电磁场与电磁波_ 静态电磁场_
- 格式:pdf
- 大小:2.53 MB
- 文档页数:29
第3章 静态电磁场及其边值问题的解(一)思考题3.1 电位是如何定义的?中的负号的意义是什么?答:由静电场基本方程▽×E=0和矢量恒等式可知,电场强度E 可表示为标量函数φ的梯度,即式中的标量函数φ称为静电场的电位函数,简称电位;式中负号表示场强方向与该点电位梯度的方向相反。
3.2“如果空间某一点的电位为零,则该点的电场强度也为零”,这种说法正确吗?为什么?答:不正确。
因为电场强度大小是该点电位的变化率。
3.3“如果空间某一点的电场强度为零,则该点的电位为零”,这种说法正确吗?为什么?答:不正确。
此时该点电位可能是任一个不为零的常数。
3.4 求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?答:边界条件起到给方程定解的作用。
3.5 电容是如何定义的?写出计算电容的基本步骤。
答:两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即其基本计算步骤:①根据导体的几何形状,选取合适坐标系;②假定两导体上分别带电荷+q和-q;③根据假定电荷求出E;④由求得电位差;⑤求出比值3.6 多导体系统的部分电容是如何定义的?试以考虑地面影响时的平行双导线为例,说明部分电容与等效电容的含义。
答:多导体系统的部分电容是指多导体系统中一个导体在其余导体的影响下,与另一个导体构成的电容。
计及大地影响的平行双线传输线,如图3-1-1所示,它有三个部分电容C11、C12和C22,导线1、2间的等效电容为;导线1和大地间的等效电容为;导线2和大地间的等效电容为图3-1-13.7 计算静电场能量的公式和之间有何联系?在什么条件下二者是一致的?答:表示连续分布电荷系统的静电能量计算公式,虽然只有ρ≠0的区域才对积分有贡献,但不能认为静电场能量只存在于有电荷区域,它只适用静电场。
表示静电场能量存在于整个电场区域,所有E≠0区域对积分都有贡献,既适用于静电场,也用于时变电磁场,当电荷分布在有限区域内,闭合面S无限扩大时,有限区内的电荷可近似为点电荷时,二者是一致的。
《电磁场与电磁波》名词解释不完全归纳(By Hypo )第一章 矢量分析1.场:场是遍及一个被界定的或无限扩展的空间内的,能够产生某种物理效应的特殊的物质,场是具有能量的。
2.标量:一个仅用大小就能够完整描述的物理量。
标量场:标量函数所定出的场就称为标量场。
(描述场的物理量是标量)3.矢量:不仅有大小,而且有方向的物理量。
矢量场:矢量场是由一个向量对应另一个向量的函数。
(描述场的物理量是矢量)4.矢线(场线):在矢量场中,若一条曲线上每一点的切线方向与场矢量在该点的方向重合,则该曲线称为矢线。
5.通量:如果在该矢量场中取一曲面S ,通过该曲面的矢线量称为通量。
6.拉梅系数:在正交曲线坐标系中,其坐标变量(u1 ,u2,u3)不一定都是长度, 可能是角度量,其矢量微分元,必然有一个修正系数,称为拉梅系数。
7.方向导数:函数在其特定方向上的变化率。
8.梯度:一个大小为标量场函数在某一点的方向导数的最大值,其方向为取得最大值方向导数的方向的矢量,称为场函数在该点的梯度,记作 9.散度:矢量场沿矢线方向上的导数(该点的通量密度称为该点的散度)10.高斯散度定理:某一矢量散度的体积分等于该矢量穿过该体积的封闭表面的总通量。
11.环量:在矢量场中,任意取一闭合曲线 ,将矢量沿该曲线积分称之为环量。
12.旋度: 一矢量其大小等于某点最大环量密度,方向为该环的一个法线方向,那么该矢量称为该点矢量场的旋度。
13.斯托克斯定理:一个矢量场的旋度在一开放曲面上的曲面积分等于该矢量沿此曲面边界的曲线积分。
14.拉普拉斯算子:在场论研究中,定义一个标量函数梯度的散度的二阶微分算子,称为拉普拉斯算子。
第二章 电磁学基本理论1.电场:存在于电荷周围,能对其他电荷产生作用力的特殊的物质称为电场。
2.电场强度:单位正试验电荷在电场中某点受到的作用力(电场力),称为该点的电场d grad d n a nφφ=强度。
3.电位差:单位正电荷由P 点移动到A 点,外力所做的功称为A 点和P 点之间的电位差。
电磁场与电磁波摘要:电磁场与电磁波课程与电气专业息息相关,是我们电气专业学生必须学习的,这学期我们进行了电磁场与电磁波的学习。
主要讲解了矢量分析,电磁场的基本定律,时变电磁场,简述了静态电磁场极其边值问题的解。
第一章:矢量分析是研究电磁场在空间分布和变化规律的基本数学工具之一。
第二章以大学物理(电磁学)为基础,介绍电磁场的基本物理量和基本规律,第三章分别介绍了静电场、恒定电场和恒定磁场的分析方法。
第四章主要讨论时变电磁场的普遍规律。
一、矢量分析电磁场是是分布在三维空间的矢量场,矢量分析是研究电磁场在空间的分布和变化规律的基本教学工具之一。
1:标量和矢量(1) 标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
矢量一旦被赋予“物理单位”,则成为一个具有物理意义的矢量,如:电场强度矢量E 、磁场强度矢量H 、作用力矢量F 、速度矢量v 等。
(2) 两个矢量A 与B 相加,其和是另一个矢量D 。
矢量D=A+B 可按平行四边形法则得到:从同一点画出矢量A 与B ,构成一个平行四边形,其对角线矢量即为矢量D 。
两个矢量A 与B 的点积是一个标量,定义为矢量A 与B 的与它们之间较小的夹角的余弦之积。
(3) 两个矢量A 与B 的叉积是一个矢量,它垂直于包含矢量A 和B 的平面,大小定义为矢量A 与B 的与它们之间较小的夹角的正弦之积,方向为当右手四个手指从矢量A 到B 旋转时大拇指的方向。
2:标量场的梯度(1)等值面: 标量场取得同一数值的点在空间形成的曲面,形象直观地描述了物理量在空间的分布状态。
对任意给定的常数C ,方程C z y x u ),,(就是等值方程。
(2)梯度的概念:标量场u 在点M 处的梯度是一个矢量,它的方向沿场量u 变化率最大的方向,大小等于其最大变化率,并记作grad u,即 grad u= e l |max直角坐标系中梯度的表达式为grad u=,标量场u 的梯度可用哈密顿算符表示为grad u=().u =(3)标量场的梯度具有以下特性:①标量场u 的梯度是一个矢量场,通常称▽u为标量场u 所产生的梯度场;②标量场u (M )中,再给定点沿任意方向l 的方向导数等于梯度在该方向上的投影;③标量场u (M )中每一点M 处的梯度,垂直于过该点的等值面,且指向u (M )增加的方向。
特性:1)电场和磁场互为对方的涡旋(旋度)源。
在空E和§6-3 坡印廷定理及坡印廷矢量1、坡印廷定理能量的流动是时变场中出现的一个重要现象 流动的能量同空间媒质所消耗的能量以及电磁储能之间应满足能量守 恒定律,即Poynting定理,也称能流定理v v v ⎛ ∂ B ⎞ v ⎛ v ∂D ⎞ v v v v v v Q ∇ ⋅ (E × H ) = H ⋅ (∇ × E ) − E ⋅ (∇ × H ) = H ⋅ ⎜ − ⎜ ⎟ ⎜ ∂t ⎟ − E ⋅ ⎜ J + ∂t ⎟ ⎟ ⎝ ⎠ ⎝ ⎠ v v v ∂H v v v ∂E = − μH ⋅ − E ⋅ σ E − εE ⋅ ∂t ∂t 1 ω m = μH 2 ∂ ⎛1 ∂ ⎛1 ⎞ ⎞ 2 = − ⎜ μH 2 ⎟ − σE 2 − ⎜ εE 2 ⎟ ∂t ⎝ 2 ∂t ⎝ 2 1 ⎠ ⎠ ω e = εE 2 ∂ 2 v v = − (ω m + ω e ) − p p = E ⋅ J = σE 2 ∂t假定:媒质是线性、各向同性的,且不随时间变化;无外加源Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量v v ∂ ∇ ⋅ (E × H ) = − (ωm + ωe ) − p ∂t v v v v ∂ 令 S = E × H,得 − ∇ ⋅ S = (ω m + ω e ) + p ∂t单位时间内流入单 位体积中的能量坡印廷定理微分形式 单位体积内焦耳热损耗单位体积内电场能量和磁场能量的增加率 坡印廷定理积分形式取体积分,应用高斯定律得:v v d − ∫ S ⋅ ds = s dt∫ (ωVm+ ω e )dv + ∫ pdvV体积V内变为焦耳 热损耗的功率体积V内电场能量和磁场能量每秒的增加量 由于假设体积V内无外加源,根据能量守恒定律,等式左 端即为单位时间内穿过闭合面S进入体积V中的能量Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量坡印廷定理物理意义: v ∂ 微分形式: − ∇ ⋅ S = ∂t (ω m + ω e ) + p外界向电磁场某点提供的电磁功率密度,等于该点电磁场能量密 度的时间增加率,与对这点自由电荷提供的功率密度之和v v d 积分形式: − ∫s S ⋅ ds = dt ∫V (ω m + ω e )dv + ∫V pdv 某时刻外界通过闭合面进入其所包围体积V中的电磁功率,等于V 内电磁场能量的时间增加率与体积内焦耳热损耗的瞬时功率之和Poynting定理是电磁场中的能量守恒与转换定律 它清楚地表明电磁场是能量的携带者与传播者Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量2、坡印廷矢量v v v v v 由坡印廷定理可知, S ⋅ ds = ∫ (E × H )⋅ ds表示通过闭合面S的总瞬时功率 ∫s s定义:v v v S = E×H为坡印廷矢量,也称能流密度矢量。
安培环路定律1)真空中的安培环路定綁在真空的磁场中,沿任总回路取乃的线积分.其值等于真空的磁导率乘以穿过该回路所限定面枳上的电流的代数和。
即in di=^i kk=l2)•般形式的安培环路定律在任总磁场中•磁场强度〃沿任一闭合路径的线积分等于穿过该回路所包鬧而积的自由电流(不包括醱化电流)的代数和。
即B (返回顶端)边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类边界条件下,求电位函数®的泊松方程(沪卩=一%)或拉普拉斯方程(gp=O)定解的问題。
2)恒定电场的边值问题在恒定电场中,电位函数也满足拉普拉斯方程。
很多恒定电场的问題,都可归结为在一定条件下求竝普拉斯方程(▽?信=° )的解答,称之为恒定电场的边值问题o3)恒定磁场的边值问题(1)磁矢位的边值问题磁矢位在媒质分界面上满足的衔接条件和它所满足的微分方程以及场域上给定的边界条件一起构成了描述恒定磁场的边值问题°对于平行平而磁场,分界而上的衔接条件是* 1 3A 1 dAn磁矢位*所满足的微分方程V2A = -pJ(2)磁位的边值问题在均匀媒质中.磁位也满足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上满足的衔接条件以及场域上边界条件一起构成了用磁位描述恒定磁场的边值问題。
磁位满足的拉普拉斯方程= °两种不同媒质分界浙上的衔接条件边界条件1.静电场边界条件在场域的边界面s上给定边界条件的方式有:第•类边界条件(狄里赫利条件,Dirichlet)已知边界上导体的电位第二类边界条件(聂以曼条件Neumann)已知边界上电位的法向导数(即电荷而密度或电力线)第三类边界条件已知边界上电位及电位法向导数的线性组合5静电场分界而上的衔接条件% "和场*二丘"称为静迫场中分界面上的衔接条件。
前者表明.分界而两侧的电通壮密度的法线分址不连续,其不连续虽就等于分界面上的自由电荷血•密度:后者表明分界而两侧电场强度的切线分址连续。
电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。