变化率与导数的概念
- 格式:doc
- 大小:463.23 KB
- 文档页数:6
变化率与导数、导数的运算课前双击巩固1.变化率与导数 (1)平均变化率: 概念 对于函数y=f (x ),f(x 2)-f(x 1)x 2-x 1=Δy Δx 叫作函数y=f (x )从x 1到x 2的 变化率几何 意义 函数y=f (x )图像上两点(x 1,f (x 1)),(x 2,f (x 2))连线的物理 意义 若函数y=f (x )表示变速运动的质点的运动方程,则ΔyΔx 就是该质点在[x 1,x 2]上的 速度(2)导数:概念点x 0处 limΔx→0ΔyΔx =limΔx→0f(x 0+Δx)−f(x 0)Δx,我们称它为函数y=f (x )在 处的导数,记为f'(x 0)或y'|x=x 0,即f'(x 0)=limΔx→0ΔyΔx= lim Δx→0f(x 0+Δx)−f(x 0)Δx区间 (a ,b )当x ∈(a ,b )时,f'(x )=lim Δx→0ΔyΔx =lim Δx→0 叫作函数在区间(a ,b )内的导数几何 意义 函数y=f (x )在点x=x 0处的导数f'(x 0)就是函数图像在该点处切线的 .曲线y=f (x )在点(x 0,f (x 0))处的切线方程是物理 意义 函数y=f (x )表示变速运动的质点的运动方程,则函数在x=x 0处的导数就是质点在x=x时的 速度,在(a ,b )内的导数就是质点在(a ,b )内的 方程2.导数的运算 常用 导数 公式原函数导函数特例或推广常数函数 C'=0(C 为常数)幂函数(x n)'= (n ∈Z )1x'=-1x 2三角函数(sin x)'=,(cos x)'=偶(奇)函数的导数是奇(偶)函数,周期函数的导数是周期函数指数函数(a x)'=(a>0且a≠1) (e x)'=e x对数函数(log a x)'=(a>0且a≠1)(ln x)'=1x,(ln|x|)'=1x四则运算法则加减[f(x)±g(x)]'=(∑i=1nf i(x))'=∑i=1nf'i(x)乘法[f(x)·g(x)]'=[Cf(x)]'=Cf'(x) 除法f(x)g(x)'=(g(x)≠0)1g(x)'=-g′(x)[g(x)]2复合函数导数复合函数y=f[g(x)]的导数与函数y=f(u),u=g(x)的导数之间具有关系y'x=,这个关系用语言表达就是“y对x的导数等于y对u的导数与u对x的导数的乘积”题组一常识题1.[教材改编]向气球中充入空气,当气球中空气的体积V(单位:L)从1 L增加到2 L时,气球半径r(单位:dm)的平均变化率约为.2.[教材改编]已知将1吨水净化到纯净度为x %时所需费用(单位:元)为c(x)=5284100−x(80<x<100),当净化到纯净度为98 %时费用的瞬时变化率为.3.[教材改编] y=sin(πx+φ)的导数是y'=.4.[教材改编]曲线y=xe x-1在点(1,1)处切线的斜率等于.题组二常错题◆索引:平均变化率与导数的区别;求导时不能掌握复合函数的求导法则致错;混淆f'(x 0)与[f (x 0)]',f'(ax+b )与[f (ax+b )]'的区别.5.函数f (x )=x 2在区间[1,2]上的平均变化率为 ,在x=2处的导数为 .6.已知函数y=sin 2x ,则y'= .7.已知f (x )=x 2+3xf'(2),则f (2)= .8.已知f (x )=x 3,则f'(2x+3)= ,[f (2x+3)]'= .课堂考点探究探究点一 导数的运算1(1)函数f (x )的导函数为f'(x ),且满足关系式f (x )=x 2+3xf'(2)-ln x ,则f'(2)的值为( )A.74 B.-74 C.94 D.-94(2)已知f (x )=-sin x2(1−2cos 2x4),则f'(π3)= .[总结反思] (1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆. 式题 (1)函数y=sinx x 的导数为y'= .(2)已知f (x )=(x+1)(x+2)(x+a ),若f'(-1)=2,则f'(1)= . 探究点二 导数的几何意义考向1 求切线方程2 函数f (x )=e x·sin x 的图像在点(0,f (0))处的切线方程是 .[总结反思] (1)曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y-f (x 0)=f'(x 0)(x-x 0);(2)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(3)注意过某点的切线和曲线上某点处的切线的区别. 考向2 求切点坐标3设a∈R,函数f(x)=e x+a·e-x的导函数是f'(x),且f'(x)是奇函数.若曲线y=f(x)的一条切线的斜率是32,则切点的横坐标为( )A.ln 2B.-ln 2C.ln22 D.-ln22[总结反思] f'(x)=k(k为切线斜率)的解即为切点的横坐标.考向3求参数的值4已知曲线C在动点P(a,a2+2a)与动点Q(b,b2+2b)(a<b<0)处的切线互相垂直,则b-a的最小值为( )A.1B.2C.√2D.-√2[总结反思](1)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.(2)注意:①曲线上横坐标的取值范围;②切点既在切线上又在曲线上.强化演练1.【考向1】已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为( )A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=02.【考向3】直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于( )A.2B.-1C.1D.-23.【考向2】已知在平面直角坐标系中,f(x)=aln x+x的图像在x=a处的切线过原点,则a=( )A.1B.eC.1eD.04.【考向2】若曲线y=xln x在点P处的切线平行于直线2x-y+1=0,则点P的坐标是.5.【考向1】函数f(x)=xe x的图像在点P(1,e)处的切线与坐标轴围成的三角形面积为.。
导数与函数的变化率关系解析与归纳在微积分中,导数是一个重要的概念,它描述了函数在某一点处的变化率。
函数的变化率是指函数的输出值随着输入值变化而变化的快慢程度。
导数不仅对于研究函数的性质和特征有着重要的作用,还在物理学、经济学等多个领域中具有广泛的应用。
本文将解析导数与函数的变化率之间的关系,并对导数的性质进行归纳和总结。
1. 导数的定义在数学中,函数f(x)在x点处的导数可以通过极限的概念定义为:f'(x) = lim (h->0) [f(x+h) - f(x)] / h其中,f'(x)表示函数f(x)在点x处的导数,h表示自变量的增量。
导数可以理解为函数在该点附近的平均变化率。
2. 变化率与导数的关系函数的变化率与导数密切相关。
导数可以用来描述函数在某一点的瞬时变化率,即函数在该点处的瞬时变化速度。
具体来说,如果函数在某点的导数为正,说明函数在该点处递增;如果函数的导数为负,说明函数在该点处递减;如果函数的导数为零,说明函数在该点处取得极值。
3. 导数与函数的性质导数具有许多重要的性质,这些性质对于研究函数的变化率和特征非常有用。
以下是几个常见的导数性质:- 导数的可导性:几乎所有常见的函数都具有导数。
只有在某些特殊的情况下,函数可能不可导。
例如,函数在某一点处的导数不存在,当且仅当该点存在间断、角点或垂直切线。
- 导数的线性性质:导数具有线性运算的性质。
即,对于任意常数a 和b,以及函数f(x)和g(x),有以下成立:- [af(x) + bg(x)]' = af'(x) + bg'(x)- 导函数的乘积法则:对于两个函数f(x)和g(x),其乘积的导数可以通过以下公式计算:- [f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)- 链式法则:对于复合函数,可以使用链式法则计算导数。
链式法则是导数运算中的一种基本规则。
函数的导数与变化率函数的导数是微积分中的基础概念之一,它描述了函数在某一点上的变化率。
在实际问题中,我们经常需要了解一个函数在某一点的变化情况,以便更好地理解问题的本质和解决方法。
本文将详细介绍函数的导数的概念、性质以及在实际应用中的意义和计算方法。
一、导数的概念函数的导数是函数变化率的度量,表示了函数在某一点上的变化速度。
形式上,设函数y=f(x),若该函数在点x处的导数存在,则导数被定义为:f'(x)=lim(h→0)[f(x+h)-f(x)]/h其中,f'(x)表示函数在点x处的导数,h表示自变量x的变化量。
导数的定义是一个极限的概念,表示了自变量逐渐接近某一点时,函数变化的趋势。
二、导数的性质1. 导数的存在性函数在某一点上的导数存在的充分条件是函数在该点附近连续,并且左右导数相等。
2. 导数与函数图像的关系函数的导数可以反映函数图像的一些特征,比如导数正值表示函数在该点上升,导数负值表示函数在该点下降,导数等于零表示函数在该点取得极值。
3. 导数的计算法则导数具有一组计算法则,可以用于计算各种复杂函数的导数。
常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商数法则等。
三、变化率与导数的关系函数的导数即为函数在某一点上的变化率。
当自变量的变化量很小时,导数可以近似地表示函数的变化率。
函数的变化率可以分为平均变化率和瞬时变化率两种。
平均变化率是指函数在两个点之间的变化率,可以通过函数的增量和自变量的增量来计算。
瞬时变化率是指函数在某一点上的瞬时变化率,可以通过函数的导数来求得。
四、导数在实际应用中的意义导数在实际问题中有着广泛的应用。
以物理学为例,速度即为位移对时间的导数,加速度即为速度对时间的导数。
在经济学中,边际成本和边际收益也可以通过导数来计算和分析。
导数还可以用于优化问题、曲线拟合和图像处理等领域。
五、导数的计算方法为了计算导数,我们可以利用导数的定义进行计算,也可以利用导数的运算法则简化计算过程。
变化率与导数
变化率与导数是微积分中的重要概念,它们能够帮助我们准确地表达和计算特定函数在特定点的斜率。
变化率可以定义为一个函数在某一点的变化量与该点前后变化量之比。
其定义式如下:
变化率 = 变化量/原始量
其中,变化量就是位于某一点处曲线上的一段段区域的变化量,而原始量则是位于曲线前后的一段段区域的变化量。
变化率的单位一般用“%”或者“1/X”表示,其中X 代表原始量。
变化率是一个值,用来估计特定函数在特定点处的变化情况。
当我们想要更加精确地表达函数变化情况时,就需要使用导数。
导数是变量x的函数y在x处的一阶微分,也就是某一点处函数的斜率。
它可以用下面的公式来表示:
dy/dx=f'(x)
其中,f'(x) 是函数y关于x的导数,它可以表示函数y在x处的斜率,也就是函数y在x处的变化速率。
因此,导数有助于我们更精确地表达函数的变化情况,它可以表示函数在特定点处的变化速度。
总之,变化率与导数都是微积分中重要的概念,它们都是用来表示函数在特定点处的变化情况。
变化率用来表
示函数在特定点处的变化量与原始量之比,而导数则是根据函数的一阶微分来表示函数在特定点处的斜率,从而表示函数在特定点处的变化速率。
第十节变化率与导数、导数的运算授课提示:对应学生用书第37页[基础梳理]1.导数的概念(1)函数y=f(x)在x=x0处导数的定义称函数y=f(x)在x=x0处的瞬时变化率=错误!为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=错误!=.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=错误!为f(x)的导函数.2原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x(a>0,且a≠1)f′(x)=a x ln__af(x)=e x f′(x)=e x f(x)=log a x(a>0,且a≠1)f′(x)=错误!f(x)=ln x f′(x)=错误!3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)错误!′=错误!(g(x)≠0).1.求导其实质是一种数学运算即求导运算,有公式和法则,也有相应的适用范围或成立条件,要注意这一点,如(x n)′=nx n-1中,n≠0且n∈Q*.错误!′=错误!,要满足“=”前后各代数式有意义,且导数都存在.2.(1)f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.(2)f′(x)是一个函数,与f′(x0)不同.3.(1)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.(2)“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[四基自测]1.(基础点:求导数值)若f(x)=x·e x,则f′(1)等于()A.0B.eC.2e D.e2答案:C2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=() A。
导数与函数的变化率与方向函数在数学中扮演着非常重要的角色,它描述了数值之间的关系。
而了解函数的变化率与方向则需要运用导数的概念。
导数可以用于描述函数在某点附近的变化率和切线的斜率,从而揭示了函数变化的趋势和方向。
本文将深入探讨导数与函数的变化率与方向之间的关系。
一、导数的定义与计算导数可以被认为是函数在某一点附近的变化率。
数学上,我们用极限来定义导数。
假设有函数f(x),它在点a处有导数,则导数的定义可以表示为:$$ f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,h表示自变量x的增量。
导数的计算可以通过这一定义以及一些基本的求导规则进行。
二、导数与变化率的关系导数代表了函数在某一点上的变化率。
具体说来,对于函数y = f(x),如果f'(a) > 0,则说明函数在点a处是递增的;如果f'(a) < 0,则说明函数在点a处是递减的;如果f'(a) = 0,则说明函数在点a处是平稳的。
根据导数的正负,我们可以判断函数在不同点处的变化趋势。
三、导数与方向的关系导数还可以用于描述函数曲线在某点处的切线斜率。
但是如果我们希望了解函数曲线在不同点处的切线斜率,就需要关注函数的导数函数。
如果函数f(x)在某一点x_0处的导数f'(x_0)存在,则导数函数表示为:$$ F(x) = f'(x)$$其中,F(x)即为函数f(x)的导数函数。
导数函数可以提供函数曲线在每一点处的切线的斜率,并且可以帮助我们分析函数曲线的特征。
四、利用导数判断函数的极值导数还可以用于判断函数的极值点,即函数取得最大值或最小值的点。
对于函数f(x),如果f'(a) = 0且f''(a) ≠ 0,则点a为函数的极值点。
其中,f''(a)表示f(x)的导数函数的导数,即二阶导数。
如果f''(a) > 0,则函数在点a处取得极小值;如果f''(a) < 0,则函数在点a处取得极大值。
变化率与导数导数的计算一、变化率与导数的关系在数学中,变化率是指一个量相对于另一个量的变化程度,常用来衡量两个变量之间的关系。
而导数则是描述函数在其中一点上的变化率的概念。
在一个数学函数中,比如说y=f(x),x和y分别代表自变量和因变量。
那么,当x发生微小变化Δx时,对应的y值也会发生一定的变化Δy。
这时,我们可以计算出y随着x的变化而变化的速率,也就是变化率。
变化率可以通过求平均变化率和瞬时变化率来进行计算。
平均变化率指的是通过两个点之间的变化率来计算,可以用Δy/Δx来表示。
而瞬时变化率则是在其中一点上的变化率,通过取Δx趋近于0时的极限来计算,也就是导数。
二、导数的定义与计算导数是用来衡量函数在其中一点上的变化率的数值,用dy/dx来表示。
导数的定义是:f'(x) = lim(Δx→0) (f(x+Δx) - f(x))/Δx导数表示函数f(x)在x点处的瞬时变化率。
导数可以用各种方法进行计算,其中最常用的方法包括求导法则和导数的性质。
1.求导法则(1)常数法则:如果c是一个常数,那么d(c)/dx = 0。
(2)幂法则:如果f(x) = x^n,那么d(f(x))/dx = nx^(n-1)。
(3)和差法则:如果f(x)=u(x) ± v(x),那么d(f(x))/dx =d(u(x))/dx ± d(v(x))/dx。
(4)乘法法则:如果f(x) = u(x)v(x),那么d(f(x))/dx =u(x)d(v(x))/dx + v(x)d(u(x))/dx。
(5)除法法则:如果f(x) = u(x)/v(x),那么d(f(x))/dx =(v(x)d(u(x))/dx - u(x)d(v(x))/dx)/v(x)^2(6)复合函数法则:如果f(x) = g(u(x)),那么d(f(x))/dx =g'(u(x))d(u(x))/dx。
2.导数的性质(1)导数的和差性:(f(x)±g(x))'=f'(x)±g'(x)。
导数与函数的变化率引言:数学作为一门精确的科学,涵盖了众多的分支和概念。
其中,导数与函数的变化率是数学中一个重要的概念。
导数是函数的一种特殊性质,它描述了函数在某一点的变化率。
本文将深入探讨导数与函数的变化率的概念、性质以及应用。
一、导数的概念导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
在数学中,函数的导数可以通过极限的概念来定义。
具体而言,对于函数y=f(x),如果在某一点x处的导数存在,那么该导数可以表示为f'(x)或者dy/dx。
导数的定义可以表示为:f'(x) = lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx〗其中,Δx表示自变量x的增量。
二、导数的性质导数具有一系列的性质,这些性质对于求解导数和理解函数的变化率非常重要。
1. 常数函数的导数为0对于常数函数y=c,其中c为常数,其导数f'(x)=0。
这是因为常数函数在任意一点的斜率都为0,即没有变化。
2. 幂函数的导数幂函数y=x^n的导数可以通过幂函数的性质来求解。
具体而言,对于幂函数y=x^n,其中n为正整数,其导数f'(x)=nx^(n-1)。
3. 和差法则对于两个函数的和或差,其导数等于各个函数的导数的和或差。
即(f+g)'(x)=f'(x)+g'(x),(f-g)'(x)=f'(x)-g'(x)。
4. 乘法法则对于两个函数的乘积,其导数等于第一个函数的导数乘以第二个函数本身,再加上第一个函数本身乘以第二个函数的导数。
即(fg)'(x)=f'(x)g(x)+f(x)g'(x)。
5. 商法则对于两个函数的商,其导数等于分子的导数乘以分母本身,再减去分子本身乘以分母的导数,最后除以分母的平方。
即(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/g^2(x),其中g(x)≠0。
函数的导数与变化率知识点总结函数的导数是微积分中一个重要的概念,它在研究函数的性质和变化规律时起到了重要的作用。
导数可以用于求函数的切线方程、最值、极值等性质,因此在许多实际问题中都有广泛的应用。
本文将对函数的导数与变化率的知识点进行总结,并介绍其基本概念、计算方法以及几个典型应用。
1. 导数的基本概念导数表示了函数在某一点的瞬时变化率,也可以理解为函数的斜率。
对于函数f(x),其在某一点x=a处的导数记为f'(a),可以通过下式进行计算:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中,h表示变化的增量。
导数的计算实际上是求取函数在某一点的极限。
若导数存在,则说明函数在该点可微,也就是函数在该点的图像是光滑的。
2. 导数的计算方法导数的计算方法有多种,根据函数的性质和表达式的不同而有所不同。
以下是几种常见的导数计算方法:2.1 基本初等函数的导数计算对于多项式函数、指数函数、对数函数、三角函数等基本初等函数,都有相应的导数公式可以直接使用。
例如,多项式函数f(x)=ax^n的导数为f'(x)=anx^(n-1),指数函数f(x)=e^x的导数为f'(x)=e^x,对数函数f(x)=ln(x)的导数为f'(x)=1/x,三角函数如sin(x)、cos(x)的导数分别为cos(x)和-sin(x)等。
2.2 导数的基本运算法则导数的计算还可以利用导数的基本运算法则,如和差法则、积法则、商法则等。
通过将复杂函数分解为基本初等函数的求导结果,并利用这些基本运算法则进行运算,可以较容易地求得复合函数的导数。
2.3 链式法则链式法则是求复合函数导数的常用方法。
对于函数y=f(u),u=g(x),则复合函数y=f(g(x))的导数可以通过以下公式进行计算:dy/dx = dy/du * du/dx3. 变化率与导数的关系导数不仅表示了函数在某一点的瞬时变化率,还可以用于描述函数在整个定义域上的变化规律。
第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。
函数的导数与变化率的关系解读函数的导数是微积分中的重要概念之一,它描述了函数在某一点的变化率。
导数在各个学科领域中都得到了广泛应用,从物理学中的速度、加速度,到经济学中的边际效应,都离不开导数的概念。
本文将深入解读函数的导数与变化率之间的关系。
首先,我们来回顾一下函数的导数的定义。
对于函数y=f(x),在x点处的导数可以表示为f'(x),它的定义如下:f'(x) = lim(h→0) [f(x+h)-f(x)]/h这个定义可以简单理解为,当我们取x点附近一个极小的增量h时,函数值的变化量除以增量h就是函数在x点处的变化率。
而当h趋近于0时,这个变化率就趋近于一个确定的值,即函数在x点处的导数。
从这个定义中,我们可以看出函数的导数实际上描述了函数在不同点的变化率。
当导数的值为正时,表示函数在该点上升;当导数的值为负时,表示函数在该点下降;当导数的值为零时,表示函数在该点取得极值。
接下来,我们将考察一些常见函数的导数与其变化率之间的关系。
首先是线性函数,即f(x) = ax + b。
对于线性函数来说,它的导数为常数a,这表示线性函数的变化率在每个点处都是固定的。
第二个例子是幂函数,即f(x) = x^n,其中n为整数。
对于幂函数来说,它的导数为f'(x) = nx^(n-1)。
由此可以看出,幂函数的导数与自变量x的指数n和系数n之间的关系。
另一个例子是指数函数,即f(x) = a^x,其中a为常数。
对于指数函数来说,它的导数为f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数。
这个导数表达式反映了指数函数的变化率与底数a的关系。
最后,我们来看一下三角函数的导数。
对于正弦函数f(x) = sin(x)和余弦函数f(x) = cos(x),它们的导数分别为f'(x) = cos(x)和f'(x) = -sin(x)。
对于正切函数f(x) = tan(x),它的导数为f'(x) = sec^2(x),其中sec(x)表示余割函数。
函数在某点的导数即为函数在该点的变化率1. 引言函数的导数是微积分中的重要概念之一,它代表了函数在某一点的变化率。
导数的概念在数学和实际生活中都有着重要的应用,例如在物理学中描述物体的运动规律、在经济学中分析市场的变化等。
本文将从简单到深入地讨论函数在某点的导数即为函数在该点的变化率这一主题。
2. 函数的导数函数的导数表示了函数在某一点的瞬时变化率,即函数图像在该点的切线斜率。
在数学上,函数在某一点处的导数可以通过极限来定义,这一点的导数可以用极限的形式来描述。
3. 函数的变化率函数在某一点的变化率可以用导数来表示,这一点的导数即为函数在该点的变化率。
在实际问题中,我们经常需要分析某个量的变化情况,而这个变化情况通常可以用导数来描述。
4. 实际应用举例在物理学中,我们经常需要描述物体在某一点的运动状态,而物体在某一点的速度即为其位移函数的导数,物体在某一点的加速度即为其速度函数的导数,因此导数在描述物体的运动规律中有着重要的作用。
在经济学中,我们经常需要分析市场的变化情况,而市场某一点的供求变化率即为供求函数的导数,该导数可以帮助我们分析市场的供求变化情况,为决策提供重要参考。
5. 总结回顾函数在某点的导数即为函数在该点的变化率,这一概念在数学和实际生活中都有着重要的应用。
通过本文的讨论,我们了解了导数的概念及其在描述函数变化率中的重要作用,同时也深入探讨了导数在物理学和经济学中的应用。
6. 个人观点对于函数在某点的导数即为函数在该点的变化率这一概念,我认为它在数学和实际生活中都有着极其重要的作用。
导数的概念不仅帮助我们理解函数的变化规律,还可以应用到实际问题中,为我们分析和解决问题提供重要工具。
结论在知识的文章格式中,我们将主题文字“函数在某点的导数即为函数在该点的变化率”多次提及,并按照从简到繁的方式探讨了这一主题。
文章总字数超过3000字,涵盖了函数的导数、变化率的概念、实际应用举例等内容,旨在帮助读者更全面、深入地理解这一主题。
变化率与导数的概念
上课时间: 上课教师: 上课重点: 上课规划: 一 变化率问题 (一)平均变化率
函数平均变化率的定义:一般地,函数)(x f y =,)(,2121x x x x ≠是其定义域内
不同的两点,那么函数的变化率可用式子1
212)
()(x x x f x f --表示,我们把这个式
子称为函数)(x f y =
从1x 到2x 的平均变化率。
习惯上用12x x x -=∆,可把x ∆看
作相对于1x 的一个“增量”,可用x x ∆+1代替2x :类似地,)()(12x f x f y -=∆,
于是平均变化率可以表示为
x
y ∆∆=
x
x f x x f ∆-∆+)
()(00。
平均变化率的几何意义是过函数曲线上的两点的割线的斜率,若函数
)(x f y =
图像上有两点A ))(,(11x f x ,B ))(,(22x f x ,则
AB
k x x x f x f =--1
212)
()(,平均
变化率就是曲线陡峭程度的“数量化”。
例题1:求函数652+=x y 在区间【2,2+x ∆】内的平均变化率
1.求余弦函数x y cos =在区间⎥⎦
⎤
⎢
⎣⎡
2,
3
ππ
上的平均变化率
2.作自由落体运动的物体的运动方程为2
21gt
s =,计算t 从3s 到3.1s ,
3.01s ,3.001s 各时间段内的平均速度。
3.已知某质点按规律t t s 222+=作直线运动(位移s 的单位为m), 求:(1)该质点在前s 3内运动的平均速度: (2)质点在s 2到s 3这段时间内运动的平均速度
(二)瞬时速度(设物体运动的路程与时间的关系是)(t s s =,当t ∆趋近于0
时,函数)(t s 在0
t 到t
t ∆+0之间的平均变化率
x
t s t t s ∆-∆+)
()(00趋近于一个常
数,我们把这个常数称为0t 时刻的瞬时速度,瞬时速度一般用
x
t s t t s t ∆-∆+→∆)
()(lim
000
表示。
例题:作自由落体运动的物体的运动方程为2
2
1gt s =
)/.89(2
s m g 取,
求物体在s t 3=这样时刻的速度。
补充:求物体在s t 5.2=时刻的速度。
1.以初速度)0(0
0>v v 作竖直上抛运动的物体,t 秒时的高度为2
021)(gt
v t s -
=,
求物体在时刻0t 时的瞬时速度。
枪弹在枪筒中运动可以看作匀加速运动,如果它的加速度25/105s m a ⨯=,枪弹从枪口射出时所用的时间为s 3106.1-⨯。
求签单射出时的瞬时速度。
二 导数的概念
函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量
y
∆=f (x 0+x ∆)-f (x 0),比值x
y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间
的平均变化率,即x
y ∆∆=
x
x f x x f ∆-∆+)
()(00。
如果当0→∆x 时,x
y ∆∆有极限,我
们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0
x x =。
即f (x 0)=0
lim
→∆x x
y ∆∆=0
lim →∆x x
x f x x f ∆-∆+)
()(00。
简记:一差二比三极限 例题:求函数2
x
y =在1=x 处的导数
1.利用导数的定义求下列函数的导数 (1)b ax x y ++=2
在
x=0处的导数
(2)x
y 1=在x=1处的导数
2.设函数2)(3+=ax x f ,若3)1('=-f ,则=a ( )
3.利用导数的定义求函数1)(2+=x x f 在
x=0处的导数
常见题型 导数与极限 f (x 0
)=
lim
→∆x x
y ∆∆=
lim
→∆x x
x f x x f ∆-∆+)
()(00=
lim
→∆x x
h x f x h x f ∆-∆+)
()(00
=0
lim →∆x )()()
()(00g h x
g h x g x f x h x f ≠∆-∆+-∆+(重点知识)(与x ∆的系数没有关系)
1、设
)(x f 在 x x
=处可导,且0
lim
→∆x x
x f x x f ∆-∆+)
()3(00=1,则)(' x f 等于( )
A.1
B.0
C.3
D.3
1
2、设()f x 在0
x 可导,则(
)()
00
3lim x f x
x f x x x
∆→+∆--∆∆等于( )
A .()0
2f x ' B .()0
f x ' C .()0
3f x ' D .()0
4f x '
3、若0
(2)()lim 13x f x x f x x
∆→+∆-=∆,则0
()f x '等于( )
A .23
B .32
C .3
D .2
4、设()f x 在x 处可导,a b ,为非零常数,则0
()()
lim
x f x a x f x b x x
∆→+∆--∆=∆( ).
A .()f x '
B .()()a b f x '+
C .()()a b f x '-
D .()f x ' 5、设
(3)4f '=,则0
(3)(3)
lim
2h f h f h
→--=
( )
A .1-
B .2-
C .3-
D .1 6、已知1()f x x
=,则0
(2)(2)
lim x f x f x
∆→+∆-
∆的值是( )
A .14
- B .2 C .14
D .2-
7、若()1'0=x f ,则x
x f x x f x ∆-∆-→∆2)
()(lim 000
= 8、若12)
()5(lim
000=∆-∆+→∆x
x f x x f x ,则()=
0'x f
9.、若0
()lim
1
x f x x
→=,则0
(2)lim
x f x x
→=
________.
10、若1
(1)lim 1
1
x f x x →-=-,则1
(22)lim
1
x f x x →-=
-_______.
11、若()2f a '=,则当h 无限趋近于0时,
()()
2f a h f a h
--
=______.
12、已知函数2
()8f x x
x
=+,则0
(12)(1)
lim x f x f x
∆→-∆-∆的值为 .
总结:关键是构造()0'x f 的极限式,与题中的条件的构造形式相一致 f (x 0
)=
lim
→∆x x
y ∆∆=
lim
→∆x x
x f x x f ∆-∆+)
()(00=
lim
→∆x x
h x f x h x f ∆-∆+)
()(00
=0
lim
→∆x )()()
()(00g h x
g h x g x f x h x f ≠∆-∆+-∆+(重点知识)(与x ∆的系数没有关系)。