h2 t h2 我们称确定值 13.1是 当t趋近于0时的极限. t
速度v就无限趋近于 t 2时的瞬时速度 .因此, 运动 员在 t 2时的瞬时速度是 13.1m / s. h2 t h2 为了表述方便 , 我们用 lim 13.1 t 0 t 表示"当t 2, t 趋势近于 0时, 平均速度 v 趋近于确 定值 13.1".
当△t = – 0.01时, v 13.051
当△t = – 0.001时, v 13.0951
△t = – 0.00001, △t = – 0.000001,
v 4.9t 13.1
当△t = 0.01时,
v 13.149
当△t =0.001时, v 13.1049
2 2
2
y lim lim (2 x) 2 x 0 x x 0 ' y | x 1 2
f (x) = x2 – 7x+15 ( 0≤x≤8 ) .
计算x=2和x=6时的导数.
根据导数的定义,
f (2 x) f (2) 4x (x) 2 7x x 3 x x f lim (x 3) 3. 所以, f (2) lim x 0 x x 0
称为函数f(x)从x1到x2的平均变化率
若设Δx=x2-x1,
Δf=f(x2)-f(x1)
这里Δx看作是对于x1的一个 “增量”可用x1+Δx代替x2 同样Δf=Δy=f(x2)-f(x1)
则平均变化率为
f x
f(x2 ) f ( x1 ) x2 x1
理解
y 1、式子中△x 、△ y 的值可正、可负,但 x
1 0