离散数学实验报告
- 格式:docx
- 大小:616.74 KB
- 文档页数:45
离散数学实验报告离散数学实验报告引言:离散数学是一门研究离散结构的数学学科,它对于计算机科学、信息技术等领域具有重要的应用价值。
本实验报告旨在通过实际案例,探讨离散数学在现实生活中的应用。
一、图论在社交网络中的应用社交网络已成为人们日常生活中不可或缺的一部分。
图论作为离散数学的重要分支,对于分析和研究社交网络具有重要意义。
以微信为例,我们可以通过图论的方法,分析微信中的好友关系、群组关系等。
通过构建好友关系图,我们可以计算某个人在社交网络中的影响力,进而预测他的行为模式。
二、布尔代数在电路设计中的应用布尔代数是离散数学中的重要内容,它在电路设计中扮演着重要的角色。
通过布尔代数的运算规则和定理,我们可以简化复杂的逻辑电路,提高电路的可靠性和效率。
例如,我们可以使用布尔代数中的与、或、非等逻辑运算符,设计出满足特定功能需求的逻辑电路。
三、排列组合在密码学中的应用密码学是离散数学的一个重要应用领域。
排列组合是密码学中常用的数学工具之一。
通过排列组合的方法,我们可以设计出强大的密码算法,保障信息的安全性。
例如,RSA加密算法中的大素数的选择,就涉及了排列组合的知识。
四、概率论在数据分析中的应用概率论是离散数学中的一门重要学科,它在数据分析中具有广泛的应用。
通过概率论的方法,我们可以对数据进行统计和分析,从而得出一些有意义的结论。
例如,在市场调研中,我们可以通过抽样调查的方法,利用概率论的知识,对整个市场的情况进行推断。
五、图论在物流规划中的应用物流规划是现代物流管理中的一个重要环节。
图论作为离散数学的重要分支,可以帮助我们解决物流规划中的一些问题。
例如,我们可以通过构建物流网络图,分析货物的流动路径,优化物流的运输效率,降低物流成本。
结论:离散数学作为一门重要的数学学科,在现实生活中具有广泛的应用。
通过对离散数学的学习和应用,我们可以解决实际问题,提高工作效率,推动社会的发展。
希望通过本实验报告的介绍,能够增加对离散数学的兴趣,进一步挖掘离散数学在实际生活中的潜力。
实验报告(2014 / 2015 学年第一学期)课程名称离散数学实验名称偏序关系中盖住关系的求取及格论中有补格的判定实验时间2014 年11 月28 日指导单位南京邮电大学指导教师罗卫兰学生姓名沈一州班级学号B12040920学院(系) 计算机软件学院专业NIIT(软嵌)实验报告实验名称偏序关系中盖住关系的求取及格论中有补格的判定指导教师罗卫兰实验类型 Windows+VC 实验学时 4 实验时间 11.28 一、实验目的和要求内容:编程实现整除关系这一偏序关系上所有盖住关系的求取,并判定对应偏序集是否为格。
cout<<"因为"<<a[i]<<"∨("<<a[j]<<"∧"<<a[k]<<")!=("<<a[i]<<"∨"<<a[j]<<")∧("<<a[i]<<"∨"<<a[k]<<"),所以这不是一个布尔格。
\n";//验证a∨(b∧c)==(a∨b) ∧ (a∨c)break;}}if(flag)break;}if(flag)break;}if(!flag)cout<<"因为所有成员都满足分配性,所以这是一个分配格。
\n";四、运行结果:首先是输入界面:然后输入24:然后询问是否再次输入:这次输入99:特殊情况,若输入0或者负数:此时会一直提示输入错误直到输入成功。
若输入1:若输入非Y,则退出程序:实验报告五、实验小结这次题目要求是根据整除关系建立偏序关系,集合由一个正整数的因子所构成,所以该偏序集中的最大下界为1,最小上界为该正整数,所以该偏序集是一个格。
学院理学院学生姓名 xxx学号 xxxxxxxxxxx实验:编程二元关系的传递性判别,二元关系闭包方法一.前言引语:二元关系是离散数学中重要的内容。
因为事物之间总是可以根据需要确定相应的关系。
从数学的角度来看,这类联系就是某个集合中元素之间存在的关系。
二.数学原理:1.传递关系:对任意的x,y,z∈A,如果<x,y>∈R且<y,z>∈R,那么<x,z>∈R,则称关系R是传递的,或称R具有传递性,即R在A上是传递的⇔ (∀x)(∀y)(∀z)[(x ∈A)∧(y∈A)∧(z∈A)∧((<x,y>∈R)∧(<y,z>∈R)→(<x,z>∈R))]=12.自反闭包、对称闭包、传递闭包:设R是定义在A上的二元关系,若存在A 上的关系R′满足:1)R′是自反的(或对称的、或可传递的),2)R⊆ R′,3)对A上任何其它满足1)和2)的关系R〞,都有:R′⊆R〞。
则称R′为R的自反闭包(或对称闭包、或传递闭包),分别记为r(R)、(s(R)和t(R))。
三.实验编程语言:c++四.实验程序源代码:#include<iostream>using namespace std;int cdx(int a[100][100],int n){int b[100][100],i,j;for(i=1;i<=n-1;i++){for(j=1;j<=n;j++){if(a[1][j]==a[i+1][j] && a[1][j]==0)b[i][j]=0;elseb[i][j]=1;}for(j=1;j<=n;j++){if(b[i][j]!=a[1][j])return 0;}}return 1;}void zfbb(int a[100][100],int n){int i,j;for(j=1;j<=n;j++){for(i=1;i<=n;i++){if(a[i][j]==1){a[i][i]=1;a[j][j]=1;}}}cout<<"自Á?反¤¡ä闭À?包㨹关?系¦Ì矩?阵¨®为a:êo"<<endl;for(i=1;i<=n;i++){for(j=1;j<=n;j++){if(a[i][j]>1){a[i][j]=1;cout<<a[i][j]<<" ";}else{cout<<a[i][j]<<" ";}}cout<<""<<endl;}}void dcbb(int a[100][100],int n){int i,j;for(j=1;j<=n;j++){for(i=1;i<=n;i++){if(a[i][j]==1){a[j][i]=1;}}}cout<<"对?称?闭À?包㨹关?系¦Ì矩?阵¨®为a:êo"<<endl;for(i=1;i<=n;i++){for(j=1;j<=n;j++){if(a[i][j]>1){a[i][j]=1;cout<<a[i][j]<<" ";}else{cout<<a[i][j]<<" ";}}cout<<""<<endl;}}void cdbb(int a[100][100],int n){int i,j,k;for(j=1;j<=n;j++){for(i=1;i<=n;i++){if(a[i][j]==1){for(k=1;k<=n;k++){a[i][k]=a[i][k]+a[j][k];}}}}cout<<"传ä?递ÌY闭À?包㨹关?系¦Ì矩?阵¨®为a:êo"<<endl;for(i=1;i<=n;i++){for(j=1;j<=n;j++){if(a[i][j]>1){a[i][j]=1;cout<<a[i][j]<<" ";}else{cout<<a[i][j]<<" ";}}cout<<""<<endl;}}void main(){int i,j,n,a[100][100],sel,ins;cout<<"请?输º?入¨?二t元a关?系¦Ì矩?阵¨®维?数ºyn"<<endl;cin>>n;cout<<"请?按ã¡äa[1,1],a[1,2]...a[1,n],a[2,1]...a[n.n]的Ì?顺3序¨©输º?入¨?关?系¦Ì矩?阵¨®的Ì?元a素?值¦Ì(ê¡§0,ê?1)ê?"<<endl;for(i=1;i<=n;i++)for(j=1;j<=n;j++){cin>>a[i][j];}INDEX:cout<<"请?输º?入¨?要©a判D定¡§的Ì?性?质¨º:êo"<<endl;cout<<"1、¡é传ä?递ÌY性?"<<endl;cout<<"2、¡é自Á?反¤¡ä闭À?包㨹"<<endl;cout<<"3、¡é对?称?闭À?包㨹"<<endl;cout<<"4、¡é传ä?递ÌY闭À?包㨹"<<endl;cout<<"5、¡é退ª?出?"<<endl;cin>>sel;if(sel==1){ins=cdx(a,n);if(ins==0)cout<<"该?二t元a关?系¦Ì不?具?有®D传ä?递ÌY性?。
引言:离散数学是一门基础性的数学学科,广泛应用于计算机科学、电子信息等领域。
本文是《离散数学实验报告(二)》,通过对离散数学实验的深入研究和实践,总结了相关的理论知识和应用技巧,希望能够对读者对离散数学有更加深入的理解。
概述:本实验主要涉及离散数学中的集合、关系、图论等基本概念及其应用。
通过对离散数学的实验学习,深入掌握了这些概念和应用,对于在实际问题中的应用和拓展具有重要的意义。
正文内容:一、集合相关概念及应用1.定义:集合是由元素组成的无序的整体。
介绍了集合的基本概念、集合的表示法以及集合的运算。
2.集合的应用:介绍了集合在数学、计算机科学中的应用,如数据库的查询、关系代数等。
二、关系相关概念及应用1.定义:关系是一个元素与另一个元素之间的对应关系。
介绍了关系的基本概念、关系的表示方法及其运算。
2.关系的应用:介绍了关系在图像处理、社交网络分析等领域的应用,如图像中的像素点之间的关系、社交网络中用户之间的关系等。
三、图论基础知识及应用1.定义:图是由顶点和边组成的抽象的数学模型。
介绍了图的基本概念、图的表示方法和图的运算。
2.图论的应用:介绍了图论在路由算法、电子商务等领域的应用,如路由器的路由选择、电子商务中的商品推荐等。
四、布尔代数的概念及应用1.定义:布尔代数是一种基于集合论和逻辑学的代数系统。
介绍了布尔代数的基本概念、布尔表达式及其化简方法。
2.布尔代数的应用:介绍了布尔代数在电路设计、开关控制等方面的应用,如逻辑门电路的设计、开关控制系统的建模等。
五、递归的概念及应用1.定义:递归是一种通过调用自身来解决问题的方法。
介绍了递归的基本原理、递归的应用技巧。
2.递归的应用:介绍了递归在算法设计、树的遍历等方面的应用,如快速排序算法、树结构的遍历等。
总结:通过本次离散数学的实验学习,我深入掌握了集合、关系、图论等基本概念与应用。
集合的应用在数据库查询、关系代数等方面起到了重要的作用。
关系的应用在图像处理、社交网络分析等领域有广泛的应用。
离散数学实验报告一、实验目的离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、人工智能等领域有着广泛的应用。
本次离散数学实验的目的在于通过实际操作和编程实现,深入理解离散数学中的基本概念、原理和算法,提高解决实际问题的能力,培养逻辑思维和创新能力。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
同时,还使用了一些相关的数学库和工具,如 sympy 库用于符号计算。
三、实验内容1、集合运算集合是离散数学中的基本概念之一。
在实验中,我们首先定义了两个集合 A 和 B,然后进行了并集、交集、差集等运算。
通过编程实现这些运算,加深了对集合运算定义和性质的理解。
```pythonA ={1, 2, 3, 4, 5}B ={4, 5, 6, 7, 8}并集union_set = Aunion(B)print("并集:", union_set)交集intersection_set = Aintersection(B)print("交集:", intersection_set)差集difference_set = Adifference(B)print("A 与 B 的差集:", difference_set)```2、关系的表示与性质判断关系是离散数学中的另一个重要概念。
我们使用矩阵来表示关系,并通过编程判断关系的自反性、对称性和传递性。
```pythonimport numpy as np定义关系矩阵relation_matrix = nparray(1, 0, 1, 0, 1, 0, 1, 0, 1)判断自反性is_reflexive = all(relation_matrixii == 1 for i inrange(len(relation_matrix)))print("自反性:", is_reflexive)判断对称性is_symmetric = all(relation_matrixij == relation_matrixji for i in range(len(relation_matrix)) for j in range(len(relation_matrix)))print("对称性:", is_symmetric)判断传递性is_transitive = Truefor i in range(len(relation_matrix)):for j in range(len(relation_matrix)):for k in range(len(relation_matrix)):if relation_matrixij == 1 and relation_matrixjk == 1 and relation_matrixik == 0:is_transitive = Falsebreakprint("传递性:", is_transitive)```3、图的遍历图是离散数学中的重要结构。
民族学院计算机科学与工程学院实验报告实验题目:集合的运算课程名称:离散数学实验类型:□演示性□验证性□操作性□设计性□综合性专业:网络工程班级:网络111班学生:山学号:2011083123实验日期:2013年12月22日实验地点:I区实验机房实验学时:8小时实验成绩:指导教师签字:年月日老师评语:实验题目:集合的运算实验原理:1、实验容与要求:实验容:本实验求两个集合间的运算,给定两个集合A、B,求集合A与集合B 之间的交集、并集、差集、对称差集和笛卡尔乘积。
实验要求:对于给定的集合A、B。
用C++/C语言设计一个程序(本实验采用C++),该程序能够完成两个集合间的各种运算,可根据需要选择输出某种运算结果,也可一次输出所有运算结果。
2、实验算法:实验算法分为如下几步:(1)、设计整体框架该程序采取操作、打印分离(求解和输出分开)的思想。
即先设计函数求解各部分运算并将相应结果传入数组(所求集合)中,然后根据需要打印运算结果。
(2)、建立一个集合类(Gather)类体包括的数组a、b、c、d、e、f、g分别存储集合A、B以及所求各种运算的集合。
接口(实现操作的函数)包括构造函数,菜单显示函数,求解操作函数,打印各种运算结果等函数。
(3)、设计类体中的接口构造函数:对对象进行初始化,建立集合A与集合B。
菜单显示函数:设计提示选项,给使用者操作提示。
操作函数:该函数是程序的主题部分,完成对集合的所有运算的求解过程,并将结果弹入(存入)对应数组(集合)中,用于打印。
具体操作如下:1*求交集:根据集合集的定义,将数组a、b中元素挨个比较,把共同元素选出来,并存入数组c(交集集合)中,即求得集合A、B的交集。
2*求并集:根据集合中并集的定义,先将数组a中元素依次存入数组g(并集集合)中,存储集合A中某元素前,先将其与已存入g中的元素依次比较,若相同则存入下一个元素,否则直接存入g中,直到所有A中元素存储完毕。
长治学院《离散数学》实验报告专业:计算机科学与技术班级:计科1202班学号:姓名:武文超组别: 1指导老师:李艳玲目录一、实验目的 (3)二、算法思想 (3)三、流程图 (4)四、实验结果(截图) (5)五、程序代码 (7)六、总结 (10)一、实验目的本实验课程是信息专业学生的一门专业基础课程,通过实验,帮助学生更好地掌握计算机科学技术常用的离散数学中的概念、性质和运算;通过实验提高学生编写实验报告、总结实验结果的能力;使学生具备程序设计的思想,能够独立完成简单的算法设计和分析。
熟悉掌握合取、析取、蕴涵和等价,进一步能用它们来解决实际问题。
二、算法思想1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、蕴含和等价的真值。
(1)合取:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P∧Q, 读作P、Q的合取, 也可读作P与Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = T, Q = T时方可P∧Q =T, 而P、Q只要有一为F则P∧Q = F。
这样看来,P∧Q可用来表示日常用语P与Q, 或P并且Q。
(2)析取:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P∨Q, 读作P、Q的析取, 也可读作P或Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = F, Q = F时方可P∨Q =F, 而P、Q只要有一为T则P∨Q = T。
这样看来,P∨Q可用来表示日常用语P或者Q。
(3)蕴含:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P→Q, 读作P条件Q, 也可读作如果P,那么Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = T, Q = F时方可P→Q =F, 其余均为T。
(4)等价:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P←→Q, 读作P双条件于Q。
离散数学实验报告(一)一、实验目的求命题公式的真值表及其主析取范式和主合取范式二、问题分析本程序最终的目的应是求命题公式的主析取范式和主合取范式,而在有命题真值表的情况下,主析取范式和主合取范式的求解将变得十分简单。
所以,该程序的关键问题应该是求解命题公式的真值表,此后在真值表的基础上完成主析取范式和主合取范式的求解。
(一)前期分析与部分变量准备规定前提,真值表中的T/F在该程序中用布尔类型的1/0来表达。
如此,可以方便程序的编写与运算。
首先,我们要确定各个联结词的符号表达,为了方便讨论,不妨在此先令各联结词表达如下:合取(*)、析取(/)、否定(-)、单条件(%)、双条件(@)。
接着,我们就需要明确各联结词所对应符号在程序中的功能。
具体来看,合取与析取可以分别使用c++自带的&&(且)和||(或)进行布尔运算,取否定也可以直接使用!(取非)运算;而对于单条件、双条件这两个联结词来看,在c++中并无已有的运算定义,所以我们要利用函数定义的方式重新明确其含义。
而后,定义char类型数组a[]用于存储命题公式,为了方便程序的实现,我们将命题变元与联结词分开存储于char类型数组b[]和c[]中。
(二)真值表输出算法以下,我们便进入了程序的核心部分——完成真值表的计算与输出。
碍于本人c++编程知识的局限,暂时只能实现输入三个变元、无否定情况下的命题公式的真值表输出。
为了完成真值表的输出,要解决以下几个问题1. 真值表的格式与指派控制对此,我们使用三层for语句嵌套完成真值表的每一行输出。
在循环的同时,我们还需要提前定义一个布尔数组p[],以根据每一行的输出完成三个变元的指派,并将其存储于数组p[]中。
2.真值表每一行结尾的结果计算首先,我们需要定义一个布尔类型的过程存储数组x[],利用switch语句的嵌套分别判断两个联结词,使用相应的运算符(&&、||、!)和已定义的两个布尔类型函数(imp、equ),一次计算,并且将每一次的计算结果存储至x[]中,运算直至最后一步完成结果的输出。
实验一油管铺设
实验准备
最小生成树问题,求最小生成树的Prim算法
实验目的
运用最小生成树思想和求最小生成树程序解决实际问题
实验过程
八口海上油井相互间距离如下表,其中1号井离海岸最近,为5km。
问从海岸经1号井铺设油管把各井连接起来,怎样连油管长度最短(为便于检修,油管只准在油井处分叉)?
实验二最短路问题
实验准备
图的邻接矩阵,求最短路的Dijkstra算法
实验目的
运用最短路思想和求最短路程序解决实际问题
实验过程
某建筑公司签订了一项合同,要为一家制造公司建造一座新的加工厂。
合同规定工厂的完工期限为12个月。
要是工厂不能在一年内完工,就要赔款,因此建筑公司认真分析,找出建筑工厂必须完成的各道工序和这些工序之间的先后关系,并估计出它们延续的时间,如下表所示。
为建筑公司制定工程完工计划提供理论依据。
实验三中国邮递员问题
实验准备
欧拉图,中国邮递员问题(G是欧拉图;G不是欧拉图:G正好有两个奇次顶点,G有2n 个奇次顶点n≥2)
实验目的
通过程序实现中国邮递员问题,强化其基本思想和实际应用
实验过程
针对下图所示加权图G,给出中国邮递员问题的解决方案。
实验四旅行推销商问题
实验准备
哈密顿图,旅行推销商问题
实验目的
通过程序实现旅行推销商问题,强化其基本思想和实际应用,并初步了解NP-难题。
实验过程
自拟一加权连通图,求出具有充分小权的哈密顿回路。
一、实验背景离散逻辑算法是离散数学的一个重要分支,它研究的是由有限个变量组成的逻辑表达式及其真值。
在计算机科学、人工智能、逻辑电路设计等领域有着广泛的应用。
本实验旨在通过编程实现离散逻辑算法,加深对逻辑运算规则和真值表的理解,并提高编程能力。
二、实验目的1. 熟悉掌握离散逻辑运算规则,包括合取、析取、条件、双条件等。
2. 利用C语言编程实现离散逻辑运算,包括逻辑非、合取、析取、蕴含、双条件等。
3. 理解真值表的概念,并能够根据真值表判断逻辑表达式的真假。
三、实验内容1. 实现逻辑非运算2. 实现合取运算3. 实现析取运算4. 实现蕴含运算5. 实现双条件运算6. 根据真值表判断逻辑表达式的真假四、实验步骤1. 逻辑非运算(1)输入一个命题变量P的真值(0或1);(2)根据逻辑非运算规则,输出P的逻辑非值(若P为0,则输出1;若P为1,则输出0)。
2. 合取运算(1)输入两个命题变量P和Q的真值(0或1);(2)根据合取运算规则,输出P和Q的合取值(若P和Q均为1,则输出1;否则输出0)。
3. 析取运算(1)输入两个命题变量P和Q的真值(0或1);(2)根据析取运算规则,输出P和Q的析取值(若P和Q至少有一个为1,则输出1;否则输出0)。
4. 蕴含运算(1)输入两个命题变量P和Q的真值(0或1);(2)根据蕴含运算规则,输出P蕴含Q的值(若P为1且Q为1,则输出1;否则输出0)。
5. 双条件运算(1)输入两个命题变量P和Q的真值(0或1);(2)根据双条件运算规则,输出P双条件Q的值(若P和Q的真值相同,则输出1;否则输出0)。
6. 根据真值表判断逻辑表达式的真假(1)输入一个逻辑表达式;(2)生成该逻辑表达式的真值表;(3)根据真值表判断逻辑表达式的真假。
五、实验结果与分析1. 通过编程实现离散逻辑运算,验证了逻辑运算规则的正确性;2. 理解了真值表的概念,并能够根据真值表判断逻辑表达式的真假;3. 提高了编程能力,熟悉了C语言的基本语法和逻辑运算。
“离散数学”实验报告目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现过程(算法描述) (3)1、实验原理........................................................................................................2、实验过程.......................................................................................................五、实验数据及结果分析 (13)六、源程序清单 (24)源代码 (24)七、其他收获及体会 (45)一、实验目的实验一:熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。
实验二:掌握关系的概念与性质,基本的关系运算,关系的各种闭包的求法。
理解等价类的概念,掌握等价类的求解方法。
实验三:理解图论的基本概念,图的矩阵表示,图的连通性,图的遍历,以及求图的连通支方法。
二、实验内容实验一:1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。
(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))实验二:1.求有限集上给定关系的自反、对称和传递闭包。
(有两种求解方法,只做一种为A,两种都做为B)2. 求有限集上等价关系的数目。
(有两种求解方法,只做一种为A,两种都做为B)3. 求解商集,输入集合和等价关系,求相应的商集。
(C)实验三:以偶对的形式输入一个无向简单图的边,建立该图的邻接矩阵,判断图是否连通(A)。
并计算任意两个结点间的距离(B)。
对不连通的图输出其各个连通支(C)。
三、实验环境C或C++语言编程环境实现。
四、实验原理和实现过程(算法描述)实验一:1.实验原理(1)合取:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P∧Q, 读作P、Q的合取, 也可读作P与Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = T, Q = T时方可P∧Q =T, 而P、Q只要有一为F则P∧Q = F。
这样看来,P∧Q可用来表示日常用语P与Q, 或P并且Q。
(2)析取:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P∨Q, 读作P、Q的析取, 也可读作P或Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = F, Q = F时方可P∨Q =F, 而P、Q只要有一为T则P∨Q = T。
这样看来,P∨Q可用来表示日常用语P或者Q。
(3)条件:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P→Q, 读作P条件Q, 也可读作如果P,那么Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = T, Q = F时方可P→Q =F, 其余均为T。
(4)双条件:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P←→Q, 读作P双条件于Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为当两个命题变项P = T, Q =T时方可P←→Q =T, 其余均为F。
(5)真值表:表征逻辑事件输入和输出之间全部可能状态的表格。
列出命题公式真假值的表。
通常以1表示真,0 表示假。
命题公式的取值由组成命题公式的命题变元的取值和命题联结词决定,命题联结词的真值表给出了真假值的算法。
真值表是在逻辑中使用的一类数学表,用来确定一个表达式是否为真或有效。
(6)主范式:主析取范式:在含有n个命题变元的简单合取式中,若每个命题变元与其否定不同时存在,而两者之一出现一次且仅出现一次,称该简单合取式为小项。
由若干个不同的小项组成的析取式称为主析取范式;与A等价的主析取范式称为A的主析取范式。
任意含n个命题变元的非永假命题公式A都存在与其等价的主析取范式,并且是惟一的。
主合取范式:在含有n个命题变元的简单析取式中,若每个命题变元与其否定不同时存在,而两者之一出现一次且仅出现一次,称该简单析取式为大项。
由若干个不同的大项组成的合取式称为主合取范式;与A等价的主合取范式称为A的主合取范式。
任意含n个命题变元的非永真命题公式A都存在与其等价的主合取范式,并且是惟一的。
2.实验过程(1)A题部分,首先是对各个输入量的处理,要确定输入的为0或1,否则则为出错,接下来就是运算处理,在C语言中本身支持的有与或非这三种,可以用!,&&,||来表示,而在这个实验中,不是与或非的可以通过转化而变为与或非的形式,具体流程图如下:(2)B,C题部分,首先是输入一个合理的式子,然后从式子中查找出变量的个数,开辟一个二进制函数,用来生成真值表,然后用函数运算,输出结果,并根据结果归类给范式,最后输出范式。
函数部分,主要是3个函数,一个为真值表递加函数,通过二进制的加法原理递进产生,一个为分级运算函数,这个函数是通过判断括号,选出最内级括号的内容执行运算函数,这样一级一级向外运算,最后得出最终结果,剩下一个为主运算函数,按照运算符号的优先级按顺序进行运算,如先将所有非运算运算完,再执行与运算。
如此运算。
实验二:A题型求有限集上等价关系的数目。
集合上的等价关系与该集合的划分之间存在一一对应关系。
一个等价关系对应一个划分,一个划分也对应一个等价关系。
我们把n个元素的集合划分成k块的方法数叫第二类Stirling数,表示为S(n,k)。
给定S(n,n) = S(n,1) = 1,有递归关系:S(n,k) = S(n − 1,k − 1) + kS(n − 1,k)集合上所有等价类的个数即为k从1到n,所有S(n,k)之和。
这个问题的算法比较简单,仅需两步就可完成,首先根据上式,定义一个递归函数S (n,k),然后对k从1到n,求取sum=∑S(n,k),sum的值就是给定n元集合上的等价关系数目,最后将其输出即可。
A题型的流程图如下所示:C题型求解商集,输入集合和等价关系,求相应的商集商集即等价类构成的集合,要求商集,首先需要判断输入的关系是否为等价关系,否则没有商集。
判断输入的关系是否为等价关系的算法如下:(1)将输入的关系转换为关系矩阵,这里定义了一个函数translate(),转换的方法为:依次查找输入的关系中的二元组的两个元素在集合中的位置,例如<a,b>,若a在集合A中的位置为i,b在集合A中的位置为j,就令存放关系矩阵的二维数组M[i][j]=1,这样就将输入的关系R转换为关系矩阵的形式。
(2)定义三个函数zifan(),duichen()和chuandi(),分别的作用是判断输入的关系是否自反、对称和传递。
由等价关系的定义知,若三个函数的返回值均为1,则输入的关系是等价关系。
判断的方法是:若关系矩阵M中所有的M[i][i]=1,则是自反关系;若M中所有的M[i][j]=M[j][i],则是对称关系;若M[i][j]=1并且M[j][k]=1,那么一定有M[i][k]=1,则是传递关系。
判断了所输入的关系为等价关系后就可以求其商集了,由于商集即等价类构成的集合,所以要求其等价类。
确定集合A={a1,a2,a3,…,a n}关于R的等价类的算法如下:(1) 令A中每一个元素自成一个子集,A1={a1},A2={a2},…,A n={a n}(2) 对R中每个二元组< x,y >,判定x和y所属子集。
假设x属于A i,y属于A j,若A i<>A j,则将A i并入A j,并置A i为空;或将A j并入A i,并置A j为空。
一般将元素少的集合合并到元素多的集合。
(3) A1 ,A2,…,A n中所有非空子集构成的集合即为所求商集。
集合的并运算采用并查集(union-find sets)的方法。
并查集是一种树型的数据结构,多棵树构成一个森林,每棵树构成一个集合,树中的每个节点就是该集合的元素,找一个代表元素作为该树(集合)的祖先。
并查集支持以下三种操作:(1) Make_Set(x) 把每一个元素初始化为一个集合初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身。
(2) Find_Set(x) 查找一个元素所在的集合查找一个元素所在的集合,只要找到这个元素所在集合的祖先即可。
判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。
(3) Union(x,y) 合并x,y所在的两个集合合并两个不相交集合操作很简单:首先设置一个数组Father[x],表示x的"父亲"的编号。
那么,合并两个不相交集合的方法就是,找到其中一个集合的祖先,将另外一个集合的祖先指向它。
C题型的流程图如下所示:实验三:1、实验原理(1)建立图的邻接矩阵,判断图是否连通根据图的矩阵表示法建立邻接矩阵A,并利用矩阵的乘法和加法求出可达矩阵,从而判断图的连通性。
连通图的定义:在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径),则称vi和vj是连通的。
如果 G 是有向图,那么连接vi和vj的路径中所有的边都必须同向。
如果图中任意两点都是连通的,那么图被称作连通图。
判断连通图的实现:在图中,从任意点出发在剩余的点中,找到所有相邻点循环,直到没有点可以加入为止,如果有剩余的点就是不连通的,否则就是连通的。
或者也可用WallShell算法,由图的邻接矩阵判断图是否连通。
(2)计算任意两个结点间的距离图中两点i,j间的距离通过检验A l中使得a ij为1的最小的l值求出。
路径P中所含边的条数称为路径P的长度。
在图G<V,E>中,从结点Vi到Vj最短路径的长度叫从Vi到Vj的距离,记为d<Vi,Vj>。
设图的邻接矩阵是A,则所对应的aij的值表示,点Vi到点Vj距离为n的路径有aij 条。
若aij(1),aij(2),…,aij(n-1),中至少有一个不为0,则可断定Vi与Vj可达,使aij(l)≠0的最小的l即为d(Vi,Vj)。
问题求解原理为:(1)先构造初始邻接矩阵A=Vij,Vij为顶点Vi到顶点Vj的权。
如果Vi和Vj之间不存在弧段或者是负向回路或者是i=j,则令Vij其值为∞。
(2)再构造初始中间顶点矩阵。
(3)然后开始迭代计算(迭代的次数等于顶点的个数1)(4)最后查找Vi到Vj的最短路径。
计算节点Vi与Vj之间的距离的方法为:利用邻接矩阵相互间相乘后得到的矩阵来判断节点间的距离。
如果c2[s][i][j]==0,则这两个节点的距离为无穷大。
如果c2[s-2][i][j]==0,c2[s-1][i][j]==1时,则这两点间的距离为s。