三阶常系数齐次线性微分方程通解结构
- 格式:doc
- 大小:13.29 KB
- 文档页数:4
第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ′′+py ′+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ′′+py ′+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ′′+py ′+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r −±+−= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数、是方程的两个线性无关的解.x r e y 11=x r e y 22= 这是因为,函数、是方程的解, 又x r e y 11=x r e y 22=x r r x r x r e ee y y )(212121−==不是常数. 因此方程的通解为.x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1=r 2时, 函数、是二阶常系数齐次线性微分x r e y 11=x r xe y 12=方程的两个线性无关的解.这是因为, 是方程的解, 又x r e y 11=x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+′+′′ ,0)()2(121111=++++=q pr r xe p r e x r x r 所以也是方程的解, 且xr xe y 12=x e xe y y x r x r ==1112不是常数. 因此方程的通解为.x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α−i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α−i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α−i β)x =e αx (cos βx −i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1−y 2=2ie αx sin βx , )(21sin 21y y ix e x −=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ′′+py ′+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ′′−2y ′−3y =0的通解.解 所给微分方程的特征方程为r 2−2r −3=0, 即(r +1)(r −3)=0.其根r 1=−1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e −x +C 2e 3x .例2 求方程y ′′+2y ′+y =0满足初始条件y |x =0=4、y ′| x =0=−2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=−1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e−x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e−x.将上式对x求导,得y′=(C2−4−C2x)e−x.再把条件y′|x=0=−2代入上式,得C2=2.于是所求特解为x=(4+2x)e−x.例 3 求微分方程y′′−2y′+5y= 0的通解.解所给方程的特征方程为r2−2r+5=0.特征方程的根为r1=1+2i,r2=1−2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n−1)+p2 y(n−2) +⋅⋅⋅+p n−1y′+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n−1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y′, D2y=y′′, D3y=y′′′,⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx );k 重实根r 对应于k 项: e rx (C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1);一对k 重复根r 1, 2=α ±i β 对应于2k 项:e αx [(C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1)cos βx +( D 1+D 2x + ⋅ ⋅ ⋅ +D k x k −1)sin βx ].例4 求方程y (4)−2y ′′′+5y ′′=0 的通解.解 这里的特征方程为r 4−2r 3+5r 2=0, 即r 2(r 2−2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±−=β. 因此所给微分方程的通解为)2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++−.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ′′+py ′+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=Q m (x )e λx .(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +1 次多项式:Q (x )=xQ m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解 y *=xQ m (x )e λx .(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +2次多项式:Q (x )=x 2Q m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=x 2Q m (x )e λx .综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ′′+py ′+qy =f (x )有形如y *=x k Q m (x )e λx的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ′′−2y ′−3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为y ′′−2y ′−3y =0,它的特征方程为r 2−2r −3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得−3b 0x −2b 0−3b 1=3x +1,比较两端x 同次幂的系数, 得, −3b ⎩⎨⎧=−−=−13233100b b b 0=3, −2b 0−3b 1=1.由此求得b 0=−1, 311=b . 于是求得所给方程的一个特解为 31*+−=x y .例2 求微分方程y ′′−5y ′+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为y ′′−5y ′+6y =0,它的特征方程为r 2−5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得−2b 0x +2b 0−b 1=x .比较两端x 同次幂的系数, 得, −2b ⎩⎨⎧=−=−0212100b b b 0=1, 2b 0−b 1=0. 由此求得210−=b , b 1=−1. 于是求得所给方程的一个特解为 x e x x y 2)121(*−−=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+−+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]′=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]′′=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *′′−5y *′+6y *=[(b 0x 2+b 1x )e 2x ]′′−5[(b 0x 2+b 1x )e 2x ]′+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x −5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)−5(2b 0x +b 1)]e 2x =[−2b 0x +2b 0−b 1]e 2x .方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e e x P e x i x i n x i x i l x ωωωωλ−−−++= x i n lx i n l e x iP x P e x iP x P )()()]()(21)]()([21ωλωλ−+++−= x i x i e x P e x P )()()()(ωλωλ−++=, 其中)(21)(i P P x P n l −=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ′′+py ′+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y −=必是方程)()(ωλi e x P qy y p y −=+′+′′的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ−++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ−++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ′′+py ′+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ−i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ′′+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ′′+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(−3ax −3b +4c )cos2x −(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31−=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+−=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *′=a cos2x −2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(−2ax −2b +c )sin2x ,y *′′=2c cos2x −2(2cx +a +2d )sin2x −2a sin2x +2(−2ax −2b +c )cos2x =(−4ax −4b +4c )cos2x +(−4cx −4a −4d )sin2x .y *′′+ y *=(−3ax −3b +4c )cos2x +(−3cx −4a −3d )sin2x .由, 得⎪⎩⎪⎨⎧=−−=−=+−=−0340304313d a c c b a 31−=a , b =0, c =0, 94=d .。
常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。
毕业论文文献综述数学与应用数学几类三阶常微分方程的通解公式一、前言部分数学分析中研究了变量的各种函数及函数的微分与积分。
如函数未知,但知道变量与函数的代数关系式,便组成代数方程,通过求解代数方程解出未知函数。
同样,如果知道自变量、未知函数及函数的导数组成的关系式,得到的便是微分方程。
如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程。
常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置。
塞蒙斯(Simmons)曾如此评价微分方程在数学中的地位:“300年来分析是数学里首要的分支,而微分方程又是分析的心脏.这是初等微积分的天然后继课,又是为了解物理科学的一门最重要的数学,而且在它所产生的较深的问题中,它又是高等分析里大部分思想和理论的根源.”很多物理与技术问题可以化归为常微分方程的求解问题,如自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。
数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,而上述这些问题都可以化为求常微分方程的解,因此,学好微分方程的求解相当重要.微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。
微分方程也就成了最有生命力的数学分支。
又因为许多力学,电学与生物化学的模型都可以归结为高阶微分方程的模型(见文献[1,2]),因此探求高阶微分方程的求解是一项既有实际意义又有理论意义的工作。
二、主题部分有关三阶常微分方程的求解研究已经取得了较为丰富的结果,许多数学家早已经对这个课题展开过讨论,并做了很多相关的课题研究和论文。
现将已有文献的研究结果综述如下:文献[2]中讲述线性微分方程的基本理论和常微分方程的解法,也简单介绍某些高阶微分的降阶方法。
关于线性微分方程的解法,作者介绍了五种较常用的方法:(1)求常系数齐次线性微分方程的基本解组的特征根法(欧拉待定指数函数法);(2)求常系数非齐次线性微分方程的特解的待定系数法和拉普拉斯变换法;(3)求一般非齐次线性微分方程特解的常数变异法;(4)求一般二阶齐次线性微分方程的幂级数解法。
三阶常系数齐次线性微分方程通解结构三阶常系数齐次线性微分方程是指形如$ay+by+cy+dy=0$的三阶常系数齐次线性微分方程,其中a,b,c,d均为常数。
因此,三阶常系数齐次线性微分方程又称为三阶常系数线性普通微分方程,是初等微积分学中较为重要的一类微分方程。
二、定理
假设 y = y(x)为$ay+by+cy+dy=0$的通解,则满足下列条件:(1)若 $b^2-3ac>0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为
$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ 其中$lambda_1、lambda_2、lambda_3$分别为
$$lambda_1= frac{-b-sqrt{b^2-3ac}}{3a},lambda_2=
frac{-b+frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a},lambda_3=
frac{-b-frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a}$$
(2)若$b^2-3ac=0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
(3)若$b^2-3ac<0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为
$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C
_4sin(lambda_2x)$$
其中$lambda_1、lambda_2$分别为
$$lambda_1=-frac{b}{3a}+frac{sqrt{3}}{3a}sqrt{3ac-b^2},lambda_2=-frac{b}{3a}-frac{sqrt{3}}{3a}sqrt{3ac-b^2}$$
三、公式
从上述定理中可以看出,三阶常系数齐次线性微分方程的通解可以分为三类:
(1)$b^2-3ac>0$的情况:
$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ (2)$b^2-3ac=0$的情况:
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
(3)$b^2-3ac<0$的情况:
$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$
四、推导
(1)$b^2-3ac>0$的情况:
两边同时乘以$e^{-lambda_1x},e^{-lambda_2x},
e^{-lambda_3x}$,得到
$$e^{-lambda_1x}(alambda_1^3y+blambda_1^2y+clambda_1y+dy)=e ^{-lambda_2x}(alambda_2^3y+blambda_2^2y+clambda_2y+dy)=e^{-lambda_3x}(alambda_3^3y+blambda_3^2y+clambda_3y+dy)=0$$ 即
$$(alambda_1^3+blambda_1^2+clambda_1+d)e^{-lambda_1x}y+(bla mbda_1^2+2clambda_1+d)e^{-lambda_1x}y+(clambda_1+d)e^{-lamb da_1x}y+(d)e^{-lambda_1x}y=0$$
令$e^{-lambda_1x}y=Y$,$e^{-lambda_1x}y=Y’$,
$e^{-lambda_1x}y=Y’’$,$e^{-lambda_1x}y=Y’’’$
得到一阶齐次线性微分方程的一般解为
$y=e^{lambda_1x}(C_1+C_2x+C_3x^2+C_4x^3)$
可知,设$C_1=C_2=C_3=0$,有特解$y_p=C_4e^{lambda_1x}x^3$ 所以,原方程的通解为
$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}+C_4e ^{lambda_1x}x^3$$
(2)$b^2-3ac=0$的情况:
类似上述推导,原方程的通解为
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
(3)$b^2-3ac<0$的情况:
类似上述推导,原方程的通解为
$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$
五、例题
例 1:求解$y3y+3yy=0$的通解。
解:此方程可化为$y3y+3yy=0$
满足$b^2-3ac=0$,故此方程的通解为
$$y=C_1x^3+C_2x^2+C_3x+C_4$$
六、总结
本文完成了对三阶常系数齐次线性微分方程的通解结构的介绍,具体包括定义、定理、公式以及推导、例题以及总结等内容。
首先,介绍了定义,提出了此类方程的形式;接下来,介绍了定理,构成了此类方程的通解;随后,介绍了公式,根据不同情况建立通解的方程;接着,介绍了推导,分三种情况对原方程的通解进行推导;最后,介绍了例题,通过实际计算求得特解和通解;同时也总结了此文的内容。
本文所述内容给出了三阶常系数齐次线性微分方程的通解结构,为进一步研究类似问题提供了理论依据。