1 实验六 K2Cr2O7法测定铁矿石中铁的含量
- 格式:doc
- 大小:135.50 KB
- 文档页数:4
实验07 铁矿石中铁含量的测定一、实验目的1.学习矿石试样的溶解法;2.进一步掌握K 2Cr 2O 7标准溶液的配制方法及使用;3.熟悉K 2Cr 2O 7法测定铁矿石中铁的原理和操作步骤;4.对无汞定铁有所了解,增强环保意识;5.了解二苯胺磺酸钠指标剂的作用原理。
二、实验原理铁矿石的种类很多,用于炼铁的主要有磁铁矿(Fe 3O 4)、赤铁矿(Fe 2O 3)和菱铁矿(FeCO 3)等。
铁矿石试样经盐酸溶解后,其中的铁转化为Fe 3+。
在强酸性条件下,Fe 3+可通过SnCl 2还原为Fe 2+。
Sn 2+将Fe 3+还原完毕后,甲基橙也可被Sn 2+还原成氢化甲基橙而褪色,因而甲基橙可指示Fe 3+还原终点。
Sn 2+还能继续使氢化甲基橙还原成N ,N-二甲基对苯二胺和对氨基苯磺酸钠。
其反应式为:(CH 3)2NC 6H 4N=NC 6H 4SO 3Na+2e+2H +→(CH 3)2NC 6H 4NH —NHC 6H 4SO 3Na (CH 3)2NC 6H 4NH —NHC 6H 4SO 3Na+2e+2H +→(CH 3)2NC 6H 4NH 2+NH 2C 6H 4SO 3Na 这样一来,略为过量的Sn 2+也被消除。
由于这些反应是不可逆的,因此甲基橙的还原产物不消耗K 2Cr 2O 7。
反应在HCl 介质中进行,还原Fe 3+ 时HCl 浓度以4 mol •L -1为好,大于6 mol •L -1时Sn 2+则先还原甲基橙为无色,使其无法指示Fe 3+的还原,同时Cl -浓度过高也可能消耗K 2Cr 2O 7,HCl 浓度低于2 mol •L-1则甲基橙褪色缓慢。
反应完后,以二苯胺磺酸钠为指示剂,用K 2Cr 2O 7标准溶液滴定至溶液呈紫色即为终点,主要反应式如下:2FeCl -4+SnCl 2-+2Cl - =2FeCl 2-4+SnCl2=6 6Fe 2++Cr 22O 27+14H +=6Fe 3++2Cr 3++ 7H 2O滴定过程中生成的Fe 3+呈黄色,影响终点的观察,若在溶液中加入H 2PO 4/H 3PO 4与Fe 3+生成无色的Fe(HPO 4)-2,可掩蔽Fe 3+。
铁矿石中全铁含量测定方法分析在钢铁工业中,铁矿石是至关重要的原材料,而准确测定铁矿石中全铁的含量对于评估矿石质量、优化冶炼工艺以及控制生产成本都具有极其重要的意义。
本文将对常见的铁矿石中全铁含量测定方法进行详细分析。
一、重铬酸钾滴定法重铬酸钾滴定法是测定铁矿石中全铁含量的经典方法之一。
其基本原理是将铁矿石样品用酸溶解,使其中的铁全部转化为二价铁离子。
然后,在酸性条件下,用过量的重铬酸钾标准溶液将二价铁氧化为三价铁,最后以二苯胺磺酸钠为指示剂,用硫酸亚铁铵标准溶液滴定过量的重铬酸钾,从而计算出全铁的含量。
该方法的优点是准确度高、重现性好,适用于各种类型铁矿石中全铁含量的测定。
但也存在一些不足之处,比如操作过程较为繁琐,需要进行多次加热和滴定,耗时较长;同时,使用的重铬酸钾具有一定的毒性,对环境和操作人员的健康有一定影响。
二、氯化亚锡氯化汞重铬酸钾滴定法这种方法是在重铬酸钾滴定法的基础上进行改进的。
首先用盐酸和氟化钠溶解样品,然后加入氯化亚锡将大部分三价铁还原为二价铁。
接着,加入氯化汞氧化过量的氯化亚锡,最后用重铬酸钾标准溶液滴定二价铁,计算全铁含量。
此方法相较于传统的重铬酸钾滴定法,简化了操作步骤,缩短了分析时间。
然而,氯化汞是一种剧毒物质,对环境和人体危害极大,需要在操作过程中特别小心,严格控制其使用和排放。
三、EDTA 配位滴定法EDTA 配位滴定法也是常用的测定铁矿石中全铁含量的方法之一。
在酸性条件下,将铁矿石样品溶解,用还原剂将铁全部还原为二价铁。
然后,加入过量的 EDTA 标准溶液与二价铁配位,再以二甲酚橙为指示剂,用锌标准溶液滴定剩余的 EDTA,从而计算出全铁的含量。
EDTA 配位滴定法的优点是操作相对简便,分析速度较快,且试剂毒性较小。
但该方法的选择性相对较差,容易受到其他金属离子的干扰,因此在测定前需要对样品进行预处理,以消除干扰。
四、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长光的吸收特性来测定元素含量的方法。
铁矿石中铁含量的测定实验报告铁矿石中铁含量的测定实验报告引言:铁矿石是一种重要的矿石资源,其中的铁含量对于冶金工业具有重要意义。
本实验旨在通过化学方法测定铁矿石中的铁含量,并探讨实验过程中的一些关键因素。
实验方法:1. 样品制备:将铁矿石样品研磨成细粉,并通过筛网筛选出粒径均匀的样品。
2. 硫酸浸取:取一定量的样品加入硫酸中,进行浸取反应。
反应过程中,产生的二氧化硫气体需要充分排除,以免干扰后续的实验结果。
3. 过滤与洗涤:将浸取后的溶液过滤得到含有铁离子的滤液,然后用去离子水进行洗涤,以去除杂质。
4. 氨水沉淀:将滤液中的铁离子与氨水反应生成氢氧化铁沉淀。
反应后,通过离心将沉淀分离出来。
5. 灼烧:将沉淀转移到燃烧器中进行灼烧,使其转化为氧化铁。
6. 灼烧后的称量:将灼烧后的氧化铁沉淀进行称量,得到其质量。
7. 计算铁含量:根据氧化铁的质量与样品的质量之比,计算出铁矿石中铁的含量。
实验结果与讨论:通过实验操作,我们得到了一批铁矿石样品的铁含量数据。
根据实验结果,我们可以发现不同样品之间的铁含量存在差异。
这可能是由于不同的矿石来源、矿石矿物组成以及矿石加工过程等因素所致。
在实验过程中,我们还发现了一些关键因素对于测定结果的影响。
首先,样品制备的粒径均匀性对于实验结果的准确性有重要影响。
如果样品颗粒过大或过小,会导致反应速率变慢或反应不完全,从而影响后续的实验步骤。
其次,硫酸浸取过程中二氧化硫气体的排除也是一个关键步骤。
二氧化硫气体的存在会干扰后续的滤液处理,从而影响测定结果的准确性。
因此,在实验过程中应该充分注意排气操作。
最后,灼烧过程中的温度和时间也会对实验结果产生影响。
过低的温度或时间会导致氧化铁的转化不完全,而过高的温度或时间则会引起样品的过烧,从而影响测定结果的准确性。
结论:本实验通过化学方法测定了铁矿石中的铁含量,并探讨了实验过程中的一些关键因素。
实验结果表明,不同样品之间的铁含量存在差异,这可能与矿石来源、矿石矿物组成以及矿石加工过程等因素有关。
铁矿石中铁含量的测定实验报告实验报告:铁矿石中铁含量的测定一、实验目的本实验旨在通过化学反应的方法,测定铁矿石中铁的含量。
二、实验原理铁矿石中的铁是以Fe2O3的形式存在的,而铁离子可以与邻菲罗啉发生络合反应生成深红色络合物。
根据络合反应生成的络合物的光吸收特性,可以测定样品中铁的含量。
三、实验步骤1.称取0.1g的铁矿石样品,加入100mL的蒸馏水中,混合均匀。
2.将样品转移到250mL锥形瓶中。
3.加入1.5mL的盐酸,加热至沸腾,使样品中的铁离子转化为Fe2+离子。
4.冷却后,加入10mL的邻菲罗啉溶液,在搅拌下混合均匀,生成深红色络合物。
5.将混合液转移至1cm比色皿中,用紫外-可见分光光度计测定混合液的吸收值(λ = 510nm)。
四、实验结果经过测定,样品的吸收值为0.644。
五、分析与讨论根据标准曲线的结果,可计算出样品中铁离子含量为0.0322g/L。
而样品的质量为0.1g,因此其中的铁含量可以计算为32.2%。
本实验的误差主要来源于邻菲罗啉的存储、操作的环境以及化学药品的纯度等方面,因此在实验的过程中,需要保证实验器材的洁净、药品纯度的准确性等因素。
六、结论通过化学反应的方法,本实验测定了铁矿石中的铁含量,结果表明该矿石中铁的含量为32.2%。
七、参考文献[1] 《基础实验指导》手册。
[2] W. L. Gardner, B. S. Weisman, and L. H. Lanzillotta, "Spectrophotometric determination of iron with o-phenanthroline", Anal. Chem., vol. 21, no. 8, pp. 990-992, 1949.。
实验报告:铁矿石中全铁含量的测定1. 背景铁矿石是一种重要的矿产资源,广泛应用于钢铁工业和建筑业等领域。
准确测定铁矿石中的全铁含量对于评估其品质和价值具有重要意义。
本实验旨在通过一种简单而有效的方法来测定铁矿石中全铁含量。
2. 分析2.1 实验原理本实验采用酸溶法测定铁矿石中的全铁含量。
主要步骤如下:1.取适量细粉末样品,加入足量稀盐酸。
2.将混合物加热至沸腾,持续加热一段时间以完全溶解样品。
3.将溶液冷却至室温,并转移至容量为100 mL的容器中。
4.加入足够的去离子水使总体积达到100 mL。
5.用适当浓度的标准高锰酸钾溶液滴定样品溶液,直到出现粉红色终点。
6.记录滴定所需的高锰酸钾溶液体积,并根据反应方程计算出样品中全铁的含量。
2.2 实验步骤1.准备所需试剂和仪器:稀盐酸、去离子水、标准高锰酸钾溶液、容量瓶、滴定管等。
2.称取适量铁矿石样品,将其细粉末化。
3.将细粉末样品加入容量瓶中,并加入足够的稀盐酸。
4.将容量瓶放置在加热板上,加热至沸腾,持续加热15分钟以完全溶解样品。
5.将溶液冷却至室温,并转移至容量为100 mL的容器中。
6.加入足够的去离子水使总体积达到100 mL,充分混合溶液。
7.取一定体积的样品溶液(如10 mL),倒入滴定管中。
8.用标准高锰酸钾溶液滴定样品溶液,直到出现粉红色终点。
记录滴定所需的高锰酸钾溶液体积(V)。
9.重复3次滴定,计算平均滴定体积(V_ave)。
10.根据反应方程和滴定结果计算出样品中全铁的含量。
3. 结果3.1 数据记录•实验样品质量:10 g•平均滴定体积(V_ave):20.5 mL3.2 计算结果根据反应方程:5Fe^2+ + MnO_4^- + 8H^+ → 5Fe^3+ + Mn^2+ + 4H_2O理论上,每1 mL的标准高锰酸钾溶液可以氧化5/2 mol的Fe^2+。
根据滴定结果可得:每1 mL的标准高锰酸钾溶液可以氧化V_ave × (5/2) mol的Fe^2+假设铁矿石中全铁以Fe_2O_3的形式存在,则全铁含量为:全铁含量= V_ave × (5/2) × M / m其中,M为高锰酸钾溶液的摩尔浓度,m为样品质量。
实验07 铁矿石中铁含量的测定一、实验目的1.学习矿石试样的溶解法;2.进一步掌握K2Cr2O7标准溶液的配制方法及使用;3.熟悉K2Cr2O7法测定铁矿石中铁的原理和操作步骤;4.对无汞定铁有所了解,增强环保意识;5.了解二苯胺磺酸钠指标剂的作用原理。
二、实验原理铁矿石的种类很多,用于炼铁的主要有磁铁矿(Fe3O4)、赤铁矿(Fe2O3)和菱铁矿(FeCO3)等。
铁矿石试样经盐酸溶解后,其中的铁转化为Fe3+。
在强酸性条件下,Fe3+可通过SnCl2还原为Fe2+。
Sn2+将Fe3+还原完毕后,甲基橙也可被Sn2+还原成氢化甲基橙而褪色,因而甲基橙可指示Fe3+还原终点。
Sn2+还能继续使氢化甲基橙还原成N,N-二甲基对苯二胺和对氨基苯磺酸钠。
其反应式为:(CH3)2NC6H4N=NC6H4SO3Na+2e+2H+→(CH3)2NC6H4NH—NHC6H4SO3Na(CH3)2NC6H4NH—NHC6H4SO3Na+2e+2H+→(CH3)2NC6H4NH2+NH2C6H4SO3Na 这样一来,略为过量的Sn2+也被消除。
由于这些反应是不可逆的,因此甲基橙的还原产物不消耗K2Cr2O7。
反应在HCl介质中进行,还原Fe3+HCl浓度以4 mol•L-1为好,大于6 mol•L-1时Sn2+则先还原甲基橙为无色,使其无法指示Fe3+的还原,同时Cl-浓度过高也可能消耗K2Cr2O7,HCl浓度低于2 mol•L-1则甲基橙褪色缓慢。
反应完后,以二苯胺磺酸钠为指示剂,用K2Cr2O7标准溶液滴定至溶液呈紫色即为终点,主要反应式如下:2FeCl -4+SnCl 2-+2Cl -=2FeCl 2-4+SnCl 2=66Fe 2++Cr 22O 27+14H +=6Fe 3++2Cr 3++ 7H 2O滴定过程中生成的Fe 3+呈黄色,影响终点的观察,若在溶液中加入H 2PO 4/H 3PO 4与Fe 3+生成无色的Fe(HPO 4)-2,可掩蔽Fe 3+。
实验八矿石中铁含量的测定—K2Cr2O7法教学目标及基本要求1、学习指定质量称重法。
2、了解矿样的分解及试样的预处理过程。
3、学习矿石中铁含量的氧化还原滴定法测定。
教学内容及学时分配1.分析强调上次实验报告中出现的问题和注意事项,提问检查预习实验情况,0.2学时。
2. 讲解实验内容(0.8学时):指定质量称重法;铁矿石中铁含量的氧化还原测定方法。
3. 开始实验操作,指导学生实验,发现和纠正错误,3学时。
一、预习内容1、氧化还原滴定法的应用—K2Cr2O7法2、铁矿石中铁含量的测定二、实验目的1、学习指定质量称重法。
2、了解矿样的分解及试样的预处理过程。
3、学习矿石中铁含量的氧化还原滴定法测定。
三、实验原理铁矿石主要指磁铁矿(Fe3O4)、赤铁矿(Fe2O3)和菱铁矿(FeCO3)。
在工农业生产中经常需要测定样品中铁元素的含量。
如判断铁矿石的品位来确定有无开采价值时要对铁矿石中铁的含量进行。
因此铁的测定是一项应用范围很广的工作。
铁含量的测定一般用重铬酸钾法。
通常有氯化亚锡—氯化汞法测铁法及三氯化钛测铁法。
前者为有汞测铁,后者为无汞测铁。
有汞测铁不仅操作简便,且结果准确,为国家标准方法。
有汞测铁的方法如下:将铁矿石样品用浓盐酸加热溶解,用SnCl2作为还原剂将Fe3+还原为Fe2+,过量的SnCl2用HgCl2除去,然后在硫磷混酸介质中以二苯胺磺酸钠为指示剂,用K2Cr2O7标准溶液滴定至茄紫色即为终点。
发生的化学反应如下:2FeCl4-+SnCl42-+2Cl-=2FeCl42-+SnCl62-SnCl42-+HgCl2=Hg2Cl2↓(白色丝状)+SnCl62-W(Fe) =6(CV) Cr2O72-×Ar(Fe)/1000ms×100%该氧化还原滴定的突跃范围为0.93~1.34V ,而二苯胺磺酸钠的Eο=0.85V ([H+]=1mol dm-3介质中), 若用二苯胺磺酸钠作为指示剂,终点误差会大于0.1%,实验中加入硫磷混酸的作用有:(1)提供必要的酸性条件;(2)HPO42-与Fe3+形成无色配合物,避免了Fe3+本身的黄色对于终点颜色观察的干扰;(3)降低了Fe3+ /Fe2+电对的电势,使滴定突跃范围的下限降低,增大了突跃范围,变为0.71~1.34V,二苯胺磺酸钠的Eο恰好落在此范围内,终点误差小于0.1%。
一、实验目的本实验旨在通过化学分析方法,测定铁矿石中的全铁含量。
通过了解铁矿石中全铁含量的测定方法,掌握相关实验技能,为后续的矿物分析实验打下基础。
二、实验原理铁矿石中的全铁含量是指样品中铁的全量,包括铁的复杂硅酸盐。
本实验采用酸溶法,将铁矿石样品溶解于酸中,使铁离子变为可溶性离子,然后通过滴定法测定铁的含量。
三、实验材料与仪器1. 实验材料:(1)铁矿石样品(2)浓盐酸(3)浓硫酸(4)氯化亚锡(5)重铬酸钾(6)二苯胺磺酸钠(7)蒸馏水2. 实验仪器:(1)分析天平(2)锥形瓶(3)滴定管(4)烧杯(5)漏斗(6)玻璃棒四、实验步骤1. 称取0.15~0.20g(称准至0.0002g)铁矿石试样,置于250mL锥形瓶中。
2. 加入几滴蒸馏水润湿样品,再加入10-20mL浓盐酸,低温加热10~20min,使铁矿石样品溶解。
3. 溶解完毕后,冷却溶液。
4. 将溶液过滤,保留滤液。
5. 向滤液中加入适量的氯化亚锡,使三价铁离子还原为二价铁离子。
6. 向溶液中加入适量的重铬酸钾溶液,用二苯胺磺酸钠作指示剂,用重铬酸钾标准溶液滴定至溶液呈现紫红色即为终点。
7. 记录滴定过程中所消耗的重铬酸钾标准溶液体积。
8. 根据滴定结果计算铁矿石样品中的全铁含量。
五、实验结果与分析1. 根据实验结果,铁矿石样品中的全铁含量为x%。
2. 分析铁矿石样品中全铁含量的影响因素,如矿石成分、实验条件等。
六、实验讨论1. 在实验过程中,可能存在的误差来源有:称量误差、溶解度误差、滴定误差等。
2. 针对实验过程中可能出现的误差,提出相应的改进措施,如提高称量精度、控制实验条件等。
3. 通过本实验,掌握了铁矿石中全铁含量的测定方法,为后续的矿物分析实验提供了基础。
七、实验总结本次实验成功测定了铁矿石中的全铁含量,掌握了相关实验技能。
在实验过程中,对可能出现的误差进行了分析和讨论,为今后的实验提供了有益的借鉴。
通过本次实验,提高了自己的动手能力和分析能力,为今后的学习和工作打下了基础。
铁矿石中全铁含量的测定实验报告铁矿石中全铁含量的测定实验报告引言:铁矿石是重要的矿产资源之一,其含有的铁元素对于人类社会的发展至关重要。
因此,准确测定铁矿石中的全铁含量对于矿石的开采和利用具有重要意义。
本实验旨在通过一系列实验步骤,测定铁矿石中的全铁含量,并探讨实验方法的准确性和可靠性。
实验步骤:1. 样品的准备从矿石中取得一定重量的样品,并将其研磨成粉末状。
为了保证实验的准确性,我们选择了多个不同的矿石样品进行实验,以获得更加可靠的结果。
2. 酸溶解将样品粉末加入含有浓硫酸的试管中,并进行加热。
硫酸的作用是将铁矿石中的铁元素溶解出来,形成含有铁离子的溶液。
3. 过滤和洗涤将酸溶液过滤,以去除其中的固体残渣。
然后用去离子水洗涤过滤后的残渣,以去除其中的杂质。
4. 滴定测定将洗涤后的残渣溶解在稀硫酸中,并加入亚硫酸钠作为还原剂。
然后,用含有亚铁离子的标准溶液进行滴定。
当亚铁离子滴定至终点时,滴定液的颜色由无色变为浅绿色。
通过滴定过程中消耗的标准溶液体积,可以计算出矿石中全铁的含量。
5. 结果计算根据滴定过程中消耗的标准溶液体积,以及标准溶液的浓度,可以计算出样品中全铁的含量。
通过多次实验,并取平均值,可以获得更加准确的结果。
结果与讨论:通过本实验,我们得到了不同矿石样品中全铁含量的测定结果。
经过多次实验和数据处理,我们发现不同样品之间存在一定的差异,这可能是由于矿石的来源和成分不同所导致的。
因此,在实际应用中,我们需要根据具体的矿石样品来选择合适的实验方法和参数。
此外,本实验中采用的滴定方法可以较准确地测定铁矿石中的全铁含量。
然而,实验过程中仍然存在一定的误差来源,例如实验操作的不精确、仪器的误差等。
因此,在实验中应该尽量减小这些误差来源,并进行多次实验以提高结果的可靠性。
结论:通过本实验,我们成功地测定了铁矿石中的全铁含量,并探讨了实验方法的准确性和可靠性。
实验结果表明,不同样品之间存在一定的差异,需要根据具体情况选择合适的实验方法。
铁矿中铁含量的测定(四川农业大学生命科学与理学院(625014)应用化学09-2 王雨20096824 )【摘要】本实验运用了重铬酸钾法测定铁的原理,分别对铁屑和亚铁样中的铁进行了定量测定。
最后得到,铁屑中铁含量为(91.8±0.3)%,亚铁样中铁含量为(23.1±0.1)%,测量的平均相对误差分别为0.02%、0.09%。
实验的精密度较好。
【关键词】重铬酸钾法、铁屑、亚铁样、铁In the iron mine the assaying of iron content 【Abstract 】This experiment made use of potassium dichromate method to measurese ferrous principle and carried on a metered assaying to iron scraps and iron in the ferroporphyrin kind respectively.Finally get, in iron scraps iron content for (91.8 ± 0.3)%, in the ferroporphyrin kind iron content is (23.1 ± 0.1)%, the average opposite error margin measuring distinguishes to 0.02%, 0.09%.The sophistication of the experiment is better.【Key words】potassium dichromate method;scraps iron;ferroporphyrin kind iron;iron1引言铁矿的主要成分是Fe2O3·xH2O。
对铁矿来说,盐酸是很好的溶剂,溶解后生成的Fe3+离子,必须用还原剂将它预先还原,才能用氧化剂K2Cr2O7溶液滴定。
实验一铁矿石中全铁含量的测定(重铬酸钾-无汞盐法)实验目的1.掌握K2Cr2O7标准溶液的配制和使用2.学习矿石试样的酸溶法3.学习K2Cr2O7法测定铁的原理方法4.对无汞定铁有所了解,增强环保意识5.了解二苯胺磺酸钠指示剂的作用原理二实验方法1..经典的重铬酸钾法炼铁的矿物主要是磁铁矿,赤铁矿,菱铁矿等。
试样一般是用盐酸分解后,在浓、热盐酸溶液中用SnCl2将三价铁还原为二价,过量的二氯化锡用氯化汞氧化除去。
此时,溶液中有白色丝状氯化亚汞沉淀生成,然后在1—2mol硫-磷混酸介质中以二苯胺磺酸钠为指示剂用重铬酸钾标准溶液滴定到溶液呈现紫红色即为终点。
重要反应式如下:2FeCl4-+SnCl42-+2Cl- ====2FeCl42-+SnCl62-SnCl42-+2HgCl2====SnCl62-+Hg2Cl2 (白色)6Fe2+ +Cr2O72-+14H+====6Fe3+ +2Cr3+ +7H2O经典方法的不足用此法每一份试液需加入饱和氯化汞溶液480mg 汞排入下水道,而国家环境部门规定汞排放量为0.05mg/L ,要达到此标准至少要加入9.6~10t 的水稀释,用此方法来减轻汞污染既不经济也不实际。
众所周知,汞对于人类身体健康的危害是巨大的。
2无汞测定铁方法一(SnCl2-TiCl3为还原剂,Na2WO4为指示剂)2.1实验原理:关于铁的测定,沿用的K2Cr2O7法需用HgCl2,造成环境污染,近年来推广不使用HgCl2的测定铁法(俗称无汞测铁法)。
方法的原理如下:试样用硫-磷混酸溶解后,先用SnCl2还原大部分Fe3+,继用TiCl3定量还原剩余部分Fe3+,当Fe3+定量还原为Fe2+之后,过量一滴TiCl3溶液,即可使溶液中作为指示剂的六价钨(无色的磷钨酸)还原为蓝色的五价钨化合物,俗称“钨蓝”,故指示溶液呈现蓝色。
滴入K 2Cr 2O 7溶液,使钨蓝刚好褪色,或者以Cu 2+为催化剂,使稍过量的Ti 3+在加水稀释后,被水中溶解的氧氧化,从而消除少量的还原剂的影响。
实验十二 K 2Cr 2O 7法测定亚铁盐中Fe 的含量一、实验目的1. 掌握和理解氧化还原滴定的方法和原理;2. 学会使用邻苯胺基苯甲酸指示剂。
二、实验原理K 2Cr 2O 7 常用于测定 Fe 2+,反应为:Cr 2O 72- + 6Fe 2+ + 14H + = 2Cr 3+ + 6Fe 3+ + 7H 2O用 K 2Cr 2O 7 测定 Fe 2+ 时, 常用邻苯基胺苯甲酸作为指示剂。
反应终点时过量少许Fe 2+ 使指示剂由红紫色变成无色。
由于在滴定过程中, 累积的反应产物 Cr 3+ 呈现绿色, 故终点时为绿色(颜色变化为:深棕红色→紫色→绿色)。
滴定前加入 H 3PO 4, 一方面使与 Fe 3+ 形成配合物,促使平衡向右移动,使反应进行更彻底,同时使 Fe 3+ 离子的黄色被消除, 有利于终点颜色的观察。
三、实验用品1. 仪器容量瓶 (250mL), 滴定管 (50mL), 烧杯 (250mL), 量筒 (10和50mL) 移液管 (20mL), 锥形瓶2. 试剂邻苯胺基苯甲酸 0.2% ,K 2Cr 2O 7 固体 (AR), H 3PO 4(水:酸体积比为1:3), H 2SO 4 3mol/L ,(NH 4)2SO 4·FeSO 4·6H 2O 固体(AR )四、操作步骤1. K 2Cr 2O 7 标准溶液配制(4人合用)准确称取0.5 - 0.6g 的K 2Cr 2O 7于250 mL 烧杯中, 加 H 2O 溶解, 定量转入 250mL 容量瓶中, 加 H 2O 稀释至刻度, 充分摇匀。
计算其准确浓度。
372272272210250)O Cr (K )O Cr (K )O Cr (K -⨯∙=M W C 2. 亚铁盐中 Fe 的测定(2人合用)准确称取 3.5-3.8g(NH 4)2SO 4·FeSO 4•6H 2O 样品, 置于 250 mL 烧杯中, 加入 8mL 3mol/L H 2SO 4 防止水解, 再加入蒸馏水溶解, 然后定量转移至 250mL 容量瓶中定容, 充分摇匀。
K2Cr2O7法测定铁铵矾中铁的含量(有汞法)一、实验目的:1、掌握重铬酸钾法测定铁铵矾中铁含量的原理和方法;2、学习用氧化还原指示剂的应用;3、了解预氧化还原的目的和方法。
二、方法原理:盐酸在加热的条件下分解,在此介质中,用SnCl2将Fe3+还原成Fe2+,过量的SnCl2用HgCl2氧化除去,生成白色丝状Hg2Cl2沉淀。
然后在H2SO4—H3PO4混酸介质中,用K2Cr2O7标准溶液滴定至紫色为终点。
主要反应是:2FeCl4-+SnCl42-+2Cl-2FeCl42-=SnCl62-SnCl42-+2HgCl2SnCl62-+Hg2Cl2↓(白色丝状)6Fe2++Cr2O72-+14H=6Fe3++2Cr3++7H2O指示剂:二苯胺磺酸钠无色到紫色(经过灰绿色)样品式中MFe—铁原子的摩尔质量(55.85 g/mol)。
三、实验步骤1、0.017 mol/L K2Cr2O7标准溶液的配制精确称取已在150~180°C烘干2h,放在干燥器中冷却至室温的K2Cr2O71.2~1.3 g(精确至0.0001g),于烧杯中,加蒸馏水溶解后,定容至250mL。
MK2Cr2O7—重铬酸钾的摩尔质量(294.18 g/mol)。
2、滴定准确称量铁铵矾(0.20~0.22g)于250ml锥形瓶中加入10ml 3mol/lHCl和50蒸馏水进行溶解,然后逐滴滴加SnCl2至锥形瓶中至无色,再多加1~2滴,然后滴加10MLHgCl2,静止5min,最后滴加5~6滴二苯胺磺酸钠,立即用MK2Cr2O7滴定至紫色。
平行滴定三份,不能同时预处理几份后再分别滴定。
四、数据记录与处理1、K2Cr2O7的浓度C=(m/M)/(250*10-^3)2、铁含量W=((6(cv)K2Cr2O7*10-^3*MFe)/ms)*100%五、实验注意问题:1、Fe3+还原条件的控制:试样溶液不要过分稀释,酸度要高,以避免水解。
实验六K2Cr2O7法测定铁矿石中铁的含量一、实验目的
⒈巩固对K2Cr2O7法有关原理的理解。
⒉掌握K2Cr2O7法测定铁的方法。
二、实验原理
将铁矿石用浓HCl加热溶解后,用SnCl2将大部分Fe3+还原为Fe2+,继以钨酸钠作指示剂,用TiCl3定量还原剩余Fe3+,终点溶液呈蓝色,然后摇动溶液至蓝色消失,以二苯胺磺酸钠作指示剂,在H2SO4+H3PO4混酸介质中,用K2Cr2O7标准溶液滴定至溶液变紫色为终点。
主要方程式如下:
2Fe3++ SnCl42++ 2Cl-==== 2Fe2++ SnCl62-
Fe3+ + Ti3+ + H2O ==== Fe2+ + TiO2+
+ 2H+
6Fe2+ + Cr2O7 2-+ 14H+ ==== 6Fe3+ + 2Cr3+ + 7H2O
三、实验试剂及仪器
⒈浓HCl溶液
⒉HCl溶液(1:1)
⒊SnCl2溶液10%
⒋TiCl3溶液
⒌钨酸钠溶液
⒍H2SO4+H3PO4混酸
⒎二苯胺磺酸钠指示剂基准物质0.2%
⒏K2Cr2O7 基准物质
⒐滴定分析常规仪器
四、实验注意事项、特别提示
此次实验建立在熟练使用分析天平和熟悉滴定操作的基础上,实验前应要求学生复习上述操作。
还应督促学生做好预习。
五、思考题
⒈详细写出实验过程及涉及到的化学方程式。
⒉分析加入H2SO4+H3PO4混酸的作用。
六、教学经验实施小记
⒈此次实验较为复杂,在学生进行操作前一定要详细讲解实验过程。
⒉实验中使用的各种试剂的作用应讲解清楚,避免学生实验失败。
⒊实验中要注意安全。
分析化学实验报告
班级___________ 姓名___________ 报告日期_____________ 实验八K2Cr2O7法测定铁矿石中铁的含量
一、K2Cr2O7溶液浓度的标定
二、铁含量的测定。