接利用导数公式.因为(cos x )′=-sin x ,所以①错误; sin π3=32,而⎝⎛⎭⎫32′=0,所以②错误;⎝⎛⎭⎫1x 2′=(x -2)′=-2x -3,则y ′|x =3=-227, 所以③正确.]3.D [设切点为(x 0,y 0).由y ′=e x , 得y ′|x =x 0=e x 0,∴过切点的切线为y -e x 0=e x 0(x -x 0), 即y =e x 0x +(1-x 0)e x 0,又y =kx 是切线,∴⎩⎪⎨⎪⎧ k =e x 0,(1-x 0)e x 0=0, ∴⎩⎪⎨⎪⎧x 0=1,k =e.] 4.A [∵y ′=cos x ,而cos x ∈[-1,1]. ∴直线l 的斜率的范围是[-1,1],∴直线l 倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π.] 5.B [y ′=3x 2,∵k =3, ∴3x 2=3,∴x =±1,则P 点坐标为(-1,-1)或(1,1).]6.B [s ′=15t -45.当t =4时,s ′=15·1544=110523.]7.x +2y -3-π6=0解析 ∵y ′=(cos x )′=-sin x ,∴y ′|x =π6=-sin π6=-12,∴在点A 处的切线方程为y -32=-12⎝⎛⎭⎫x -π6, 即x +2y -3-π6=0.8.4解析 ∵f ′(x )=ax a -1,∴f ′(-1)=a (-1)a -1=-4,∴a =4. 9.2x解析 ∵f (x -1)=1-2x +x 2=(x -1)2, ∴f (x )=x 2,f ′(x )=2x .10.解 (1)y ′=(x 12)′=12x 11.(2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -5=-4x 5. (3)y ′=(5x 3)′=(x 35)′=35x -25=355x 2.(4)y ′=(10x )′=10x ln 10.11.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3.当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0;当x 0=3时,得切点坐标是(3,27),斜率k =27,则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0. 12.-2解析 y ′=(n +1)x n ,曲线在点(1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x=nn+1.a n=lg x n=lg nn+1=lg n-lg(n+1),则a1+a2+…+a99=lg 1-lg 2+lg 2-lg 3+…+lg 99-lg 100=-lg 100=-2. 13.解∵y′=e x,∴曲线在点P(1,e)处的切线斜率是y′|x=1=e,∴过点P且与切线垂直的直线的斜率k=-1e,∴所求直线方程为y-e=-1e(x-1),即x+e y-e2-1=0.。