第三章 一元一次方程(教案)
- 格式:doc
- 大小:743.50 KB
- 文档页数:22
2024年浙教版初中数学一元一次方程教案一、教学内容本节课选自2024年浙教版初中数学七年级上册第三章“一元一次方程”的第一节,详细内容包括方程的概念、一元一次方程的定义及其解法。
重点掌握如何求解一元一次方程,并运用方程解决实际问题。
二、教学目标1. 知识目标:理解方程的概念,掌握一元一次方程的定义及其解法。
2. 能力目标:能够运用一元一次方程解决生活中的实际问题,提高分析问题和解决问题的能力。
3. 情感目标:培养学生的学习兴趣,激发学生主动探究的欲望。
三、教学难点与重点教学重点:一元一次方程的定义及解法。
教学难点:如何将实际问题转化为方程,并求解。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:练习本、铅笔、直尺。
五、教学过程1. 导入:通过一个实践情景引入,如小明去超市购物,购买3个苹果和2个香蕉共花费20元,问每个苹果和香蕉的价格是多少?2. 新课讲解:(1)引导学生理解方程的概念,介绍一元一次方程的定义。
(2)讲解一元一次方程的解法,包括移项、合并同类项等步骤。
(3)通过例题讲解,让学生学会如何将实际问题转化为方程,并求解。
3. 随堂练习:布置一些一元一次方程的题目,让学生独立完成,并及时给予反馈。
六、板书设计1. 方程的概念2. 一元一次方程的定义3. 一元一次方程的解法(1)移项(2)合并同类项4. 实际问题转化为方程的步骤七、作业设计1. 作业题目:(1)解方程:2x + 5 = 15(2)解方程:3(x 2) = 12(3)实际问题:小华比小明大6岁,小华的年龄是小明年龄的2倍。
问小明和小华各多少岁?2. 答案:(1)x = 5(2)x = 6(3)小明:3岁,小华:9岁八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,让学生了解方程在实际生活中的应用,提高学生的学习兴趣。
2. 拓展延伸:布置一道拓展题目,如求解二元一次方程组,让学生在课后尝试,培养学生的探究能力。
2024年浙教版初中数学一元一次方程的解法教案一、教学内容本节课选自2024年浙教版初中数学七年级上册第三章“一元一次方程”的第一节,详细内容为方程3.1“一元一次方程的解法”。
通过本章的学习,学生将掌握一元一次方程的解法,并能够运用这些方法解决实际问题。
二、教学目标1. 知识与技能:让学生理解一元一次方程的概念,掌握解一元一次方程的四种基本方法(直接开平方法、移项法、消元法和代入法)。
2. 过程与方法:培养学生运用方程解决实际问题的能力,提高学生的逻辑思维能力和解题技巧。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流、积极思考的良好习惯。
三、教学难点与重点教学难点:一元一次方程的四种解法及其应用。
教学重点:理解一元一次方程的概念,掌握解一元一次方程的基本方法。
四、教具与学具准备教具:黑板、粉笔、多媒体设备。
学具:学生用书、练习本、文具。
五、教学过程1. 实践情景引入利用多媒体展示小明购物找零的问题,引导学生列出等式,进而引出一元一次方程的概念。
2. 例题讲解(1)直接开平方法(2)移项法(3)消元法(4)代入法3. 随堂练习让学生独立完成教材P64例题1、2、3,巩固所学解法。
4. 小组讨论(1)一元一次方程的解法有哪些?(2)各种解法的适用范围是什么?(3)如何运用这些方法解决实际问题?六、板书设计1. 一元一次方程的概念2. 一元一次方程的解法:(1)直接开平方法(2)移项法(3)消元法(4)代入法七、作业设计1. 作业题目(1)教材P64练习题1、2、3(2)已知方程3x5=7,求x的值。
2. 答案(1)见教材(2)x=4八、课后反思及拓展延伸1. 课后反思2. 拓展延伸(2)思考一元一次方程在实际生活中的应用,如:温度转换、速度与时间的关系等。
重点和难点解析1. 教学内容的安排与衔接2. 教学目标的具体化3. 教学难点与重点的突出4. 教学过程中的实践情景引入5. 例题讲解的深度与广度7. 作业设计的针对性与拓展性一、教学内容的安排与衔接在教学内容的设计上,应确保章节之间的逻辑连贯性,使学生能够循序渐进地掌握一元一次方程的解法。
第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程学习目标1.通过对具体实际生活问题的分析,感受方程是刻画现实世界的有效模型.2.经历把实际问题抽象成数学问题的过程,初步观察分析问题和解决问题的能力.3.体验在生活中学数学、用数学的价值,感受学习数学的乐趣.学习过程一、自主预习,激趣诱思请列算式解答:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?二、提出问题,自主学习请尝试列方程解答上述问题.三、展示成果,查找问题判断下列各式是不是方程,是的打“√”,不是的打“×”.(1)-2+5=3( )(2)3x-1=7( )(3)2a+b( )(4)x>3( )(5)x+y=8( )(6)2x2-5x+1=0( )四、分组学习,合作探究活动一:活动二:尝试完成1.用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?2.一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?3.某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?活动二:练习:哪些是一元一次方程?(1)2x+1 (2)2m+15=3 (3)3x-5=5x+4(4)-3x+1.8=3y(5)x2+2x-6=0 (6)3a+9>15=1(7)1x-6五、自我评价,反馈深化1.请同学们思考:(1)怎样将一个实际问题转化为方程问题?(2)列方程的依据是什么?2.对于方程4x=24,容易知道x=6可以使等式成立,对于方程170+15x=245,你知道x等于什么时,等式成立吗?我们来试一试.六、师生共进,课堂小结(1)本节课学习了哪些主要内容?(2)一元一次方程的三个特征各指什么?(3)从实际问题中列出方程的关键是什么?七、达标测试1.根据下列问题,找出等量关系,设未知数列出方程,并指出是不是一元一次方程.(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?。
第三章一元一次方程-数学活动教学目标1.知识与技能运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法.2.过程与方法(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,•通过分析问题中的数量关系,进行预测、判断.(2)运用所学过的数学知识进行一次市场调查,•体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力.3.情感态度与价值观通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.重、难点与关键1.重点:经历探索具体情境中的数量关系,•体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题.2.难点:以上重点也是难点.教具准备投影仪:每人一根质地均匀的直尺,一些相同的棋子和一个支架.教学过程:活动11. 阅读统计资料表明,山水市去年居民的人均收入为11 664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.2.思考(1)说说“增长8%”和“扣除价格因素,实际增长6.5%”的意思;(2)你能利用这些数据之间的关系从中再计算出一些新的数据吗?山水市前年居民的人均收入为多少元?你能计算出物价上涨的百分比吗?统计资料表明,山水市去年居民的人均收入为11 664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.请用一元一次方程解决下列问题:(1)山水市前年居民的人均收入为多少元?请用一元一次方程解决下列问题:(2)在山水市,去年售价为1000元的商品在前年的售价为多少元?活动2:用一根质地均匀的尺子和一些棋子,做下列实验:(1)把直尺的中点放在一个支点上,使直尺左右两边平衡;(2)在直尺两端各放一枚棋子,看看左右两边是否保持平衡;(3)支点不动,在直尺一端的棋子上再加放一枚棋子,然后把这两枚摞在一起的棋子向支点移动,使左右两边保持平衡,记录支点到左右两边棋子中心位置的距离a 和b ;(4)在两枚摞在一起的棋子上再加放一枚棋子,然后把这三枚摞在一起的棋子向支点移动,使左右两边保持平衡,记录支点到左右两边棋子中心位置的距离a 和b ;(5)在一摞棋子上继续加放棋子,并重复以上操作和记录. 分析发现: 根据统计记录能发现什么规律?如果直尺一端放一枚棋子,另一端放n 枚棋子,支点应在直尺的哪个位置?设直尺长为l ,用一元一次方程求解.活动2如图,在木杆右端挂一个重物,支点左边挂 n 个重物,并使左右平衡.设木杆长为l cm ,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm ,把n ,l 作为已知数,列出关于x 的一元一次方程. 请欣赏一首诗:太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清。
授课章节:第三章一元一次方程授课日期:课题:3.1.1一元一次方程教学目标知识:了解方程、一元一次方程的概念.根据方程解的概念,会判断一个数是否是一个方程的解.能力:通过对多种实际问题的分析,能列出该问题的方程,感受方程作为刻画现实世界有效模型的意义.情感、态度、价值观:鼓励学生进行观察思考,发展合作交流的意识和能力.教学重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解.教学难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解。
教学过程:问题1.一辆客车和一辆卡车同时从A地出发,沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早一小时经过B地,A,B两地间的路程是多少?(1)你会用算术方法解决这个问题吗?列式试试.(2)如果设A,B两地相距x km,你能分别列式表示客车与卡车从A地到B地的行驶时间吗?客车时间,货车时间 .(3)如何用式子表示两车行驶时间之间的关系?.问题2:对于上述问题,你还能列出其他的方程吗?问题3:比较列算式和列方程解决这个问题个有什么特点?二、探究新知问题4:你能归纳出方程的概念么?方程是含有未知数的等式.三、典型例题例1. 根据下列问题,设未知数并列方程.(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用了1700h,预计每月再用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?小结:列方程时,要先设未知数,然后根据问题中的等量关系,写出方程.问题5:观察上面的例题,列出的三个方程有什么特点?只含有一个未知数(元),并且未知数的指数都是1(次),等号两边都是整式的方程叫一元一次方程.练习 下列式子哪些是方程?哪些是一元一次方程?(1)21x +;(2)2153m +=;(3)3554x x -=+;(4)2260x x +-=;(5)3 1.83x y -+=;(6)3915a +>;(7)1513x =-;(8)231x -+≠问题6:能满足方程4x=24的未知数的值是多少?可以发现,当x=6时,4x 的值是24,这时方程等号左右两边相等,x=6叫做方程4x=24的解.练习:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?课堂练习依据下列问题,设未知数,列出方程.(1) 环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m ?(2)(3) 甲铅笔每支0.3元,乙铅笔每支0.6元,用9元钱买了两种铅笔共220支,两种铅笔各买了多少支?(4) 一个梯形的下底比上底多2cm ,高是5cm ,面积是402cm ,求上底.(5) 用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯单价多5元,两种水杯的单价各是多少?四、小结:(1)本节课学了哪些主要内容?(2)一元一次方程的三个特征各指什么?(3)从实际问题中列出方程的关键是什么?课后反思:授课章节:第三章一元一次方程授课日期:课题:3.1.2等式的性质教学目标:知识:通过观察、分析,将有理数的运算推广到字母运算,掌握用字母表示等式的两条性质. 能力:培养观察能力、思考能力、归纳能力和创新能力.会用等式的两条性质解一元一次方程. 情感、态度、价值观:鼓励学生对事物进行观察和思考,发展合作交流的意识和能力.教学重点:等式的性质的推导和应用.教学难点:对等式性质的理解.教学过程:问题1:等式具有什么样的性质呢?我们不妨做一个实验,请同学们认真观察,然后用“>、<、=”填空:5=5 5+6 5+6 ;-7=-7 -7-5 -7-5;a=b a+5 b+5a=b a-2 b-2 ;x=y x+m y+m a=b a+(m+n)b+(m+n)问题2:我们再看一个实验,请同学们认真观察后然后用“>、<、=”填空:6=6 6×5 6×5;-3=-3 -3×(-2) -3×(-2); a =b 6a 6b8=8 8÷2 8÷2;-10=-10 -10÷(-5) -10÷(-5); m=n 18m 18n归纳:2333152315m n n m x x x x y +=++=⨯+=⨯+=, , , 这样的式子叫等式.问题3:通过以上观察,你能说说等式有什么性质么?等式性质1:等式两边都加(或减)同一个数(或式子),结果仍相等;等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等;追问1:根据等式的两条性质,对等式进行变形需要注意什么?1.必须等式两边同时进行,即:•同时加或减,同时乘或除,不能漏掉一边;2.等式变形时,两边加、减、乘、除的数或式必须相同;3.利用性质2进行等式变形时,须注意除以的同一个数不能是0.追问2:(1)从a+b=b+c ,能否得到a=c ? (2)从a -b=c -b ,能否得到a=c ?(3)从ab=bc 能否得到a=c ? (4)从=,能否得到a=c ? (5)从xy=1,能否得到x=? 例1.用等式的性质解方程.(1)6315x x =+ (2)7332+-=-x xa b c b 1y如果b a =,那么=±c a练习:1.下列等式变形错误的是( )A.由a =b 得a +5=b +5B.由a =b 得99a b =--C.由x +2=y +2得x =yD.由-3x =-3y 得x =-y2.运用等式性质进行的变形,正确的是( )A.若a =b ,则a +c=b -c;B. 若a b c c =,则a =b; C. 若a =b , 则a b c c=; D. 若a 2=3a , 则a =3 3. 用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的:(1)如果x +8=10,那么x =10_________; ( )(2)如果4x =3x +7,那么4x -_______=7; ( )(3)如果-3x =8,那么x =________; ( )4. 用等式的性质解方程⑴ 2x - 6=14 ⑵ 8y =4y +1 ⑶ -35x -1=4 ⑷ 2x +3=x -1小结:课后反思:授课章节:第三章一元一次方程授课日期:课题:3.2解一元一次方程(一)合并同类项与移项教学目标知识:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.掌握移项和合并,理解其数学本质,会解“ax+bx=c”类型的一元一次方程.能力:能够找出简单实际问题中的已知量和未知量,分析它们之间的数量关系,列出方程.情感、态度、价值观:初步体会一元一次方程的应用价值,感受数学文化.教学重点:合并同类项和移项法则.教学难点:合并同类项和移项,系数化为1等步骤的数学本质.教学过程:问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?题目中的相等关系为:_____________________ 列方程:_____________问题2:回顾解决这个问题的过程,你发现其中哪些步骤和以前所学的哪些知识有联系?例1解方程(1)86252-=-x x ; (2)例2有一列数,按一定规律排列成1,-3,9,-27,81,-243,…其中某三个相邻数的和是-1701,这三个数各是多少?追问1:知道了三个数中的某一个,是不是就可以知道另外两个数了?追问2:你是否能找到不同的设置未知数的办法来解决这个问题?问题3:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x 名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x 本和剩余的20本,可知道这批书共有________本;364155.135.27⨯-⨯-=-+-x x x x根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x 本和还缺少25本那么这批书共有________本;列方程: __________________;问题4:怎样才能使它转化为x =a (常数)的形式呢?例3 解方程(1)3x +7=32-2x (2)x-3=32x +1小结:解方程的步骤:例4:某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t ;如用新工艺,则废水排量比环保限制的最大量少100t.新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?课堂练习1.解方程:(1)6x -7=4x -5 (2)x -6 =x (3)3x +5=4x +1 (4)9-3y =5y +52.解下列方程:1234(1)529x x -=(2)3722x x +=(3)30.510x x -+=(4)7 4.5 2.535x x -=⨯-3.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?4.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.小结:课后反思:授课章节:第三章 一元一次方程授课日期:课题:3.3解一元一次方程(二)去括号教学目标知识:掌握解方程过程中“去括号”的步骤,进一步理解去括号法则的数学本质.能力:准确、熟练地解含有括号的一元一次方程,培养整式的计算能力.情感、态度、价值观:增强自信心和意志力,激发学习兴趣.教学重点:解方程的去括号法则.教学难点:去括号法则的数学本质.教学过程:问题1:请大家回忆去括号法则,化简下列各式:(1)=___________;(2)=___________;问题2:某工厂加强节能措施,去年下半年与今年上半年相比,月平均用电量减少2000kwh(千瓦时),全年用电15万kwh (千瓦时),这个工厂去年上半年每月平均用电是多少?例1 解方程(1)2x-(x+10)=5x+2(x-1) (2).注意:1. 当括号前是“-”号,去括号时,各项都要___________.2.括号前有数字,则要乘遍括号内___________,不能漏乘并注意___________.3.去括号的的本质是______________________.归纳:解一元一次方程的步骤:___________→___________ →___________→___________.例2一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了)2(24-+x x )1(73--x x )3(23)1(73+-=--x x x2.5小时.已知水流的速度是3km/h ,求船在静水中的平均速度.分析:一般情况下可以认为这艘船往返的路程相等 ,由此可填空:顺流速度________顺流时间________逆流速度 _________逆流时间解:练习1.方程 3x +2(3x -1)-4(x -1)= 0,去括号正确的是( )A .3x +6x -2-4x +1=0B .3x + 6x +2-4x -4=0C .3x +6x +2+4x +4=0D .3x +6x -2-4x +4=02.若x =2是方程k (2x -1)=kx +7 的解,则k 的值为( )A .1B .-1C .7D .-73.方程 2(x -3)=6-x 的解是x =___________4.解方程⑴ 2(x+3)=5x (2) 4-3(20-x )=3 (3) 4x + 3(2x – 3)=12 -(x +4)⑷ 2(10-0.5x ) = -(1.5x +2) (5))131(72)421(6--=+-x x x(6)2-3(x+1)=1-2(1+0.5x)小结:课后反思:授课章节:第三章一元一次方程授课日期:课题:3.3解一元一次方程(二)去分母教学目标知识:掌握解方程过程中“去分母”的步骤,理解去分母的数学本质.能力:准确、熟练地解含有分母的一元一次方程,进一步提高运算能力.情感、态度、价值观:通过将未知问题转化为已知问题,体会方程的同解变换和数学的转化思想.教学重点:准确、熟练地解含有分母的一元一次方程.教学难点:去掉分母后记得给分子添加括号.教学过程:问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.问题2:解方程:53210232213+--=-+x x x小结:解一元一次方程的步骤:例1:解方程:(1)422121x x -+=-+(2)归纳:去分母应注意:① 程两边应乘以各分母的公倍数;②不要漏乘的项;③分数线有括号作用,去掉分母后,若分子是一个多项式,要加,视多项式为一个整体. 练习1.小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正.(1)方程去分母,得; (2)方程去分母,得; (3)方程去分母,得 ; (4)方程去分母,得. 2. 解方程312148x x -+-=,去分母正确的是( ) A .2(x -3)-(1+2x ) = 1 B .(x -3)-(1+2x )= 8C .2x -3-1-2x = 8D .2(x -3)-(1+2x )=83.解方程:(1); (2); 3123213--=-+x x x 1024x x --=214x x -+=1136x x -+=122x x +-=11263x x --=312x x --=1123x x -=+3261x x -=+32213415x x x --+=-5124121223+--=-+x x x(3)53210232213+--=-+x x x (4)32116110412x x x --=+++(5) ;(6);小结:课后反思:授课章节:第三章 一元一次方程授课日期:632141+-=+-x x 223131x x --=--课题:一元一次方程的解法(习题课)教学目标知识:了解一元一次方程的一般形式,掌握解一元一次方程过程一般步骤,及其理论依据、数学本质.理解并会解简单的含参方程.能力:准确地解具有一定难度的一元一次方程,进一步提高运算能力.情感、态度、价值观:通过将未知问题转化为已知问题,体会一元一次方程的同解变换;通过对含参方程的学习,进一步体会分类讨论的数学思想.教学重点:准确、熟练地解一元一次方程.教学难点:含参方程的学习.教学方法:探究与讲解相结合.教学过程:问题1:解方程:432151413121=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x问题2:解方程:3.006.003.04.072.05.1-+=x问题3:解关于x 的方程:1ax x b +=+提问:(1)这是什么方程?为什么?(2)你打算如何解这个方程?问题4:解关于x 的方程:1ax bx b +=+问题5:(1)在解决问题3和问题4的过程中,你遇到了什么问题?是如何解决的?(2)为什么要这样解决?解决问题的依据是什么?。
第三章一元一次方程1.了解方程、一元一次方程以及方程的解等基本概念.2.掌握等式的基本性质.3.能根据具体问题的实际意义检验方程的解是否合理.4.了解方程的基本变形及其在解方程中的作用.5.会根据具体问题中的数量关系列出一元一次方程并求解,能根据问题的实际意义检验所得结果是否合理.1.会解一元一次方程,并经历和体会解方程中“转化”的过程和思想.了解一元一次方程解法的一般步骤,并能正确、灵活应用.2.通过实践与探索,经历“问题情境——建立数学模型——解答——应用与拓展”的过程,体会数学建模思想,提高分析和解决实际问题的能力.3.鼓励学生通过“尝试——猜想——验证”的方法学习、理解知识,体会和经历科学发现的过程,在探索方程的解的过程中渗透变量和函数思想.1.经历根据具体问题中的数量关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型.2.在学习和探索一元一次方程的解法和应用的过程中,通过自主学习,提高学习能力,增强合作意识.1.方程和方程组是“数与代数”的主要内容之一,一元一次方程是最简单、最基本的代数方程,它不仅在实际生活中有广泛的应用,而且是学习二元一次方程组、一元二次方程、分式方程以及其他后继内容的基础.与一元一次方程有关的一些概念,如方程的解、解方程等又是代数方程中具有共性的重要概念,等式的基本性质是代数方程进行同解变形并最后求出原方程解的重要依据.所以本章内容无论从实践上还是从进一步学习上看,都是有重要地位的.列一元一次方程解应用题对培养学生的方程思想和建模能力,发展数感、符号感,提高分析问题、解决问题能力有不可替代的作用.2.以实际问题为主线引入方程和方程的解的概念,改变传统教材过于注重较为完整的概念体系而与实际脱节的现象,破除陈旧、烦琐的模式训练.在实际问题的应用中,强调对具体内容的分析,渗透数学建模思想,教材注重实际意义,选用贴近学生生活、具有现代气息的例题、习题,激发学生的学习兴趣,使学生体会方程在现实世界中的作用.3.淡化概念的形式化叙述,删繁就简.注意数学思想方法的渗透,重视学生能力的培养.让学生参与知识的形成过程,改变传统教材“给出法则,让学生模仿练习”的框架,在解方程的教学中打破常规,在学生理解方程的简单变形及其合理性的基础上,鼓励学生自行探索,掌握解一元一次方程的一般步骤.4.在体现“让不同的学生在数学上得到不同的发展”方面,教材注意留有较大的弹性,以适应不同学生的需要.除了在练习、习题和复习题中设置不同要求的问题外,对大多数例题和部分习题均有一定的拓展、探索余地,提出不同的问题供学生思考.【重点】1.理解和掌握一元一次方程的解法.2.能利用一元一次方程解应用题.【难点】1.能熟练地解一元一次方程.2.正确地找出应用题中的数量关系,正确地列方程并求解.1.在学习一元一次方程的定义的过程中,要注意联系实际,激发学生的学习兴趣,可以根据地方特点和学生情况,适当补充一些学生感兴趣的素材,并采用开放的教学方式,可以引导学生初步比较算术解法与方程解法在分析数量关系上的区别,体会设元以后在思维、列式上直接、明了的优点,但不要“注入式”地告诉学生.2.利用等式的基本性质,有目的、有根据地对等式进行变形是解一元一次方程的一般方法.教学时,可引导学生分析下一步应该对方程实施怎样的变形,变形的依据是什么.3.教学时要注意引导学生选择合理的步骤,鼓励解法的多样化,习题的数量以及难度应控制在与教材相当的水平.4.对于运用方程解决实际问题,要把教学重点放在引导学生分析和理解题意上,要使学生做到:借助图表整体把握和分析题意;从多角度思考问题,寻找等量关系;选择适当的未知数,列出方程;理解列方程所依据的等量关系以及会解释方程中每个代数式的意义,注意检验方程解的合理性.总之,教师应千方百计地通过各种方式、手段来激发学生的思维活动,使他们在学习的过程中积极思考、肯动脑筋、大胆探索.教师在教学中要把重点放在揭示知识形成的过程上,充分暴露知识的形成过程,让学生通过“感知——概括——应用”的思维过程去发现、掌握规律,使学生在学习数学的过程中发展思维,达到既增长知识,又培养能力的目的.3.1从算式到方程时3.1从算式到方程1.理解和掌握一元一次方程的定义.2.能判断一个数是否为方程的解.3.明确方程和等式的关系.4.理解和掌握等式的基本性质.5.能应用等式的基本性质解简单的一元一次方程.1.能根据问题的数量关系列方程.2.培养学生分析问题、解决问题的能力.1.体会一元一次方程作为从实际问题中抽象出的数学模型所带来的方便.2.感受数学源于生活,又应用于生活.【重点】1.能根据实际问题列简单的方程.2.能利用等式的基本性质解简单的一元一次方程.【难点】从应用题中找相等关系列方程.3.1.1一元一次方程1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.理解一元一次方程、方程的解的概念.3.掌握检验某个值是不是方程的解的方法.4.培养学生获取信息的能力.1.通过处理实际问题,让学生体验从算术方法到代数方法的一种进步.2.培养学生根据问题寻找相等关系,根据相等关系列出方程的能力.1.培养学生热爱数学、热爱生活的乐观人生态度.2.培养学生求实的态度和良好的学习习惯.【重点】1.了解一元一次方程及相关概念.2.寻找相等关系,列出方程.【难点】寻找问题中的相等关系,正确地列出方程.【教师准备】多媒体课件(1,2,3,4,5).【学生准备】复习小学学过的方程.导入一:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h 经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?[设计意图]通过问题与生活情境的引入,激发学生的探究欲望与学习热情.导入二:变魔术好玩吗?那我们现在就来试一下:请同学们在练习本上写下一个数,不要说出来,按照老师说的继续做下去,将你刚才写出来的数乘2,再加上4,再除以2,再减去3.好了,现在将你的结果告诉我,我就能说出你开始的时候在练习本上写下的数,神奇吗?学习了本节课的内容之后,同学们一定就可以明白其中的奥秘了![设计意图]通过这个情境的设计,让学生感受到数学的神奇,从而激发学生的好奇心和求知欲,调节了课堂气氛.导入三:卡片显示,观察卡片上的式子,你能填上适当的数吗?卡片上式子分别为:3+□=8,○-2=7,5×?=1,△÷2=3,.学生先独立思考,然后同桌之间互相交流.[设计意图]由最简单的题目导入,消除学生的心理障碍,体现面向全体学生的课标意识,增加趣味性,调节课堂气氛.思路一【课件1】出示教材第78页问题,提出问题:【问题1】路程、时间、速度三者之间的关系如何?.在匀速运动过程中,时间、速度、路程之间的关系是时间=路程速度【问题2】用列表的方法找等量关系,如果设A,B两地间的路程为x km,请你完成下面的表格:【问题3】请找出等量关系,列出方程.设A,B两地间的路程是x km根据客车比卡车早1 h经过B地,可得方程-=1.【教师说明】我们知道方程是含有未知数的等式.通过本章的学习,我们将能够从上述的方程解出未知数的值x=420,从而求出A,B两地间的路程是420 km.通常情况下,用x,y,z等字母表示未知数,法国数学家笛卡儿是最早这样做的人,我国古代用“天元、地元、人元、物元”等表示未知数.[知识拓展](1)方程中未知数的表示可以使用字母x,也可以使用其他一些字母,如y,z等.通常用字母a,b,c表示已知数.(2)方程中未知数可以有两个或两个以上,如x+y=12,2x-y=z+1等.(3)方程都是等式,但等式不一定是方程,如2+4=6.[设计意图]通过教师的引导和学生的讨论、交流,发现问题中的等量关系,培养学生分析问题、解决问题的能力.思路二1.定义方程,回顾举例.师:大家知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?学生举例,教师总结.【课件2】判断下列式子是不是方程.(1)1+2=3;(2)x+2>1;(3)1+2x=4;(4)x+y=2;(5)x2-1;(6)x2=x+2;(7) x+3-5;(8)x=8.2.根据题意列方程.【课件3】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h 经过B地.A,B两地间的路程是多少?【师生活动】学生分组活动,讨论看能否用算术方法解,交流后考虑用方程如何解决,最后小组内同学交流.教师可以参与到学生中去,要关注学生解决问题的思路.在用算术法解时,是否遇到了麻烦?用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km,根据客车比卡车早1 h经过B地,可得方程- =1.【建议】在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.【设计意图】通过对列方程解决问题的学习,使学生感受方程方法和算术方法之间的差异,为进一步学习方程做准备.活动2:归纳列方程的步骤(1)用字母表示问题中的未知数(通常用x,y,z等字母表示);(2)根据问题中的相等关系,列出方程.【比较】比较列算式和列方程两种方式的特点,建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数表示计算程序,依据是问题中的数量关系;列方程:可用未知数表示相等关系,依据是问题中的等量关系.【思考】对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个等量关系?可考虑按以下的顺序进行:(1)学生独立思考;(2)小组合作交流;(3)全班交流.【试一试】【课件4】小雨、小思的年龄和是25岁.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示,由于这两个不同的式子表示的是同一个量,因此我们又可以得到25-x=2x-8.这样就得到了一个方程.[设计意图]通过对问题解决方法的学习,进一步使学生感受列方程的一般步骤,即先找等量关系,再列方程.思路二【问题1】你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.【问题2】算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上看:算术法与方程法有什么不同的情况出现?从思路上看:刚才做题的想法有什么不同?(了怎样分析,并且决定了列式的不同特点.学生讨论交流后回答时,教师不必苛求学生回答得很全面,只要学生能谈出一两点体会,教师都应当加以鼓励.[设计意图]通过对思路的归纳、总结,使学生感受列方程的一般过程和思路,体验列方程的过程,培养学生分析、解决问题的能力.【课件5】(教材例1)根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700 h,预计每月再使用150 h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?对于基础比较差的学生,教师可以做如下提示:(1)选择一个未知数,设为x.(2)对于这三个问题,分别考虑:用含x的式子表示正方形的周长;用含x的式子表示这台计算机x个月的使用时间;用含x的式子分别表示男生和女生的人数.(3)找到问题中的相等关系列出方程.让学生观察并讨论所列方程等号两边式子的关系,教师归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.【问题1】以上各题,你能用两种不同的方法来表示另一个量,再列出方程吗?【师生活动】让学生小组讨论,然后分组汇报交流.解题过程略.[设计意图]通过学生的自主尝试,激发学生的学习热情和探究欲望,培养学生的创新能力和分析、解决问题的能力.【问题2】上述方程具有什么样的特点?【师生活动】在学生观察、讨论上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.“一元”:一个未知数.“一次”:未知数的次数是1.[知识拓展]在判断一个方程是不是一元一次方程时,要注意:①必须含有一个未知数;②未知数的次数是1;③分母中不含有未知数.如果【师生活动】可以采用“尝试——发现——归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面那样按程序进行尝试.在此基础上给出概念:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.[知识拓展](1)判断一个数是不是方程的解,可把这个数代入方程的两边,若方程的两边相等,则该数是方程的解;反之,则不是方程的解.(2)方程的解与解方程是两个不同的概念,方程的解是一个结果,是具体的数值,而解方程是一个变形的过程.[设计意图]通过学生的讨论、交流与归纳,得出一元一次方程的概念,使学生感受列方程的过程,树立建模思想.思路二【课件5】教师出示教材例1.【师生活动】学生分组交流讨论完成,教师巡视,教师在这一过程中应当关注学生能否恰当地设未知数,能否根据题意正确找出等量关系列出方程,必要时教师可参与到小组当中,和学生一起探讨交流,也可以给学生适当的提示与点拨.师:像上边这样的方程,你能给它起一个名字吗?你是从哪个角度给它命名的?学生阅读教材,体验方程的命名方式,并说一说什么是一元一次方程.教师进一步提出问题:想一想,以上几个问题你是怎样列出方程的?可以把你的思路过程表示出来吗?【归纳】分析实际问题中的等量关系,利用其中的相等关系列出.实际问题一元一次方程对于问题(1),我们已经列出方程,可以发现当x=6时,4x的值是24,这时方程4x=24的两边相等,则x=6叫做方程4x=24的解.师:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.你能求出1700+150x= 2450的解吗?我们可以根据下面的流程图求解,给x一个值,代入方程,看一看方程两边是否相等,不相等再换一个试一试,依次进行下去,直到找到方程的解为止.【思考】这里是不是单纯盲目地去“碰”呢?师生讨论解决.[设计意图]通过对列方程的思路的进一步学习,使学生掌握列方程的一般步骤,培养学生分析、解决问题的能力,能够根据所列方程认识一元一次方程的有关概念.1.方程.准确把握方程的两个条件:一、必须含有未知数;二、必须是等式.两者缺一不可.2.一元一次方程.从三个方面理解一元一次方程的概念:一、一元一次方程首先属于整式方程,即方程两边不含分母,或虽含分母,但分母中不能有未知数.二、一元,即方程中只含有一个未知数,此未知数可以出现多次,但只能是同一未知数,同一个方程中不能出现两个不同的未知数.三、一次,未知数的次数是一次,指的是化为一般形式ax+b=0(a≠0)后,未知数的次数是一次.3.方程的解和解方程.这是两个不同的概念,方程的解是指使方程两边相等的未知数的值,具有名词性,而解方程是求方程解的过程,具有动词性.1.在下列式子:①2x-1;②2x+1=3x;③|π-3|=π-3;④t+1=3中,等式有,方程有.(填入式子的序号)解析:一元一次方程必须满足三个条件:(1)未知数的次数是1;(2)是整式方程;(3)只含有一个未知数.等式有②③④,方程有②④.答案:②③④②④2.根据“x的2倍与5的和比x的小10”可列方程为.解析:由题意列方程为2x+5=-10.故填2x+5=-10.3.x=2是下列方程的解吗?(1)3x+(10-x)=20;(2)2x2+6=7x.解析:把x=2代入上述方程,看等号左右两边是否相等.解:(1)x=2不是3x+(10-x)=20的解.(2)x=2是方程2x2+6=7x的解.3.1.1一元一次方程活动1:问题探究方程的定义活动2:归纳列方程的步骤活动3:学习一元一次方程的概念例1一元一次方程一元一次方程的解一、教材作业【必做题】教材第80页练习.【选做题】教材第83页习题3.1第1,2,3题.二、课后作业【基础巩固】1.下列式子是方程的有()35+24=59;3x-18>33;2x-5=0;+15=0.A .1个 B.2个C.3个 D.4个2.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列方程中能正确计算出x的是()A.10x+20=100B.10x-20=100C.20-10x=100D.20x+10=1003.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+5(12-x)=48B.x+5(x-12)=48C.x+12(x-5)=48D.5x+(12-x)=484.检验下列各小题后面括号里的数是不是它前面方程的解.(1)3y-1=2y+1(y=2;y=4);(2)3(x+1)=2x-1(x=2;x=-4).【能力提升】5.希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中正确的是()A.2(x-1)+x=49B.2(x+1)+x=49C.x-1+2x=49D.x+1+2x=496.甲、乙两数的和为10,且甲数比乙数大2,求甲、乙两数,正确的方程是()A.设乙数为x,则(x+2)+x=10B.设乙数为x,则(x-2)+x=10C.设甲数为x,则(x+2)+x=10D.设甲数为x,则x-2=107.为创建园林城市,某城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是 ()A.6(x+22)=7(x-1)B.6(x+22-1)=7(x-1)C.6(x+22-1)=7xD.6(x+22)=7x【拓展探究】8.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圈(1)中,属于一次方程的序号填入圈(2)中,既属于一元方程又属于一次方程的序号填入两个圈的公共部分.①3x+5=9;②x2+4x+4=0;③2x+3y=5;④x2+y=0;⑤x-y+z=8;⑥xy=-1 .【答案与解析】1.B(解析:35+24=59,是等式但不含未知数,所以不是方程;3x-18>33,含未知数但不是等式,所以不是方程;2x-5=0与+15=0都是含有未知数的等式,所以都是方程.故选B.)2.A(解析:由题意知x月存10x元,又现在有20元,因此可列方程10x+20=100.故选A.)3.A(解析:1元纸币为x张,那么5元纸币为(12-x)张,所以x+5(12-x)=48.故选A.)4.解析:把每个方程后面的两个数分别代入原方程,如果左右两边相等,那么这个数就是方程的解,反之则不是.解:(1)把y=2代入原方程的左、右两边,左边=3×2-1=5,右边=2×2+1=5,左边=右边,所以y=2是方程3y-1=2y+1的解;把y=4代入原方程的左、右两边,左边=3×4-1=11,右边=2×4+1=9,左边≠右边,所以y=4不是方程3y-1=2y+1的解. (2)把x=2代入原方程的左、右两边,左边=3×(2+1)=9,右边=2×2-1=3,左边≠右边,所以x=2不是方程3(x+1)=2x-1的解;把x=- 4代入原方程的左、右两边,左边=3×(- 4+1)=- 9,右边=2×(- 4) -1=- 9,左边=右边,所以x=- 4是方程3(x+1)=2x-1的解.5.A(解析:由题意得女生有2(x-1)人,根据题意得2(x-1)+x=49.故选A.)6.A(解析:设乙数为x,根据甲数比乙数大2,则甲数为x+2,根据题意得出(x+2)+x=10.故选A.)7.B(解析:根据首、尾两端均栽上树,每间隔6米栽一棵,则缺少22棵,可知这一段公路长为6(x+22-1);若每隔7米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为7(x-1),根据公路的长度不变列出方程即可.)8.解析:一元方程指的是含有一个未知数的方程;一次方程指的是未知数的次数是1的方程;而一元一次方程指的是含有一个未知数,并且未知数的次数是1的方程.解:如图所示.这节课在设计上重点体现学生的自主探索.首先在引入时,问题设计体现出教师的教学活动是建立在学生认识发展水平和已有的知识经验的基础上,探究过程在对教材例题的处理上,让学生探索方程解法与算术解法的优劣,从而让学生在自主探索中进行比较,自己得出结论,较传统的教学活动而言,体现了学生的主体地位,着重于学生的探索活动,强调了学生的自我发现在方程的解的概念这部分的处理上的重要性.1.在教学的过程中,教师只局限于教材中的问题和例题,限制了学生的思维.2.对于一元一次方程的概念的分析和实际问题中的等量关系的确定,教师没有重点指导.3.在探索方程的解的过程中,没有让学生主动去探索尝试.教师要能灵活地运用教材,并加以创造.可以设计一些其他的应用问题,让学生寻找等量关系.一元一次方程的概念学生第一次接触到,可以让学生通过判断、辨析等手段加以强化.明确一元一次方程的“一元”和“一次”两个重要的特点.在探索方程解的时候,一定要让学生自己去想、小组合作去探究方程的解,教师一定要相信学生,给学生自主思考的空间和时间,让学生自己得到答案.练习(教材第80页)1.解:设沿跑道跑x周可以跑3000 m,则400x=3000.2.解:设甲种铅笔买了x支,则乙种铅笔买了(20-x)支,所以0.3x+0.6(20-x)=9.3.解:设上底为x cm,则下底为(x+2)cm,所以=40,即=40.4.解:设小水杯的单价为x元,则大水杯的单价为(x+5)元,根据题意得10(x+5)=15x.下列各式中,是方程的为()A.3=5-2B.3+4xC.5a-6=3D.2x+3>4x-5〔解析〕本题考查方程的定义.A选项为一个等式,但等式中不含有未知数,故不是方程;B选项含有未知数,但不是一个等式,也不是方程;D选项含有未知数,但不是等式,故也不是方程.故选C.〔解题策略〕方程有两个条件:(1)式子中必须含有未知数;(2)式子必须是等式.检验0,1,2三个数是否为方程3(x+1)=2(2x+1)的解.〔解析〕判断一个数是不是原方程的解,必须用这个数替换方程中的未知数,并计算方程左、右两边的值是否相等.解:将x=2分别代入原方程左、右两边,左边=3×(2+1)=9,右边=2×(2×2+1)=10.左边≠右边,所以x=2不是原方程的解.将x=1分别代入原方程左、右两边,左边=3×(1+1)=6,右边=2×(2×1+1)=6.左边=右边,所以x=1是原方程的解.将x=0分别代入原方程左、右两边,左边=3×(0+1)=3,右边=2×(2×0+1)=2.左边≠右边,所以x=0不是原方程的解.〔解题策略〕使方程左、右两边相等的未知数的值称为方程的解.判断一个数是不是原方程的解,直接根据条件代入方程的两边进行计算即可.3.1.2等式的性质。
2024年浙教版七年级下数学第三章教案一、教学内容本节课选自2024年浙教版七年级下数学教材第三章《一元一次方程》,详细内容包括:3.1方程的概念;3.2一元一次方程的解法;3.3一元一次方程的应用。
二、教学目标1. 理解方程的概念,掌握一元一次方程的解法。
2. 能够运用一元一次方程解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点难点:一元一次方程的应用。
重点:一元一次方程的解法。
四、教具与学具准备1. 教具:PPT、黑板、粉笔。
2. 学具:教材、练习本、笔。
五、教学过程1. 导入:通过一个实践情景引入方程的概念,如“小明和小华去书店买书,小明买书花了18元,小华比小明多花了5元,问小华买书花了多少钱?”2. 新课:讲解3.1方程的概念,让学生理解方程的意义。
然后讲解3.2一元一次方程的解法,通过例题讲解和随堂练习,让学生掌握解法。
3. 应用:讲解3.3一元一次方程的应用,结合实际例子,让学生学会列方程解决实际问题。
5. 互动:学生提问,解答疑问。
六、板书设计1. 方程的概念2. 一元一次方程的解法a. 移项b. 合并同类项c. 系数化为13. 一元一次方程的应用七、作业设计1. 作业题目:a. 解下列方程:2x+5=15;3(x4)+2x=12。
b. 小明和小华去书店买书,小明买书花了18元,小华比小明多花了5元,问小华买书花了多少钱?c. 小红和小李相约去公园,小红提前20分钟出发,小李以每小时4公里的速度追赶小红,经过2小时后,小李终于追上小红。
问小红每小时走多少公里?2. 答案:a. x=5;x=4。
b. 小华买书花了23元。
c. 小红每小时走3公里。
八、课后反思及拓展延伸本节课通过实践情景引入方程的概念,让学生理解方程的意义,然后通过例题和随堂练习,让学生掌握一元一次方程的解法。
在课后,教师应关注学生的作业完成情况,了解他们在解题过程中遇到的困难,并进行针对性的指导。
3.1 从算式到方程《3.1.1 一元一次方程》教案【教学目标】1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)【教学过程】一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1;(2)2x+5y=3;(3)9-4x>0;(4)x-32=13;(5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1xD.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎨⎧|m |=1m +1≠0,解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x =2的方程是( )A .3x -2=3B .-x +6=2xC .4-2(x -1)=1 D.12x +1=0 解析:A.当x =2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x =2是该方程的解,正确;C.当x =2时,左边=4-2×(2-1)=2≠右边,错误;D.当x =2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程【教学反思】本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.第三章一元一次方程3.1从算式到方程《3.1.1一元一次方程》同步练习能力提升1.下列说法中错误的是( )A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元D.比x的一半大-1的数是5,则可列方程x-1=52.某市电力部门呼吁广大市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空出26个座位.下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-263.若x=2是关于x的方程2x+3m-1=0的解,则m的值为( )A.-1B.0C.1D.4.已知方程(a-2)x|a|-1=1是关于x的一元一次方程,则a= .5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心”的活动,王老师利用寒假带领团员乘车到农村开展“送字典下乡”活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ农场”游戏时,观察好友“咖啡思语”和“雨薇”的信息发现:“咖啡思语”的金币比“雨薇”的金币的4倍还多3个.“咖啡思语”的金币数如图所示,则“雨薇”有多少个金币?如果设“雨薇”有x个金币,那么可列方程为.8.由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低,现价为2 400元的某型号计算机,3年前的价格为多少元?下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)★10.已知关于x的方程ax+b=c的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的;七(2)班捐的钱数是四个班捐款总和的;七(3)班捐的钱数是四个班捐款总和的;七(4)班捐了159元,求这四个班捐款的总和.若设这四个班捐款的总和为x元,你能列出方程吗?并检验x=636是不是所列方程的解.★12.已知关于x的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.参考答案能力提升1.B2.D 参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A 把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2 由题意,得|a|-1=1,所以|a|=2,所以a=2或a=-2.又因为a-2≠0,所以a≠2,所以a=-2.5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x元,根据题意,得x=2400,经检验知,x=3600是方程的解.9.解:设顾客买了x箱鸡蛋,由题意,得12x=2×14x-96.10.解:当x=1时,有a+b=c,所以|c-a-b-1|=|0-1|=1.创新应用11.解:根据题意,列方程得x+x+x+159=x.将x=636代入方程的两边,左边=×636+×636+×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解.12.解:(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.第三章 一元一次方程3.1 从算式到方程《3.1.1 一元一次方程》导学案【学习目标】:1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性, 提高解决实际问题的能力.2.掌握方程、一元一次方程的定义以及解的概念,学会判断某个数值是不是 一元一次方程的解.3.初步学会如何寻找问题中的等量关系,并列出方程.【重点】:掌握一元一次方程的概念,能够根据具体问题中的数量关系列一元一次方程.【难点】:找出具体问题中的等量关系,列一元一次方程.【自主学习】一、知识链接回忆小学学过的有关方程的知识回答下列问题:1.含有 的 叫做方程.2.判断下列各式哪些是方程:(1)5x +3y -6x =37( ) (2)4x -7( )(3)5x ≥ 3( ) (4)6x ²+x -2=0( )(5)1+2=3( ) (6)x5-m =11( ) 二、新知预习1.根据要求列出式子.(1)x 的2倍与3的差是6;(2)正方形的周长为24cm,请写出它的边长a与周长的关系式.2.观察上面所列的两个式子,议一议它们有什么共同特征.【课堂探究】一、要点探究探究点1:方程及一元一次方程的概念合作探究一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B 两地间的路程是多少?(1)上述问题中涉及到了哪些量?①路程 ______________;②速度 ________________; 快车每小时比慢车多走_____km.③时间 ________________. 相同的时间,快车比慢车多走了_____km.快车走了______h,故AB之间的路程为_______km.算式:____________________________.(2)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:快车行完AB全程所用时间为 h;慢车行完AB全程所用时间为 h;两车所用的时间关系为:快车比慢车早到1h即:()-()=1把文字用符号替换为 .(3)如果用y表示客车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(4)如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(5)刚才列的方程都有什么特点?①每个方程中,各含有_______个未知数;②每个方程中未知数的次数均为_____;③每个方程中等号两边的式子都是________.要点归纳:只含有 个未知数(元),未知数的次数都是 ,等号两边都是 ,这样的方程叫做一元一次方程. 典例精析例1 若关于x 的方程2x |n |-1-9=0是一元一次方程,则n 的值为 .【变式题】加了限制条件,需进行取舍方程 (m +1) x |m |+1= 0是关于x 的一元一次方程,则m = .易错提醒:一元一次方程中求字母的值,需谨记两个条件:未知数的次数为__________,系数不为________.针对训练下列哪些是一元一次方程?(1)2x +1; (2)2m +15=3;(3)3x -5=5x +4; (4)x 2 +2x -6=0;(5)-3x +1.8=3y ; (6)3a +9>15;(7)61 x =1.探究点2:列方程例2 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.方法归纳:列出方程的一般步骤:1.设未知数;2.找等量关系;3.列方程.针对训练:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇,可列方程为 ;2.六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.设这个小队有x人,可列方程为 .探究点3:方程的解思考:对于方程4x =24,容易知道x=6可以使等式成立,对于方程170+15x=245,你知道x等于什么时,等式成立吗?我们来试一试.例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x =80的解?方法总结:判断一个数值是不是方程的解的步骤:1.将数值代入方程左边进行计算;2.将数值代入方程右边进行计算;3.若左边=右边,则是方程的解,反之,则不是.针对训练检验x = 3是不是方程 2x-3 = 5x-15的解.5.已知方程 (m-2) x|m|-1+3 = m-5是关于x的一元一次方程,求m的值,并写出其方程.。
第三章一元一次方程第三章一元一次方程3.1.1一元一次方程(1)教学目标:1、初步学会寻找问题中的相等关系,列出方程,了解方程的概念;重点:从实际问题中寻找相等关系难点:从实际问题中寻找相等关系教学过程:二、讲解新课1、方程的概念:含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程,一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).2、列方程解决实际问题的两个步骤: (1)用字母表示问题中的未知数(通常用x,y,z等字母); (2)根据问题中的相等关系,列出方程.3、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
三、范例学习,巩固知识归纳得出一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
列方程是解决问题的重要方法,利用方程可以解出未知数。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
问题:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?四、课堂小结1、这节课我们学习了什么内容?2、用列方程的方法解决实际问题的一般思路是什么?3、列方程的实质就是用两种不同的方法来表示同一个量.3.1.2等式的性质教学目标:1、了解等式的两条性质,会用等式的性质解简单的一元一次方程。
重点:等式的性质难点:用等式的性质解简单方程教学过程:一、创设情境,提出问题归纳:等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
即:如果如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc二、总结本节主要学习等式的性质,并会用等式的性质解简单的一元一次方程,主要用到的思想是类比思想与转化思想。
第三章一元一次方程3.1从算式到方程3.1.1一元一次方程(2课时)第1课时方程的概念1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.培养学生获取信息、分析问题、处理问题的能力.重点了解一元一次方程及相关概念.难点寻找问题中的相等关系,列方程.活动1:创设情境,导入新课师:小学中我们已经学习过列方程解决问题,什么是方程?你能举一个例子吗?学生回答.活动2:探究新知1.定义方程,回顾举例师:你知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?由学生举例,教师总结.练习:判断下列式子是不是方程,正确的打“√”,错误的打“×”.(1)1+2=3(2)x+2>1(3)1+2x=4(4)x+y=2(5)x2-1(6)x2=x+2(7)x+3-5(8)x=82.如何根据题意列方程师:利用多媒体展示图片,出示教材本小节开头的问题:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1小时经过B地,A,B两地间的路程是多少?学生分组活动,同桌两个同学讨论看能否用算术方法解,然后考虑用方程如何解决,然后小组内同学交流,教师可以参与到学生中去,要关注学生解决问题的思路,在用算术法时,是否遇到了麻烦,用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km.根据客车比卡车早1小时经过B地,可得方程x 60-x70=1.在这一过程的教学中,教师不仅要使学生掌握本问题的解决方法,更重要的是让学生去体会列方程过程中的一般思路和方法.在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.活动3:归纳整理师:提出问题,你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上观察:算术方法与方程方法有什么不同的情况出现?从思路上看:你刚才做题的想法有什么不同?(师根据学生的口述列成表,便于比较)了列式的不同特点.学生讨论交流后回答.教师不必苛求学生的回答,只要学生能谈出一两点体会,教师都应当加以鼓励.练习:教材练习第1,2题.学生独立完成,然后交流.活动4:小结与作业小结:谈谈你本节课的收获.作业:习题3.1第1,5题.要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会做学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住实施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果.第2课时一元一次方程1.理解一元一次方程、方程的解的概念.2.掌握检验某个值是不是方程的解的方法.重点寻找等量关系,列出方程.难点对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.一、情境引入师出示问题:问题:小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们可以写成:25-x =2x -8.这样就得到了一个方程.二、尝试探究师:让学生尝试解决例1,对于基础比较差的学生,教师可以作如下提示: (1)选择一个未知数,设为x. (2)对于这三个问题,分别考虑:用含x 的式子分别表示正方形的周长;用含x 的式子表示这台计算机x 个月的使用时间; 用含x 的式子分别表示男生和女生的人数. (3)找一个问题中的相等关系列出方程. 学生讨论完成后交流.师:让学生观察并讨论所列方程等号两边式子的关系,师生归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.学生讨论交流:以上各题,你还能用两种不同的方法来表示另一个量,再列出方程吗? 让学生在学习小组内讨论,然后分组汇报交流:如(2)题中,选“已使用的时间”可列方程:2450-150x =1700.选“还可使用的时间”可列方程:150x =2450-1700. 解题书写过程(略). 三、探究概念 学生讨论交流.在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程式.“一元”:一个未知数,“一次”:未知数的次数是一次. 引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:实际问题――→设未知数 列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.列出方程后,还必须解这个方程,求出未知数的值,对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边相等的未知数的值,叫做方程的解,求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.四、练习与小结练习:教材练习第3题.小结:1.谈谈你对一元一次方程的认识.2.谈谈你对列方程的认识.3.如何进行估算?五、布置作业习题3.1第6,7,8题.学生在小学已经对方程有初步认识,但这个过程没有给“一元一次方程”这样准确的理性的概念.本节课是基于学生在小学已经学习的基础上来进行的.继续对有关方程的一些初步知识,并能通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,并能给出一元一次方程的简单概念及一些相关概念.3.1.2等式的性质(2课时)第1课时等式的性质1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.3.培养观察、分析、概括及逻辑思维能力.重点理解和应用等式的性质.难点应用等式的性质把简单的一元一次方程化成“x=a”的形式.活动1:创设情境,导入新课师:哪位同学能谈谈上节课我们学习了哪些内容?学生思考回答.师:通过估算的方法,我们可以求得方程的解,可是我们也看到,通过估算求解,需要通过多次尝试才能得到正确的答案,有没有相对简单的方法,使我们可以获得方程的解呢?从今天开始我们就来学习解方程.活动2:探究等式的性质分组进行实验(时间约10~15分钟);每小组准备天平一架,砝码、等质量小木块等若干.教师引导学生进行以下操作.操作(1)1.先在托盘中放入一块小木块,然后在另一个托盘中加入砝码,使天平平衡.2.然后在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡,可以重复此步骤.操作(2)在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各两块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各相等数量的块数,观察此时天平是否平衡,可以重复此步骤.思考:这其中包含的数学道理是什么? 学生讨论后交流.然后师生共同归纳出等式的性质: 如果a =b ,那么a±c =b±c.等式性质1:等式两边加(或减)同一个数或同一个式子,结果仍相等.教师按类似的方法得出等式性质2: 如果a =b ,那么ac =bc ; 如果a =b ,那么a c =bc(c ≠0).等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.活动3:解决问题师出示教材82页例2(1)(2).师生共同分析如何运用等式的性质解决这两个问题,在分析过程中教师注意化归思想的渗透,应当告诉学生解方程就是使方程向“x =a ”的形式进行化归,沿着这个思路进行引导,使学生感受化归思想,能自觉地运用等式的性质解决问题.解:略练习:教材第83页练习(1)(2). 学生独立完成,然后同学间交流.根据时间情况和学生的掌握情况,教师可以随机再补充几个练习. 活动4:小结与作业小结:谈谈你对等式性质的认识. 作业:习题3.1第2,3题.等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的.学生已掌握了一定的学习方法,形成了一定的推理能力.因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.第2课时 用等式的性质解方程1.通过解一元一次方程进一步理解等式的性质;2.会用等式的性质解简单的(两次运用等式的性质)一元一次方程.重点用等式的性质解方程. 难点需要两次运用等式的性质,并且有一定的思维顺序.一、创设情境,复习引入解下列方程:(1)x +7=5;(2)2x =5. 要求学生能说出:①每一步的依据分别是什么?②求方程的解就是把方程化成什么形式?师:这节课继续学习用等式的性质解一元一次方程. 二、探究新知 对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?例1:利用等式的性质解方程:(1)0.6-x =2.4 (2)-13x -5=4先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.6-x =2.4转化为x =a 的形式,必须去掉方程左边的0.6,怎么去? ②要把方程-x =1.8转化为x =a 的形式,必须去掉x 前面的“-”,怎么去? 然后给出解答:解:两边减0.6,得0.6-x -0.6=2.4-0.6. 化简,得 -x =1.8,两边同乘-1得 x =-1.8.小结:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x =a 的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗? 在学生解答后点评.解:两边加5,得到13x -5+5=4+5,化简,得-13x =9,两边同乘-3,得x =-27.解后反思:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.例2:(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?在学生弄清题意后,教师再作分析:如果设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,你能列出方程吗?解:设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,得80×3.5+1.5x =355.化简,得280+1.5x =355, 两边减280,得280+1.5x -280=355-280, 化简,得 1.5x =75,两边同除以1.5,得x =50.答:用余下的布还可以做50套儿童服装.解后反思:对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.问题:我们如何才能判别求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x =50代入方程80×3.5+1.5x =355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x =50是方程的解.你能检验一下x =-27是不是方程13x -5=4的解吗?三、课堂练习练习:1.课本83页练习(3),(4).2.补充练习:小刚带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)解:设笔记本的单价为x 元.根据圆珠笔和笔记本的钱的总和为18元,得方程 5×1.2+8x =18. 化简,得6+8x =18.两边减6,得6+8x -6=18-6, 化简,得8x =12.两边同除以8,得x =1.5. 答:笔记本的单价是每本1.5元. 四、小结(1)这节课学习的内容. (2)我有哪些收获?(3)我应该注意什么问题? 五、作业习题3.1第4,10题.解方程是学生刚接触的新知识,学生原有的知识储备与生活经验不足,因此教学中老师要时刻关注学生的学习的情况,引导学生经历将现实生活问题加以数学化,引导学生通过操作、观察、分析和比较,由具体的知识渗透到抽象的去理解等式的性质,并应用等式的性质来解方程.3.2 解一元一次方程(一) ——合并同类项与移项(4课时)第1课时 合并同类项1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型. 2.学会合并(同类项),会解“ax +bx =c ”类型的一元一次方程.重点建立方程解决实际问题,会解“ax +bx =c ”类型的一元一次方程. 难点分析实际问题中的已知量和未知量,找出相等关系,列出方程.一、创设情境,导入新课师:背景资料投影展示:约公元820年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.二、探究分析,解决问题 师:出示教材问题1.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:引导学生回忆:实际问题――→设未知数 列方程一元一次方程问题:如何列方程?分哪些步骤?师生共同讨论分析:①设未知数:前年购买计算机x 台. ②找相等关系:前年购买量+去年购买量+今年购买量=140台. 然后教师引导学生列出方程. ③x +2x +4x =140. 进一步提出问题:怎样解这个方程?如何将方程向x =a 的形式进行转化?学生观察,讨论交流,教师引导学生说出将方程左边合并同类项,向x =a 的形式转化. 教师板演过程或用教材的框图表示过程.(过程略)思考:本问题的解决过程中,合并同类项起到了什么作用? 学生讨论后回答.(让学生感受化归的思想)问题:对于本问题,你还有其他的方法解决吗? 三、尝试运用,巩固加深 教师出示教材例1. 解下列方程: (1)2x -52x =6-8;(2)7x -2.5x +3x -1.5x =-15×4-6×3. 师生共同解决,教师板书过程. 四、练习与小结练习:课本第88页练习1.小结:谈谈你对这节课的收获.五、作业习题3.2第1,4,5题.本节课研究的内容是“合并同类项”,“合并同类项”是化简解方程的重要方法.通过合并同类项可以使方程向x=a的形式转化.这节课与前面所学的知识有千丝万缕的联系.合并同类项的法则是建立在数的运算的基础上,在合并同类项的过程中,要不断运用数的运算,可以说合并同类项是有理数加减运算的延伸和拓广.第2课时合并同类项的应用学会探索数列中的规律,建立等量关系.能正确地求解一元一次方程.重点建立一元一次方程解决实际问题.难点探索并发现实际问题中的等量关系,并列出方程.活动1:创设情境,导入新课师:练习解方程:(1)-4x+0.5x=6;(2)7x-4.5x=7.5-5;(3)-12x+34x=-3.学生独立完成,然后同学交流.活动2:探究新知教师出示教材例2.有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?面进行观察.师生共同完成解答过程,教师注意要规范地书写过程.在这一过程中,老师要关注学生能否准确地发现规律,能否列出方程,本问题的难点在于它有多个未知数,要引导学生找到相邻的数的关系,然后设出未知数,再用含未知数的式子表示相邻的数.解:设这三个相邻数中的第1个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x.根据这三个数的和是-1701.得 x -3x -9x =-1701, 合并,得x =-243, 所以-3x =729,9x =-2187.答:这三个数是-243,729,-2187.思考:有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,你能说出它的第n 个数是多少吗?(用含n 的式子表示)可作为课下思考题,本问题与本课时的关系不大,但作为对本例题的一个拓展,却有让学生重新思考的价值.活动3:综合运用教师出示例题.(或投影展示) 补例:一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁,后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒,不久他们改坐成四人一桌,服务员再给每桌一瓶矿泉水.此外他们每人都要了一瓶可口可乐.聚会结束时服务员共收拾了50个空瓶.如果没人带走瓶子,那么聚会有几人参加?分析:要求聚会有几人参加,就要先设出未知数,再根据题意列出等量关系,设共有x 人参加,由题意得,一共要了x 2瓶果汁,x 3瓶葡萄酒,x4瓶矿泉水,x 瓶可口可乐,即:空瓶子数为各类饮料瓶子数之和,由这个等量关系,列出方程求解.解:设这次聚会共有x 人参加,由题意得:x +x 2+x 3+x4=50,解得:x =24.答:这次聚会共有24人参加. 学生讨论交流,师生共同解决. 活动4:小结小结:谈谈你这节课的收获. 活动5:作业习题3.2第5,12,13题.实施开放式教学,倡导自主探索、合作交流的学习方式.让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法.教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念.第3课时 移项1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项方法,学会解“ax +b =cx +d ”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.重点建立方程解决实际问题,会解“ax +b =cx +d ”类型的一元一次方程. 难点分析实际问题中的相等关系,列出方程.一、创设情境,导入新课出示教材问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?二、探究新知引导学生回顾列方程解决实际问题的基本思路. 学生讨论、分析:1.设未知数:设这个班有x 名学生. 2.找相等关系:这批书的总数是一个定值,表示它的两个等式相等. 3.列方程:3x +20=4x -25.问题1:怎样解这个方程?它与上节课遇到的方程有何不同?学生讨论后发现:方程的两边都有含x 的项(3x 与4x)和不含字母的常数项(20与-25). 问题2:怎样才能使它向x =a 的形式转化呢?学生思考、探索:为使方程的右边没有含x 的项,等号两边同减去4x ,为使方程的左边没有常数项,等号两边同减去20.3x -4x =-25-20.问题3:以上变形依据是什么? 等式的性质1.归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项. 师生共同完成解答过程,或用框图表示.问题4:以上解方程中“移项”起了什么作用? 学生讨论、回答,师生共同整理:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x =a 的形式.师:解方程时,要合并同类项和移项.前面提到的古老的代数书中的“对消”与“还原”,指的就是“合并同类项”和“移项”.三、尝试运用,加深巩固师出示教材例3.解下列方程:(1)3x +7=32-2x ;(2)x -3=32x +1.教师引导学生按照框图所展示的过程,共同完成本例. 练习:课本第90页练习1. 四、小结谈谈本节课你的收获. 五、作业习题3.2第2,3题.这节课要学习的方程类型是两边都有x 和常数项,通过移项的方法化到合并同类项的方程类型.教学重点是用移项解一元一次方程,难点是移项法则的探究.在教学过程中一定要强调学生,移项的时候要注意变号.第4课时 方程的应用1.进一步培养学生列方程解应用题的能力.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题、解决问题的能力.重点建立一元一次方程解决实际问题. 难点探究实际问题与一元一次方程的关系.活动1:创设情境,引入新课 师:展示投影:练习解方程:(1)12x +4x =9 (2)-4x =-2x +6 (3)5x +4=4x -3 (4)0.6x =50+0.4x学生独立完成,然后师生交流答案,看谁做得又对又快.活动2:探究新知 教师展示教材例4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?学生讨论交流.教师可提示学生分析:1.本题可否用小学学习的算术法来求解?2.题目中两种工艺的废水排量都是与环保最大值相关的,根据小学学过的比例式,如果设环保设计的最大量为x t ,你能否列出一个关于x 的比例式?3.根据新旧工艺的废水排量之比为2:5,如果设新、旧工艺的废水排量分别为2x t 和5x t ,你能列出方程吗?解:设新、旧工艺的废水排量分别为2x t 和5x t . 根据废水排量与环保限制最大量之间的关系,得 5x -200=2x +100. 移项,得5x -2x =100+200. 合并同类项,得 3x =300,系数化为1,得 x =100,所以2x =200, 5x =500.答:新、旧工艺产生的废水排量分别为200 t 和500 t . 师:通过解答过程,你能说一下这种设法的好处吗?活动3:综合运用 补例:一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?学生思考、讨论出多种解法,师生共同讲评. 本问题是一个与上一问题相似的问题,关键是让学生认真分析出各个量之间的关系,让学生学会类比、用上一问题的方法模式去解决本问题。