电磁场与电磁波
- 格式:docx
- 大小:203.69 KB
- 文档页数:5
电磁场与电磁波教案第一章:电磁场的基本概念1.1 电荷与电场介绍电荷的性质和分类解释电场的概念和电场线电场的叠加原理1.2 磁场与磁力介绍磁铁和磁性的概念解释磁场的概念和磁场线磁场的叠加原理和磁力计算1.3 电磁感应介绍法拉第电磁感应定律解释电磁感应现象的应用第二章:电磁波的基本性质2.1 电磁波的产生与传播介绍麦克斯韦方程组解释电磁波的产生和传播过程电磁波的波动方程和相位2.2 电磁波的波动性质介绍电磁波的波长、频率和波速波动方程的解和电磁波的波动性质2.3 电磁波的能量与辐射解释电磁波的能量和辐射机制介绍电磁波的辐射压和光电效应第三章:电磁波的传播与应用3.1 电磁波在自由空间的传播自由空间中电磁波的传播方程电磁波的传播速度和天线原理3.2 电磁波在介质中的传播介绍电磁波在介质中的传播方程介质的折射率和反射、透射现象3.3 电磁波的应用介绍电磁波在通信、雷达和医学等领域的应用第四章:电磁波的辐射与接收4.1 电磁波的辐射介绍电磁波的辐射机制和天线理论电磁波的辐射强度和辐射功率4.2 电磁波的接收介绍电磁波接收原理和接收器设计调制和解调技术在电磁波接收中的应用4.3 电磁波的辐射与接收实验设计实验来观察和测量电磁波的辐射和接收现象第五章:电磁波的传播特性与调控5.1 电磁波的传播特性介绍电磁波的传播损耗和传播距离电磁波的多径传播和散射现象5.2 电磁波的调控技术介绍电磁波的调制技术和幅度、频率和相位的调控方法5.3 电磁波的传播调控应用介绍电磁波在无线通信和雷达系统中的应用和调控技术第六章:电磁波的波动方程与电磁波谱6.1 电磁波的波动方程推导电磁波在均匀介质中的波动方程讨论电磁波的横向和纵向波动特性6.2 电磁波谱介绍电磁波谱的分类和各频段的特征讨论电磁波谱中常见的波段,如射频、微波、红外、可见光、紫外、X射线和γ射线等6.3 电磁波谱的应用分析电磁波谱在不同领域的应用,如通信、医学、材料科学等第七章:电磁波的传播环境与传播效应7.1 电磁波的传播环境分析不同传播环境对电磁波传播的影响,如自由空间、大气层、陆地、海洋等讨论传播环境中的衰减、延迟和散射等效应7.2 电磁波的传播效应介绍电磁波的折射、反射、透射、绕射和干涉等传播效应分析这些效应在实际应用中的影响和应对措施7.3 电磁波的传播环境与效应应用探讨电磁波传播环境与效应在通信、雷达、遥感等领域的应用和解决方案第八章:电磁波的辐射与天线技术8.1 电磁波的辐射原理分析电磁波辐射的物理机制,如开放电极、偶极子、天线阵列等讨论电磁波辐射的方向性和极化特性8.2 天线的基本理论介绍天线的基本参数,如阻抗、辐射效率、增益等分析天线的设计方法和性能优化策略8.3 电磁波的辐射与天线技术应用探讨天线技术在无线通信、广播、雷达等领域的应用和实例第九章:电磁波的接收与信号处理9.1 电磁波的接收原理介绍电磁波接收的基本过程,如放大、滤波、解调等分析接收机的性能指标,如灵敏度、选择性、稳定性等9.2 信号处理技术介绍信号处理的基本方法,如采样、量化、编码、调制等讨论数字信号处理技术在电磁波接收中的应用9.3 电磁波的接收与信号处理应用探讨电磁波接收与信号处理技术在通信、雷达、遥感等领域的应用和实例第十章:电磁波的测量与实验技术10.1 电磁波的测量原理分析电磁波测量的基本方法,如直接测量、间接测量、网络分析等讨论测量仪器和设备的选择与使用10.2 实验技术介绍电磁波实验的基本步骤和方法,如实验设计、数据采集、结果分析等分析实验中可能遇到的问题和解决策略10.3 电磁波的测量与实验技术应用探讨电磁波测量与实验技术在科研、工程、教学等领域的应用和实例重点解析第一章:电磁场的基本概念重点:电荷与电场的性质,电场的概念和电场线,电场的叠加原理。
电磁场和电磁波是物理学中的两个基本概念。
电磁波和电磁场有什么区别?
电磁场
一般来说,电磁场是指相互联系的交变电场和磁场。
电磁场是带电粒子运动产生的物理场。
在电磁场中,磁场的任何变化都会产生电场,电场的任何变化也会产生磁场。
这种交变电磁场不仅可以存在于电荷、电流或导体周围,而且可以在空间中传播。
电磁场可以看作是电场和磁场之间的联系。
电场由电荷产生,运动电荷产生磁场。
什么是电磁波
电磁场的传播构成电磁波。
又称电磁辐射,例如,我们常见的电磁波有无线电波、微波、红外线、可见光、紫外线、X射线和r射线。
这些是电磁波,但是这些电磁波有不同的波长。
其中,无线电波的波长最长,R射线的波长最短。
另外,人眼能接收到的电磁波的波长通常在380到780纳米之间,这就是我们通常所说的可见光。
一般来说,只要物体本身的温度大于绝对零度(即零下273.15摄氏度),除了暗
物质外,还会发射电磁波。
然而,没有一个物体的温度低于-273.15℃,所以可以说我们周围的物体会发射电磁波。
电磁波以光速传播。
谁最先发现电磁波的?历史上,电磁波首先由詹姆斯·麦克斯韦在1865年预言,然后在1887年至1888年由德国物理学家海因里希·赫兹证实。
展开:
《电磁场与电磁波第四版》是高等教育出版社于2006年1月出版的一本书。
作者是谢丽和饶克金。
本书可作为普通高校电子信息、通信工程、信息工程等专业电磁场和电磁波课程的教材,也可供工程技术人员参考。
RR E r B d )(=(James Clerk Maxwell 1831-1879)在自由空间ρ = 0, J c = 0∇⋅ D = 0∂B ∇× E = − ∂t∇⋅B = 0 ∂D ∇× H = ∂t微分形式∇⋅ D = ρ∂B ∇× E = − ∂t∇⋅B = 0∂ ∂ ∂ ˆ ˆ ˆ ∇=i + j +k ∂x ∂y ∂z 22∂D ∇× H = Jc + ∂t在自由空间结合ρ = 0, J c = 0∇⋅ D = 0∂B ∇× E = − ∂t∇⋅B = 0 ∂D ∇× H = ∂t和D=εE B= μH∂ E ∇ E = με 2 ∂t2 2可以得到:∂ H ∇ H = με 2 ∂t2 2 2 2 2 2∂ ∂ ∂ 其中 ∇ = 2 + 2 + 2 ∂x ∂y ∂z23电、磁分量都具有波 动特征——电磁波! 当电磁波沿x方向传播时结合D=εE B= μH∂ E ∇ E = με 2 ∂t2 2可以得到:∂ Ey ∂ Ey 2 = με 2 ∂t ∂x2 2∂ Hz ∂ Hz 2 = με 2 ∂x ∂t2 2和∂ H ∇ H = με 2 ∂t2 2其中∂ ∂ ∂ ∇ = 2+ 2+ 2 ∂x ∂y ∂z2 2 2 224电、磁分量都具有波 动特征——电磁波! 当电磁波沿x方向传播时即:若设电场方向沿y方向, 磁场必为z方向!yE yHzux∂ Ey ∂ Ey 2 = με 2 ∂t ∂x2 2z2∂ Hz ∂ Hz 2 = με 2 ∂x ∂t2 2比较波动方程电磁波 u = 波速为1∂ ξ 1 ∂ ξ 2 = 2 2 u ∂t ∂x225με*电磁波波速与光矢量* 真空中u=1μ0ε 01= 3 × 108 mcs——光速 c推测:光也是电磁波! 在介质中 u =με=n= εr c = μ rε r n n = μ rε r — 折射率在光波段μr=1 ,与物质作用的主要是 E矢量E ——通常被称为光矢量!注意:在BEC(Bose-Einstein Condensation)介质中,光的传 播速度可以慢到大约为17m/s。
电磁场和电磁波是物理学中的两个基本概念。
电磁场和电磁波有什么区别?
电磁场
一般来说,电磁场是指彼此相关的交变电场和磁场。
电磁场是由带电粒子运动产生的一种物理场。
在电磁场中,磁场的任何变化都会产生电场,而电场的任何变化都会产生磁场。
这种交变电磁场不仅可以存在于电荷,电流或导体周围,还可以在空间中传播。
电磁场可以看作是电场与磁场之间的联系。
电场是由电荷产生的,磁场是由移动电荷产生的。
什么是电磁波
电磁场的传播构成电磁波。
也称为电磁辐射,例如,我们常见的电磁波是无线电波,微波,红外线,可见光,紫外线,X射线,r射线。
这些是电磁波,但是它们具有不同的波长。
其中,无线电波的波长最长,而R射线的波长最短。
另外,人眼可以接收到的电磁波长度通常在380至780 nm之间,这就是我们通常所说的可见光。
一般来说,只要物体本身的温度大于绝对零(即负273.15℃),除暗物质外,它
还会发出电磁波。
但是,没有物体的温度低于-273.15℃,因此可以说我们周围的物体发出电磁波。
电磁波以光速传播。
谁首先发现电磁波?从历史上看,电磁波最初是由詹姆斯·麦克斯韦(James Maxwell)在1865年预测的,然后在1887年至1888年被德国物理学家海因里希·赫兹(Heinrich Hertz)确认。
扩大:
第四版《电磁场和电磁波》是谢福芳,饶克金等人于2006年1月由高等教育出版社出版的书。
本书可作为普通电子院校电子信息,通信工程,信息工程等专业的电磁场和电磁波课程的教材,也可供工程技术人员参考。
电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
专题三十四电磁场与电磁波基本知识点1.麦克斯韦电磁理论的两个基本假设(1)变化的磁场能够在周围空间产生电场(如图所示).(2)变化的电场能够在周围空间产生磁场(如图所示).变化的磁场在其周围空间产生电场变化的电场在其周围空间产生磁场2.电磁场:变化的电场和变化的磁场交替产生,形成不可分割的统一体,称为电磁场.3.电磁波(1)电磁波的产生:变化的电场和磁场交替产生而形成的电磁场是由近及远地传播的,这种变化的电磁场在空间的传播称为电磁波.(2)电磁波的特点:①电磁波是横波,电磁波在空间传播不需要介质;②电磁波的波长、频率、波速的关系:v=λf,在真空中,电磁波的速度c=3.0×108m/s.(3)电磁波能产生反射、折射、干涉和衍射等现象.例题分析一、麦克斯韦电磁场理论例1根据麦克斯韦电磁场理论,下列说法正确的是A.有电场的空间一定存在磁场,有磁场的空间也一定能产生电场B.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.周期性变化的磁场周围空间一定产生周期性变化的电场(对应训练一)麦克斯韦建立了完整的电磁场理论,______用实验证明了麦克斯韦预言的正确性,第一次发现了________,测定了电磁波的________和________,得到了电磁波的________,证实在真空中它等于________.(对应训练二)下列关于电场与磁场的产生的理解正确的是()二、电磁波和机械波例2关于电磁波与声波,下列说法正确的是A.电磁波是由电磁场发生的区域向远处传播,声波是声源的振动向远处传播B.电磁波的传播不需要介质,声波的传播有时也不需要介质C.由空气进入水中传播时,电磁波的传播速度变小,声波的传播速度变大D.由空气进入水中传播时,电磁波的波长不变,声波的波长变小(对应训练)以下关于机械波与电磁波的说法中,正确的是()A.机械波与电磁波本质上是一致的B.机械波的波速只与介质有关,而电磁波在介质中的波速,不仅与介质有关,而且与电磁波的频率有关C.机械波可能是纵波,而电磁波必定是横波D.它们都能发生反射、折射、干涉和衍射现象三、电磁波的特点【例3】下列关于电磁波的叙述中,正确的是()A.电磁波是电磁场由发生区域向远处的传播B.电磁波在任何介质中的传播速度均为3×108 m/sC.电磁波由真空进入介质传播时,波长变短D.电磁波不能产生干涉、衍射现象E.电磁波具有波的一切特征(对应训练)关于电磁波,以下说法正确的是()A.电磁波是能量存在的一种方式B.电磁波能够传递能量C.电磁波不是真实的物质D.微波炉就是用微波的能量来煮饭烧菜的专题训练1.真空中所有电磁波都具有相同的()A.频率B.波长C.波速D.能量2.下列关于电磁波的说法正确的是()A.均匀变化的磁场能够在空间产生电场B.电磁波在真空和介质中传播速度相同C.只要有电场和磁场,就能产生电磁波D.电磁波在同种介质中只能沿直线传播3.关于电磁波,下列说法中正确的是()A.在真空中,频率越高的电磁波速度越大B.在真空中,电磁波的能量越大,传播速度越大C.电磁波由真空进入介质,速度变小,频率不变D.只要发射电路的电磁振荡停止,产生的电磁波立即消失4.电磁波与机械波具有的共同性质是()A.都是横波B.都能传输能量C.都能在真空中传播D.都具有恒定的波速5.某空间中出现了如图中虚线所示的一组闭合的电场线,这可能是()A.在中心点O有一静止的点电荷B.沿AB方向有一段通有恒定电流的直导线C.沿BA方向的磁场在减弱D.沿AB方向的磁场在减弱6.手机A的号码是133××××0002,手机B的号码是133××××0008。
电磁场和电磁波一、电磁场、电磁波1.麦克斯韦理论(1)变化的磁场能够在周围空间产生________,变化的电场能够在周围空间产生_________。
(2)__________的磁场产生稳定的电场,__________的电场产生稳定的磁场.(3)振荡的(即周期性变化的)磁场产生____________电场,振荡的电场产生___________磁场.2.电磁场变化电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场成为一个完整的整体,这就是电磁场.3.电磁波(1)定义:交替产生的振荡电场和振荡磁场向周围空间的传播形成电磁波.(2)特点:①电磁波是_______.在电磁波中,每处的电场强度和磁感强度的方向总是_________,且与电磁波的传播方向________.②电磁波的传播速度取决于_______,等于波长和频率的乘积,即________.例1:根据麦克斯韦电磁理论,如下说法正确的是 ( )A.变化的电场一定产生变化的磁场 B.均匀变化的电场一定产生均匀变化的磁场C.稳定的电场一定产生稳定的磁场 D.振荡的电场一定产生同频率的振荡磁场例2:以下有关在真空中传播的电磁波的说法正确的是()A.频率越大,传播的速度越大 B.频率不同,传播的速度相同C.频率越大,其波长越大 D.频率不同,传播速度也不同例3:电磁波由真空进入介质后,发生变化的物理量有( )A.波长和频率 B.波速和频率C.波长和波速 D.频率和能量例4:如图1-1所示是一个水平放置的玻璃圆环型小槽,槽内光滑,槽的宽度和深度处处相同,现将一直径略小于槽宽的带正电小球放在槽中,让它受绝缘棒打击后获得一初速v0,与此同时,有一变化的磁场垂直穿过玻璃环形小槽外径所对应的圆面积,磁感应强度的大小跟时间成正比,其方向竖直向下,设小球在运动过程中电荷量不变,那么( )A.小球受到的向心力大小不变 B.小球受到的向心力大小不断增加C.磁场力对小球做了功 D.小球受到的磁场力大小与时间成正比二、电磁振荡 LC振荡过程:从电容器充满电荷开始计时,如图1,此时电场能__________,磁场能__________,振荡电流___________;接着如图2时刻,此时电场能_______,磁场能_______,振荡电流_______,电容器正处于________电状态;在图3时刻,电场能____________,磁场能____________,振荡电流___________,电容器______________;在图4时刻,电场能____________,磁场能___________,振荡电流_________,电容器正处于_____电状态; 余此类推,至图9时刻,经历一个周期的时间,完成一次振荡过程.LC振荡的周期:T=__________,频率f=__________;其中L为线圈的__________,单位____________. 相关概念:阻尼振荡: ________________________;无阻尼振荡: ________________________.例1:一平行板电容器与一自感线圈组成振荡电路,要使此振荡电路的周期变大,以下措施中正确的是()A. 增加电容器两极间的距离 B. 减少线圈的匝数C.增大电容器两极板间的正对面积 D.增大电容器两极板间的距离的同时,减少线圈的匝数例2:要使LC振荡电路的周期增大一倍,可采用的办法是()A.自感系数L和电容C都增大一倍 B.自感系数L和电容C都减小一半C.自感系数L增大一倍,而电容C减小一半 D.自感系数L减小一半,而电容C增大一倍例3:LC回路发生电磁振荡时()A.放电结束时,电路中电流为0,电容器所带电量最大B.放电结束时,电路中电流最大,电容器所带电量为0C.充电结束时,电路中电流为0,电容器所带电量最大D.充电结束时,电路中电流最大,电容器所带电量为0图1-1例4:在LC 振荡电路的工作过程中,下列的说法正确的是 ( )A .在一个周期内,电容器充、放电各一次B .电容器两极板间的电压最大时,线圈中的电流也最大C .电容器放电完了时,两极板间的电压为零,电路中的电流达到最大值D .振荡电路的电流变大时,电场能减少,磁场能增加例5:如图2-1所示,是LC 振荡电路中产生的振荡电流i 随时间t 的变化图象,在t 3时刻下列说法正确的是( )A .电容器中的带电量最大B .电容器中的带电量最小C .电容器中的电场能达到最大D .线圈中的磁场能达到最小 例6:LC 回路发生电磁振荡时,回路中电流i 随时间t 变化图象如图2-2所示, 由图象可知( )A .t 1时刻电容器所带电量为0B .t 2时刻电容器所带电量最大C .t 1至 t 2时间内,电容器两板间电压增大D .t 2至 t 3时间内,电容器两板间电压减小例7:LC 回路发生电磁振荡时 [ ]A .电容器两板间电压减小时,电路中电流减小B .电容器两板间电压减小时,电路中电流增大C .电容器两板间电压为0时,电路中电流最大D .电容器两板间电压为最大时,电路中电流为0 练习1:LC 回路发生电磁振荡时 [ ]A .当电容器极板电量为0时,电场能向磁场能转化完毕B .当电容器极板电量最大时,磁场能向电场能转化完毕C .当回路中电流为0时,磁场能向电场能转化完毕D .当回路中电流最大时,电场能向磁场能转化完毕练习2:LC 回路中,电容器为C 1,线圈自感为L 1.设电磁波的速度为c ,则LC 回路产生电磁振荡时向外辐射电磁波的波长为三、无线电波的发射与接收1.无线电波的发射(1)要向外发射无线电波,振荡电路必须具有如下特点:第一,要有足够高的频率;第二,采用开放电路,使电场和磁场分散到尽可能大的空间.(2)利用无线电波传递信号,要求发射的无线电波随信号而改变.使无线电波随各种信号而改变叫调制.常用的调制方法有调幅和调频两种.使高频振荡的振幅随信号而改变叫调幅,经过调幅以后发射出去的无线电波叫调幅波.使高频振荡的频率随信号而改变叫调频,经过调频以后发射出去的无线电波叫调频波.在无线电波的发送中必须有振荡器、调制器、天线和地线,还要用到放大器.2.无线电波的接收(1)当接收电路的固有频率跟接收到的无线电波的频率相同时,激起的振荡电流最强,这就是电谐振现象.(2)使接收电路产生电谐振的过程叫做调谐.能够调谐的接收电路叫做调谐电路,收音机的调谐电路,是通过调节可变电容器的电容来改变电路的频率而实现调谐的.(3)从经过调制的高频振荡中“检”出调制信号的过程,叫做检波.检波是调制的逆过程,也叫解调.(4)简单收音机通常包括调谐、高频放大、检波、低频放大四个主要部分.四、电视与雷达1.电视:在电视发射端,摄取景物并将景物反射的光转换为电信号的过程叫摄像,这个过程是由摄像管来完成的. 在电视接收端,将电信号还原成像的过程,由电视接收机的显像管来完成.伴音信号经检波电路取出后,送到扬声器,扬声器便伴随电视屏幕上的景像发出声音来.2.雷达雷达是利用无线电波来测定物体位置的无线电设备.当雷达向目标发射无线电波时,在指示器的荧光屏上呈现出一个尖形波;在收到反射回来的无线电波时,在荧光屏上呈现出二个尖形波.根据两个波的距离,可直接从荧光屏上的刻度读出障碍物的距离,再根据发射无线电波的方向和仰角,便可确定障碍物的位置.常见的电磁波的应用一例:雷达:利用无线电波确定物体位置及运动速度的仪器。
物理学概念知识:电磁波和电磁场的辐射电磁波和电磁场的辐射电磁波是指由电磁场通过空间传播而形成的一种波动现象。
而电磁场则是指在空间中存在的电场和磁场所组成的物理场。
电磁波伴随着电磁场的变化而产生,其特点在于不需要通过介质传播,可以在真空中传播,并且速度具有极高的常数性,即光速。
电磁波在生活中有着广泛的应用,如无线通信、电视、雷达、微波炉等。
电磁波是指电场和磁场相互作用,形成的一种横波,其传播距离与电磁场的强度和相互作用方式有关。
电磁波是由电荷加速所产生的,当电荷加速时(如在天线上),便会产生一种电波,这种电波是由电磁场的变化带动的,也就是由电场变化而产生的磁场和由磁场变化而产生的电场构成的。
其产生的传播方式不依赖于任何介质,可以在真空中自由传播。
这是电磁波特有的性质。
电磁波的频率和波长是一一对应的关系,其它物理量,如速度、振幅、功率、能量等,均与频率和波长有密切关系。
其中,频率指的是波形在单位时间内的重复次数,通常以赫兹(Hz)为单位;波长则指的是波形的空间周期长度,通常以米(m)为单位。
对于相同的介质而言,频率越高,波长越短,能量也越大,传播速度不变。
(图1)(图1)电磁波的波长和频率的关系电磁波可以分成多种类型,包括无线电波、红外线、可见光、紫外线、X射线和伽玛射线等。
其中,可见光是用肉眼可以看到的电磁波种类,波长在380nm ~ 780nm之间,包括紫、蓝、绿、黄、橙、红六种颜色。
而伽玛射线则是能量最高的电磁波,能量甚至可以达到数千mega电子伏特(MeV),对人体的伤害也是最大的。
电磁场是表现电磁相互作用和电磁场中电荷的运动行为的数学抽象,也是电磁波形成与传播的物理基础。
它是由电荷和电流产生的,包括静电场和磁场。
在运动状态下的电荷也会产生磁场,这是垂直于电荷运动方向的旋转磁场,它们共同构成了电磁场。
电磁场的强度随距离的增加而呈平方反比关系,也就是距离的平方与场强的比例关系。
电子氧气增强辐射(EOR)就是一种在电磁场下产生的现象,电离氧分子吸收电磁能后会发生反应,从而产生更多的自由基和代谢产物,从而损害细胞结构和功能。
电子通信技术中电磁场和电磁波的运用
电磁场和电磁波是电子通信技术中非常重要的组成部分。
电磁场是由电荷引起的力场,包括电场和磁场,而电磁波则是在电磁场中传播的能量。
下面我们将详细介绍在电子通信技术中电磁场和电磁波的运用。
1. 电磁场的应用
电磁场在电子通信技术中被广泛应用。
无线电通信正是利用电磁波在空间中传播的特性实现的。
在无线电通信中,电子设备通过将电信号转化为电磁波向空中发送,接收器通过天线接收空气中传播的电磁波并将其转化为电信号。
此外,电磁场还被用于电子元件的设计和制造中,例如:线圈、电感、变压器等。
2. 电磁波的应用
电磁波的应用在电子通信技术中更加广泛。
除了被用于无线电通信之外,还有以下几个方面的应用:
(1)雷达技术:雷达技术利用了电磁波向目标物体发出并返回的特性,从而实现了对目标物体的探测和跟踪。
(2)手机通信:手机通信是利用地面基站和手机之间通过无线电信号传输实现通信的技术,其中电磁波的应用主要在于通过空气中传播信号。
(3)卫星通信:卫星通信是利用人造卫星作为信号的中转站,通过向卫星发射电磁波,再被卫星接收后转发到目的地实现通信。
(4)光纤通信:光纤通信利用的是光的横向振动来进行信息传输,而光就是电磁波。
(5)医疗诊断:医疗设备中利用X射线、磁共振、超声波等电磁波来做成像诊断。
总之,电磁场和电磁波在电子通信技术中的应用非常广泛,是现代通信技术的重要基础。
电磁场与电磁波实验问卷答案
一、频谱特性测量演示实验问卷
1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz
2.ESPI 测试接收机的RF输入端口最大射频信号: 30dbm,最大直流: 50v
3.是否直观的观测到电磁波的存在?(回答是/否)否
4.演示实验可以测到的空间信号有哪些,频段分别为:
广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz
GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz
WCDMA:上行:1920~1980MHz 下行:2110~2170MHz
CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz
TD-SCDMA:2010~2025MHz
5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视?
模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。
模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。
数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。
6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:GSM900上行:
GSM900下行:
CDMA下行频谱图:
3G下行频谱图:
7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率)
可以该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G
电磁炉:20KHz—30KHz
蓝牙:2.4G
二、频谱特性测量演示实验问卷
1.矢量网络分析仪所测频段:300KHz—3GHz
2.端口最大射频信号: 10DBM
3.矢量网络分析仪为何要校准:
首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次是参考面的改变,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。
4.默认校准和用户校准的区别:
默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。
5.使用矢量网络分析仪的注意事项:
检查电源:分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地。
供电电源要求:为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电。
电源线的选择:使用随机携带的电源线,更换电源线时,最好使用同类型的电源线。
静电防护:接触器件、附件和进行测试连接时,佩戴防静电手腕带,将手腕带与桌垫相连接,桌垫和地之间串联1MΩ电阻
6.用户二端口校准的方法:
(1)将探头的输入输出短接;
(2)按cal键,则屏幕右边有显示;
(3)按F1 键,则可见显示屏幕右边第二栏由default变为measuring后变为created;
(4)按F6 键,则完成校准,此时可看幅频特性增益值为0db左右。