11年竞赛真题
- 格式:doc
- 大小:1.71 MB
- 文档页数:12
THURSDAY 1 AUGUST 2013SENIOR DIVISIONAUSTRALIAN S CHOOL YEARS 11 and 12TIME ALLOWED: 75 MINUTES©AMT P ublishing 2013 AMTT liMiTed Acn 083 950 341A ustrAliAn M AtheMAtics c oMpetitionsponsored by the c oMMonweAlth b AnkAn AcTiviTy of The AusTrAliAn MATheMATics TrusTNAMEYEAR TEACHERA u s T r A l i A n M A T h e M A T i c s T r u s T姓 名: 年 级: 监考老师:意事项一般规定1.未获监考老师许可之前不可翻开此测验题本。
2.各种通讯器材一律不得携入考场,不准使用电子计算器、计算尺、对数表、数学公式等计算器具。
作答时可使用直尺与圆规,以及两面全空白的草稿纸。
3.题目所提供之图形只是示意图,不一定精准。
4.最前25题为选择题,每题有五个选项。
最后题要求填入的答案为000至999的正整数。
题目一般而言是依照越来越难的顺序安排,对于错误的答案不会倒扣分数。
5.本活动是数学竞赛而不同于学校测验,别期望每道题目都会作。
考生只与同地区同年级的其它考生评比,因此不同年级的考生作答相同的试卷将不作评比。
6.请依照监考老师指示,谨慎地在答案卡上填写您的基本数据。
若因填写错误或不详所造成之后果由学生自行负责。
7.进入试场后,须等待监考老师宣布开始作答后,才可以打开题本进行答题。
作答须知1.限用B 或2B 铅笔填写答案。
2.请用B 或2B 铅笔在答案卡上(不是在题本上)将您认为正确选项的圆圈涂满。
3.您的答案卡将由计算机阅卷,为避免计算机误判,请不要在答案卡上其它任何地方涂划任何记号。
填写答案卡时,若需要修改,可使用软性橡皮小心擦拭,并确定答案卡上无残留痕迹。
一、填空题(每题7分,共28分)1.今天是2012年4月7日,欢迎同学们参加“第二届全国学而思综合能力测评(学而思杯)”。
请先计算20120407 除以11的余数是___________。
(张宇鹏老师供题)2.算式:11111201212450310062012×−+−+− 的计算结果是___________。
(齐志远老师供题)3.水泊梁山共聚108名将领,受招安后奉命征讨“方腊”(人名)。
征讨过程中战死将领占总人数的3554,征讨得胜后辞官将领占总人数的118,那么,队伍中还有___________名将领。
(董博聪老师供题)3.如图,是一个由2个半圆、2个扇形、1个正方形组成的“心型”。
已知半圆的直径为10,那么,“心型”的面积是___________。
(注:π取3.14 )(胡浩老师供题)二、填空题(每题9分,共36分)5.定义:A □B 为A 和B 乘积的约数个数,那么,1□8+2□7+3□6+4□5=___________。
(崔梦迪老师供题)6.由24个棱长为1的小正方体组成一个大的长方体,那么,组成后长方体的表面积最大为___________。
(刘斌老师供题)7.“2012A”是一个最简真分数,那么,满足条件的 有___________个。
(贺赓帆老师供题)8.在一个盛有部分水的长方体容器中,插有两根木棒,木棒露在外面的长度比是3∶7,当水面的高度升高10厘米后,木棒露在外面长度比变成2∶5。
当木棒露在外面长度比变成1∶3时,还需要升高_______厘米的水。
(郭忠秀老师供题)三、填空题(每题10分,共40分)9.下图为学而思标志中的字母“S”,被分成52个完全相同的小正方形。
那么,在右下图中共有___________个“”。
(注:“L”型可旋转)(李响老师供题)10.北京某水族馆饲养鲨鱼,偶数颗牙齿的鲨鱼总说实话,奇数颗牙齿的鲨鱼总说谎话。
一天,绿鲨鱼、蓝鲨鱼、紫鲨鱼、白鲨鱼在一起聊天。
2014年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( )A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( )A .47B .59C .916D .12253.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE =( )A B C D 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12 B .25 C .23 D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x+=,则1{}{}x x +=( )A .12B .3C .1(32- D .16.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为( )A .4-B .2-C .11)2D 1二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =__ __. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值.二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠, AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.FB一.(本题满分20分)同(A )卷第一题.二.(本题满分25分)如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P . (1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?2013年全国初中数学联合竞赛试题第一试一、选择题(本题满分42分,每小题7分)1.计算=( )(A 1 (B )1 (C (D )22.满足等式()2221m m m ---=的所有实数m 的和为( )(A )3 (B )4 (C )5 (D )63.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=,ABC ∠的平分线交圆O 于点D ,若CD =AB=( )(A )2 (B(C )(D )34.不定方程23725170x xy x y +---=的全部正整数角(x,y )的组数为( ) (A )1 (B )2 (C )3 (D )45矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在线段BC 上,且BF :FC=1:2, AF 分别与DE ,DB 交于点M ,N ,则MN=( )(A )7 (B )14 (C )28 (D )286.设n 为正整数,若不超过n 的正整数中质数的个数等于合个数,则称n 为“好数”,那么,所有“好数”之和为( ) (A )33 (B )34 (C )2013 (D )2014 二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++=2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= 3.在ABC 中,60,75,10A C AB ∠=∠==,D ,E ,F 分别在AB ,BC ,CA 上,则DEF的周长最小值为4.如果实数,,x y z 满足()2228x y z xy yz zx ++-++=,用A 表示,,x y y z z x ---的最大值,则A 的最大值为第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d ad bc +=+=-=求()()2222ab c d ++的值。
(数学类)试卷第一题:(15分)求经过三平行直线1:L x y z ==,2:11L x y z -==+,3:11L x y z =+=-的圆柱面的方程.第二题:(20分)设n nC ⨯是n n ⨯复矩阵全体在通常的运算下所构成的复数域C 上的线性空间,12100010*******n n n a a a F a --⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭. (1)假设111212122212n n n n nn aa a a a a A a a a ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,若AF FA =,证明: 121112111n n n n A a F a F a F a E ---=++++ ;(2)求n nC⨯的子空间{}()|n n C F X C FX XF ⨯=∈=的维数.第三题:(15分)假设V 是复数域C 上n 维线性空间(0n >),,f g 是V 上的线性变换. 如果fg gf f -=,证明:f 的特征值都是0,且,f g 有公共特征向量.第四题:(10分)设{}()n f x 是定义在,a b ⎡⎤⎢⎥⎣⎦上的无穷次可微的函数序列且逐点收敛,并在,a b ⎡⎤⎢⎥⎣⎦上满足()nf x M '≤.(1)证明{}()n f x 在,a b ⎡⎤⎢⎥⎣⎦上一致收敛;(2)设()lim ()n n f x f x →∞=,问()f x 是否一定在,a b ⎡⎤⎢⎥⎣⎦上处处可导, 为什么?第五题:(10分)设320sin d sin n nt a t t t π=⎰,证明11nn a ∞=∑发散.第六题:(15分)(,)f x y 是{}22(,)|1x y x y +≤上二次连续可微函数,满足222222f f x y x y ∂∂+=∂∂,计算积分221d d x y I x y +≤⎛⎫=⎰⎰第七题:(15分)假设函数()f x 在[0,1]上连续,在()0,1内二阶可导,过点(0,(0))A f ,与点(1,(1))B f 的直线与曲线()y f x =相交于点(,())C c f c ,其中01c <<. 证明:在 ()0,1内至少存在一点ξ,使()0f ξ''=.(数学类)试卷一、(本题共10分)设(0,1)ε∈,0x a =,1sin 0,1,2).n n x a x n ε+=+= (证明lim n n x ξ→+∞=存在,且ξ为方程sin x x a ε-=的唯一根.二、(本题共15分)设01030002010000B ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 证明2X B =无解,这里X 为三阶未知复方阵.三、(本题共10分)设2D ⊂ 是凸区域,函数(,)f x y 是凸函数. 证明或否定:(,)f x y 在D 上连续.注:函数(,)f x y 为凸函数的定义是(0,1)α∀∈以及1122(,),(,)x y x y D ∈,成立12121122((1),(1))(,)(1)(,)f x x y y f x y f x y αααααα+-+-≤+-.四、(本题共10分) 设()f x 在0,1⎡⎤⎢⎥⎣⎦上黎曼(Riemann)可积,在1x =可导,(1)0,f =(1)f a '=. 证明:120lim ()d .n n n x f x x a →+∞=-⎰五、(本题共15分)已知二次曲面∑(非退化)过以下九点:(1,0,0),(1,1,2),(1,1,2),(3,0,0),(3,1,2),(3,2,4),(0,1,4),(3,1,2),(5,8).A B C D E F G H I ------问∑是哪一类曲面?六、(本题共20分) 设A 为n n ⨯实矩阵(未必对称),对任一n 维实向量T 1(,,),0n A ααααα=≥ (这里T α表示α的转置),且存在n 维实向量β使得T 0A ββ=. 同时对任意n 维实向量x 和y ,当T 0xAy ≠时有TT 0xAy yAx +≠. 证明:对任意n 维实向量v ,都有T0.vA β=七、(本题共10分) 设f 在区间0,1⎡⎤⎢⎥⎣⎦上黎曼(Riemann)可积,0 1.f ≤≤ 求证:对任何0ε>,存在只取值为0和1的分段(段数有限)常值函数()g x ,使得,0,1αβ⎡⎤⎡⎤∀⊆⎢⎥⎢⎥⎣⎦⎣⎦,()()().f x g x dxβαε-<⎰八、(10分) 已知:(0,)(0,)ϕ+∞→+∞是一个严格单调下降的连续函数,满足0lim (),t t ϕ+→=+∞且10()d ()d ,t t t t a ϕϕ+∞+∞-==<+∞⎰⎰其中1ϕ-表示ϕ的反函数. 求证:32212001()d ()d .2t t t t a ϕϕ+∞+∞-⎡⎤⎡⎤+≥⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰(数学类)试卷一、(本题15分)已知四点(1,2,7),(4,3,3),(5,1,0).-试求过这四点的球面方程。
广播 播电 选 电视技选拔传媒技术拔赛和媒科技术能手和总技服务手竞总局真务中波竞赛(真题波组(调题 调幅)目录2016年国家广播总局技术能手竞赛中波专业试题2016年河南省广播电视技术能手选拔赛(调幅专业)试题 2011广电总局广播电视技术能手竞赛(中短波组)试题 2009辽宁省年中波专业技术竞赛试题2011年山东中波技术能手竞赛选拔赛试题2016年国家广播总局技术能手竞赛中波专业试题一、填空题 (共24题,每题 1分,共24分)1、三相交流电路申,如果三相电路完全对称时,零线可以取消,称为三相三线制。
2、三相交流电路中,中线的作用在于,使星形连接的不对称负载得到相等的相电压。
为了确保零线在运行中不断开,其上不允许接保险丝也不允许接刀闸。
3、在三相四线制交流电源中,线电压等于相电压的3倍,相位比相电压超前30o。
4.播出相关信息系统应与其他网络物理隔离,封闭主机不必要的外部数据接入端口,采取病毒防护、授权认证、数据备份等安全措施,并定期对病毒库及操作系统等进行更新和升级。
5、ITU规定的OSI七层模型,从下往上依次是:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
6. 使用单一频率的正弦音频信号对载波进行调幅,调幅正峰处所能达到的最大调幅度,为发射机的正峰调制能力。
7. GY/T225-2007《中、短波调幅广播发射机技术要求和测量方法》中规定,中波发射机调制音频范围要求:50Hz-4500Hz。
8.中波发射机音频输入接口应具有模拟音频接口和数字AES/EBU音频接口;音频输入阻抗,模拟音频接口阻抗为平衡600Ω 。
9.在600Ω负载上力口lmW的功率,负载上的电压值为零电平。
此时负载上的交流电压为0.775V。
10、我国现行规定的中波调幅广播信道宽度为9KHz,白天主要靠地波传播。
11、某中波发射机的发射频率为1251KHZ,其波长为 239.8米。
12、电磁波的极化方式主要有: 圆极化 、线极化、椭圆极化。
初中化学竞赛真题精选(一)1.(5分)某不纯的烧碱样品中含有Na2CO3 3.8%、Na2O 5.8%、NaOH 90.4%。
取M克样品,溶于质量分数为18.25%的盐酸溶液100g中,并用30%的NaOH溶液来中和剩余的盐酸至中性。
把反应后的溶液蒸干后可得到固体质量是多少克?2.(8分)由于地球的二氧化碳剧增,由此产生的“温室效应”使自然灾害频繁发生,2004年底印度洋发生的大地震及海啸造成的惨剧使世人记忆犹新。
消除“温室效应”的有效措施是广泛植树造林。
已知180g葡萄糖(C6H12O6)完全燃烧时放热2804kJ太阳每分钟对地球表面辐射能量为2.1J/cm2;植物通过光合作用生成葡萄糖和氧气。
设光合作用时太阳能量利用率10%,每片树叶面积以10cm2计算,这样的树叶100片要合成1.8g葡萄糖。
问:(1)需光照多长时间?(2)若空气中含CO2质量分数为0.3%,需要标准状况下空气多少升?(标准状况下空气密度为1.29g/L)(3)若标准状况下氧气密度为1.429g/L,问光合作用时除生成1.8g葡萄糖,还放出氧气多少升?第 1 页共25 页第 2 页 共 25 页(二)3.(8分)李同学在探究铁生锈的条件时,将铁钉浸没在试管里的食盐水中,一段时间后,发现试管底部出现了黑色粉末。
李同学对此黑色粉末的组成做了如下几种猜测:①Fe ②Fe 2O 3 ③Fe 3O 4 ④FeCl 3 ⑤数种物质的混合物。
请回答下列问题:(1)你认为李同学的上述猜想中,不做实验就可排除的是 和 (填序号),理由是 ;你认为黑色粉末还可能是 ,理由是 。
(2)李同学将黑色粉末干燥后,用磁铁靠近,发现粉末能被磁铁吸引,于是得出结论:黑色粉末一定是铁粉。
你认为李同学的结论对吗? ,理由是 。
4.(8分)先阅读下列短文,再回答下列问题:在酸性条件下,次氯酸钠(NaClO )、过氧化氢都有很强的氧化性,可将Fe 2+氧化为Fe 3+。
A u s t r A l i A n M At h e M At i c s c o M p e t i t i o na n a c t i v i t y o f t h e a u s t r a l i a n m a t h e m a t i c s t r u s tt h u r sd ay4a u g u s t2011senior Division Competition papera u st r a l i a n s c h o o l y e a r s11a n d12t i m e a l l o w e d:75m i n u t e sinstruCtions anD informationGeneraL1. Do not open the booklet until told to do so by your teacher.2. NO calculators, slide rules, log tables, maths stencils, mobile phones or other calculating aids arepermitted. Scribbling paper, graph paper, ruler and compasses are permitted, but are not essential.3. Diagrams are NOT drawn to scale. They are intended only as aids.4. There are 25 multiple-choice questions, each with 5 possible answers given and 5 questions thatrequire a whole number answer between 0 and 999. The questions generally get harder as you work through the paper. There is no penalty for an incorrect response.5. This is a competition not a test; do not expect to answer all questions. You are only competingagainst your own year in your own State or Region so different years doing the same paper are not compared.6. Read the instructions on the answer sheet carefully. Ensure your name, school name and schoolyear are entered. It is your responsibility to correctly code your answer sheet.7. When your teacher gives the signal, begin working on the problems.tHe ansWer sHeet1. Use only lead pencil.2. Record your answers on the reverse of the answer sheet (not on the question paper) by FULLYcolouring the circle matching your answer.3. Your answer sheet will be scanned. The optical scanner will attempt to read all markings evenif they are in the wrong places, so please be careful not to doodle or write anything extra on the answer sheet. If you want to change an answer or remove any marks, use a plastic eraser and be sure to remove all marks and smudges.inteGritY of tHe CompetitionThe AMT reserves the right to re-examine students before deciding whether to grant official status to their score.©amt P ublishing2011amtt limited acn083 950 341Senior DivisionQuestions 1to 10,3marks each1.The expression 3x (x −4)−2(5−3x )equals (A)3x 2−3x −14(B)3x 2−6x −10(C)3x 2−18x +10(D)3x 2−18x −10(E)9x 2−22x2.A coach notices that 2out of 5players in his club are studying at university.If there are 12university students in his club,how many players are there in total?(A)20(B)24(C)30(D)36(E)603.The value of 14÷0.4is (A)3.5(B)35(C)5.6(D)350(E)0.144.In the diagram,ABCD is a square.What is the value of x ?(A)142(B)128(C)48(D)104(E)52................................................................................................................ (52)◦x◦ABCD5.Which of the following is the largest?(A)210(B)210(C)102(D)201(E)2106.If m and n are positive whole numbers and mn =100,then m +n cannot be equalto (A)25(B)29(C)50(D)52(E)1017.P QRS is a square.T is a point on RS such that QT =2RT .The value of x is (A)100(B)110(C)120(D)150(E)160.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................P QRS T x ◦8.In my neighbourhood,90%of the properties are houses and 10%are shops.Today,10%of the houses are for sale and 30%of the shops are for sale.What percentage of the properties for sale are houses?(A)9%(B)80%(C)3313%(D)75%(E)25%9.The value of 12+14+182+4+8is(A)16(B)4(C)1(D)14(E)11610.Anne’s morning exercise consists of walking a distance of 1km at a rate of 5km/h,jogging a distance of 3km at 10km/h and fast walking for a distance of 2km at 6km/h.How long does it take her to complete her morning exercise?(A)30min(B)35min(C)40min(D)45min(E)50minQuestions 11to 20,4marks each11.The diagram shows a square of sidelength 12units divided into six triangles of equal area.What is the distance,in units,of T from the side P Q ?(A)4(B)3(C)2(D)1(E)√5......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................PS QRT12.Each of the first six prime numbers is written on a separate card.The cards areshu ffled and two cards are selected.The probability that the sum of the numbers selected is prime is(A)15(B)14(C)13(D)12(E)1613.Two tourists are walking 12km apart along a flat track at a constant speed of4km/h.When each tourist reaches the slope of a mountain,she begins to climb with a constant speed of 3km/h.✲✛12km✡✡✣✑✑✸✑✑✰k m What is the kilometres,the two tourists during the climb?(A)16(B)12(C)10(D)9(E)814.Lines parallel to the sides of a rectangle 56cm by 98cm and joining its oppositeedges are drawn so that they cut this rectangle into squares.The smallest number of such lines is(A)3(B)9(C)11(D)20(E)7515.What is the sum of the digits of the positive integer n for which n 2+2011is thesquare of an integer?(A)6(B)7(C)8(D)9(E)1016.Of the sta ffin an o ffice,15rode a pushbike to work on Monday,12rode on Tuesdayand 9rode on Wednesday.If 22sta ffrode a pushbike to work at least once during these three days,what is the maximum number of sta ffwho could have ridden a pushbike to work on all three days?(A)4(B)5(C)6(D)7(E)812 kmk m17.How many integer values of n make n 2−6n +8a positive prime number?(A)1(B)2(C)3(D)4(E)an infinite number18.If x 2−9x +5=0,then x 4−18x 3+81x 2+42equals(A)5(B)25(C)42(D)67(E)8119.The centre of a sphere of radius 1is one of the vertices of a cube of side 1.What is the volume of the combined solid?(A)7π6+1(B)7π6+56(C)7π6+43(D)7π8+1(E)π+120.In a best of five sets tennis match (where the first player to win three sets wins thematch),Chris has a probability of 23of winning each set.What is the probabilityof him winning this particular match?(A)23(B)190243(C)89(D)1927(E)6481Questions 21to 25,5marks each21.How many 3-digit numbers can be written as the sum of three (not necessarilydi fferent)2-digit numbers?(A)194(B)198(C)204(D)287(E)29622.A rectangular sheet of paper is folded along a single line so that one corner lieson top of another.In the resulting figure,60%of the area is two sheets thick and 40%is one sheet thick.What is the ratio of the length of the longer side of the rectangle to the length of the shorter side?(A)3:2(B)5:3(C)√2:1(D)2:1(E)√3:223.An irrational spider lives at one corner of a closed box which is a cube of edge 1metre.The spider is not prepared to travel more than √2metres from its home (measured by the shortest route across the surface of the box).Which of the following is closest to the proportion (measured as a percentage)of the surface of the box that the spider never visits?(A)20%(B)25%(C)30%(D)35%(E)50%24.Functions f ,g and h are defined byf (x )=x +2g (0)=f (1)g (x )=f (g (x −1))for x ≥1h (0)=g (1)h (x )=g (h (x −1))for x ≥1.Find h (4).(A)61(B)117(C)123(D)125(E)31325.A cone has base diameter 1unit and slant height 3units.From a point A halfwayup the side of the cone,a string is passed twice around it to come to a point B on the circumference of the base,directly below A .The string is then pulled until taut.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ABHow far is it from A to B along this taut string?(A)38(√29+√53)(B)3√72(C)3√32(D)94(E)3√1088For questions 26to 30,shade the answer as an integer from 0to 999inthe space provided on the answer sheet.Question 26is 6marks,question 27is 7marks,question 28is 8marks,question 29is 9marks and question 30is 10marks.26.Paul is one year older than his wife and they have two children whose ages are alsoone year apart.Paul notices that on his birthday in 2011,the product of his age and his wife’s age plus the sum of his children’s ages is 2011.What would have been the result if he had done this calculation thirteen years before?27.The diagram shows the net of a cube.On each face there is an integer:1,w ,2011,x ,y and z .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... (x)yz2011w1If each of the numbers w ,x ,y and z equals the average of the numbers written on the four faces of the cube adjacent to it,find the value of x .28.Two beetles sit at the vertices A and H of a cube ABCDEF GH with edge length40√110units.The beetles start moving simultaneously along AC and HF with the speed of the first beetle twice that of the other one.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ADCBEF GH✈s✈s ..................................................................................................................................................................................................................................................................................................................................What will be the shortest distance between the beetles?29.A family of six has six Christmas crackers to pull.Each person will pull twocrackers,each with a di fferent person.In how many di fferent ways can this be done?30.A40×40white square is divided into1×1squares by lines parallel to its sides.Some of these1×1squares are coloured red so that each of the1×1squares, regardless of whether it is coloured red or not,shares a side with at most one red square(not counting itself).What is the largest possible number of red squares?Senior 2011 Answers Question Answer 1B2C3B4A5B6C7C8D9E10E11B12A13D14B15A16D17B18D19A20E21B22C23C24D25B269972780528440297030420。
全国电⼦设计⽐赛题名⼩车题C题⾃动往返电动⼩汽车⼀、任务设计并制作⼀个能⾃动往返于起跑线与终点线间的⼩汽车。
允许⽤玩具汽车改装,但不能⽤⼈⼯遥控(包括有线和⽆线遥控)。
跑道宽度0.5m,表⾯贴有⽩纸,两侧有挡板,挡板与地⾯垂直,其⾼度不低于20cm。
在跑道的B、C、D、E、F、G 各点处画有2cm宽的⿊线,各段的长度如图1所⽰。
⼆、要求1.基本要求(1)车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后⾃动返回起跑线(允许倒车返回)。
往返⼀次的时间应⼒求最短(从合上汽车电源开关开始计时)。
(2)到达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最⼩(以车辆中⼼点与终点线或起跑线中⼼线之间距离作为偏差的测量值)。
(3)D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。
2.发挥部分(1)⾃动记录、显⽰⼀次往返时间(记录显⽰装置要求安装在车上)。
(2)⾃动记录、显⽰⾏驶距离(记录显⽰装置要求安装在车上)。
(3)其它特⾊与创新。
简易智能电动车(E题)⼀、任务设计并制作⼀个简易智能电动车,其⾏驶路线⽰意图如下:⼆、要求1、基本要求(1)电动车从起跑线出发(车体不得超过起跑线),沿引导线到达B点。
在“直道区”铺设的⽩纸下沿引导线埋有1~3块宽度为15cm、长度不等的薄铁⽚。
电动车检测到薄铁⽚时需⽴即发出声光指⽰信息,并实时存储、显⽰在“直道区”检测到的薄铁⽚数⽬。
(2)电动车到达B点以后进⼊“弯道区”,沿圆弧引导线到达C点(也可脱离圆弧引导线到达C点)。
C点下埋有边长为15cm的正⽅形薄铁⽚,要求电动车到达C点检测到薄铁⽚后在C点处停车5秒,停车期间发出断续的声光信息。
(3)电动车在光源的引导下,通过障碍区进⼊停车区并到达车库。
电动车必须在两个障碍物之间通过且不得与其接触。
(4)电动车完成上述任务后应⽴即停车,但全程⾏驶时间不能⼤于90秒,⾏驶时间达到90秒时必须⽴即⾃动停车。