多元统计分析复习整理
- 格式:doc
- 大小:78.50 KB
- 文档页数:4
填空题:1、费希尔(Fisher)判别法是1936年提出来的,该方法的主要思想是通过将多维数据投影到某个方向上。
2、因子分析的内容非常丰富,常用的因子分析类型是R型因子分析和Q型因子分析。
3、K均值聚类分析的基本思想是将每一个样品分配给最接近业壶些直的类中。
4、对应分析是将R型因子分析Q型因子分析结合起来进行的统计分析方法。
5、总体方差未知的情况下,采用样本方差代替总体方差的方法进行计算。
6、主成分分析数学模型中的正交变换,在几何上就是作一个坐标旋转7、设X、N2 ( U , N),其中X=(》1,》2),号),则CovQq +》2,*1 - *2)= _0__8、判别分析是判别样品所属类型的一种统计方法,常用的判别方法有距离判别法、Fisher 判另U法、Bayes判另U法、逐步判另U法9 多元正态分布的任何边缘分布为正态分布10、应用多元统计分析方法用于解决多指标问题,聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为Q型聚类和R型聚类。
11、总离差平方和可以分解为回归离差平方和和剩余离差平方和两个部分,各自的自由度为(P )和(n-p-1),其中回归离差平方和在总离差平方和中所占比重越大,则线性回归效果越显著。
12、系统聚类分析方法有最短距离法、最长距离法、中间距离法、重心法、类平均统和可变类平均法。
13、典型相关分析是研究两组变量之间相关关系的一种多元统计方法14、因子分析中因子载荷系数叫,•的统计意义是:(第i个变量与第j个公因子的相关系数)15、相应分析的特点是研究的变量是定性的16、公共因子方差与特殊因子方差之和为o17、设Z 是总体X=(X”…,乂皿)的协方差阵,X 的特征根人。
=1,2,..・田)与对应的单位正交化特征向量% =(%,%2,,则第一主成分的表达式=% ]X| + %2、2 + ・•• + /mX"],方差为2]18、相应分析的主要目的是寻求列联表行因素A和列因素B的基本分析特征和它们的最优联立表示19聚类分析一是分析如何对样品或变量进行量化分类的问题。
二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指变量的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
第一章、多元正态分布的参数估计二、判断题1.多元分布函数是单调不减函数,而且是右连续的。
(√ )()x F 2.设是维随机向量,则服从多元正态分布的充要条件是:它的任何组合X p X 都是一元正态分布。
(X )()p R X ∈'αα3.是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:μ(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B (√ )4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。
(√ )5.一般情况下,对任何随机向量,协差阵是对称阵,也()'=p X X X ,,1 ∑是正定阵。
(X )6.多元正态向量的任意线性变换仍然服从多元正态分布。
()'=p X X X ,,1 (√)7.多元正态分布的任何边缘分布为正态分布,反之一样。
( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。
(√)9.多元正态总体参数均值的估计量具有无偏性、有效性和一致性。
(√)μX 10.是的无偏估计。
( X )S n 1∑11.Wishart 分布是分布在维正态情况下的推广。
(√)2χp 12.若,,且相互独立,则样本离差阵()()∑,~μαp N X n ,,1 =α。
(√)()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα13.若,为奇异矩阵,则。
( X )()∑,~n W X p C ()c c n W C CX p '∑',~第二章 多元正态分布均值向量和协差阵的检验二、判断题1.设,,,则称统计量的分布为()∑,~μp N X ()∑,~n W S p p n ≥X S X n T 12-'=非中心分布,记为。
( X )2HotellingT ()μ,,~22n p T T 2.在协差阵未知的情况下对均值向量进行检验,需要用样本协差阵去代∑S n1替。
多元统计分析期末考试考点The following text is amended on 12 November 2020.二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。
天津市考研统计学复习资料多元统计分析重点知识点梳理多元统计分析是统计学的一个重要分支,主要研究多个变量之间的关系。
在天津市考研统计学考试中,多元统计分析是一个重要的考点。
本文将为大家梳理多元统计分析的重点知识点,帮助大家更好地复习。
一、多元统计分析的基本概念多元统计分析是指研究多个变量之间关系的一种统计方法。
基本概念包括变量、样本、总体以及数据矩阵等。
变量是研究对象的属性或特征,可以分为自变量和因变量。
样本是从总体中抽取出来的一部分观察对象。
总体是包含所有观察对象的集合,数据矩阵则是由多个变量构成的数据表格。
二、多元统计分析的基本假设多元统计分析中,基本的假设包括正态性、方差齐性、线性关系和独立性。
正态性假设要求变量呈正态分布;方差齐性假设要求不同组之间的方差相等;线性关系假设要求变量之间存在线性关系;独立性假设要求各个样本之间是相互独立的。
三、多元统计分析的方法多元统计分析的方法包括主成分分析、因子分析、聚类分析、判别分析以及多元方差分析等。
主成分分析是一种降维技术,可以将多个变量转化为少数几个主成分;因子分析是一种变量提取技术,用于研究隐藏在观测变量背后的潜在因素;聚类分析是一种将样本按照某种相似性划分为不同群体的方法;判别分析是一种用于分类的方法,可以根据已知类别的样本训练分类模型,然后对未知类别的样本进行分类;多元方差分析是用于研究多个因素对多个变量的影响的方法。
四、多元统计分析的应用领域多元统计分析在实际应用中有广泛的应用领域。
比如,在金融风险管理领域,可以利用因子分析来识别和度量风险因子;在市场调研和消费者行为研究中,可以利用聚类分析来对消费者进行划分和分类;在医学研究中,可以利用判别分析来辅助诊断疾病。
五、多元统计分析的局限性多元统计分析也存在一定的局限性。
首先,多元统计分析的结果可能受到数据质量和样本分布的影响。
其次,多元统计分析的结果只是对样本的推断,不能直接推广到整个总体。
此外,多元统计分析的结果需要结合实际情况进行解释和分析,不能仅仅依赖统计指标。
多元统计分析期末复习第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。
随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。
(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d?即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S?,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
多元统计复习题答案一、单项选择题1. 多元统计分析中,用于描述多个变量之间关系的统计方法是()。
A. 相关分析B. 聚类分析C. 因子分析D. 主成分分析答案:C2. 以下哪个不是多元统计分析中常用的降维方法?()A. 主成分分析B. 因子分析C. 聚类分析D. 典型相关分析答案:C3. 在多元统计分析中,用于识别数据集中的异常值或离群点的统计方法是()。
A. 马氏距离B. 箱线图C. 相关系数D. 卡方检验答案:B二、多项选择题1. 多元统计分析中,以下哪些方法可以用来进行变量选择?()A. 逐步回归B. 岭回归C. 偏最小二乘回归D. 主成分分析答案:A|B|C2. 多元统计分析中,以下哪些方法可以用来进行数据的分类?()A. 判别分析B. 聚类分析C. 因子分析D. 典型相关分析答案:A|B三、判断题1. 多元统计分析中的因子分析可以用于变量的降维。
(对)2. 多元统计分析中的主成分分析和因子分析是完全相同的方法。
(错)3. 多元统计分析中的聚类分析可以用于识别数据集中的异常值。
(错)四、简答题1. 简述多元统计分析中主成分分析(PCA)的主要步骤。
答:主成分分析的主要步骤包括:数据标准化、计算协方差矩阵、求解特征值和特征向量、选择主成分、构造主成分得分。
2. 描述多元统计分析中判别分析的应用场景。
答:判别分析在多元统计分析中主要应用于根据已有的分类变量来预测新样本的分类,例如在医学诊断、市场细分、信用评分等领域。
五、计算题1. 给定一组数据,计算其主成分得分。
答:首先需要对数据进行标准化处理,然后计算协方差矩阵,接着求解特征值和特征向量,最后根据特征值的大小选择前几个主成分,并计算对应的得分。
2. 利用判别分析对一组数据进行分类,并给出分类结果。
答:首先需要确定分类的依据,然后计算各类别的判别函数,接着对新样本进行判别分析,最后根据判别得分将样本分类到相应的类别中。
第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。
随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。
(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d〜即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S〜,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
多元统计分析: 通过对多个随机变量观测数据的分析,来研究变量之间的相互关系以及揭示这些变量内在的变化规律。
多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科。
随机向量:将p 个随机变量X1,X2,…,Xp 的整体称p 维随机向量,记为X=(X1,X2,…,Xp)’。
随机向量的数字特征:X=(X1,X2,…,Xp)’,若EXi (i=1,…,p )存在且有限,则称E(X)=(EX1,EX2,…,EXp)’为X 的均值(向量)或数学期望。
性质①E(AX)=AE(X) ②E(AXB)=AE(X)B ③E(AX+BY)=AE(X)+BE(Y)。
协差阵:设(X1,…,Xp)’ ,Y=(Y1,…,Yp)’,称D(X)=E(X-EX)(X-EX)’=Cov(X1,X1)…Cov(X1,Xp) 为X 的方差或协差阵,D(X)简记∑,Cov(Xi,Xj)简记σij ,Cov(XP,X1)…Cov(Xp,Xp) 从而有∑=(σij)pxp 。
称随机向量X 和Y的协差阵为Cov(X,Y)=E(X-EX)(Y-EY)’= Cov(X1,Y1)…Cov(X1,Yq)Cov(XP,Y1)…Cov(Xp,Yq)。
多元正态分布:若p 维随机向量(X1,…,Xp)’的密度函数为:其中x=(x1,…,xp)’,μ是p 维向量,∑是p 阶正定阵,则称X 服从p 元正态分布,简记为X~Np(μ,∑)。
一个样本:从多元总体中随机抽取n 个个体:X(1),X(2),…,X(n),若他们相互独立且与总体分布相同,则称X(1),X(2),…,X(n)为该总体的一个多元样本。
一个样品:每个X(α)=(X α1,X α2,…,X αp)’,(α=1,2,…,n)称为一个样品。
n ×p 阶样本资料阵:X= X11…X1p = X(1)’ Xn1…Xnp X(n)多元样本数字特征: 样本均指向量、样本离差阵、样本协差阵用最大似然法求出μ和∑的估计量分别为 多元数据图:①使高维空间的点与平面上的某种图形对应这种图形能反映高维数据的某些特点或数据间的某些关系。
一、聚类分析的基本思想:
我们认为,所研究的样品或指标之间存在着程度不同的相似性。
根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另一些彼此之间相似程度较大的样品又聚合到另外一类。
把不同的类型一一划分出来,形成一个由小到大的分类系统。
最后,用分群图把所有的样品间的亲疏关系表示出来。
二、聚类分析的方法
系统聚类法、模糊聚类法、K-均值法、有序样品的聚类、分解法、加入法
三、系统聚类法的种类
最短距离法、最长距离法、重心法、类平均法、离差平方和法
四、判别分析的基本思想
判别分析用来解决被解释变量是非度量变量的情形,预测和解释影响一个对象所属类别。
识别一个个体所属类别的情况下有着广泛的应用
判别分析将对象进行分析,通过人们选择的解释变量来预测或者解释每个对象的所属类别。
五、判别分析的假设条件
判别分析的假设条件之一是每一个判别变量不能是其他判别变量的线性组合;判别分析的假设之二是各组变量的协方差矩阵相等。
判别分析最简单和最常用的形式是采用线性判别函数。
判别分析的假设之三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。
当违背该假设时,计算的概率将非常的不准确。
六、判别分析的方法
距离判别法、Bayes判别法、Fisher判别法、逐步判别法
七、距离判别法的判别准则
设有两个总体1G 和2G ,x 是一个p 维样品,若能定义样品到总体1G 和2G 的距离d (x ,1G )和d (x ,2G ),则用如下规则进行判别:若样品x 到总体1G 的距离小于到总体2G 的距离,则认为样品x 属于总体1G ,反之,则认为样品x 属于总体样品x 属于总体2G ,若样品x 到总体1G 和2G 的距离相等,则让它待判。
八、Fisher 判别的思想
Fisher 判别的思想是投影,将k 组p 维数据投影到某一个方向,使的它们的投影与组之间尽可能地分开。
九、Bayes 判别的思想
Bayes 统计的思想是:假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识,得到后验概率分布,各种统计推断都通过后验概率分布来进行。
将Bayes 统计的思想用于判别分析,就得到Bayes 判别。
十、判别分析的方法和步骤
1.判别分析的对象
2.判别分析的研究设计
3.判别分析的假定
4.估计判别模型和评估整体拟合
5.结果的解释
6.结果的验证
十一、提取主成分的原则
1.累计方差贡献率大于85%,
2.特征根大于1 ,3碎石图特征根的变化趋势。
十二、因子分析的步骤
1.根据研究问题选取原始变量。
2.对原始变量进行标准化并求其相关阵,分析变量之间的相关性。
3.求解初始公共因子及因子载荷矩阵。
4.因子旋转。
5.因子得分。
6.根据因子得分值进行进一步分析。
十三、主成分分析与因子分析的区别。
1.因子分析把展示在我们面前的诸多变量看成由对每一个变量都有作用的一些公共因子和一些仅对某一个变量有作用的特殊因子线性组合而成;主成分分析则简单一些,它只是从空间生成的角度寻 找能解释诸多变量变异绝大部分的几组彼此不相关的新变量。
2.因子分析中是把变量表示成各因子的线性组合,而主成分分析则是把主成分表示成各变量的线性组合。
3.主成分分析中不需要假设,因子分析则需要一些假设。
4.抽取主因子的方法不仅有主成分法,还有极大似然法等,而主成分只能用主成分提取法。
5.主成分分析中,当协方差矩阵或相关阵的特征值唯一时,主成分是固定的;因子分析中因子不是固定的。
6.在因子分析中,因子个数需要分析者指定;在主成分分析中,成分的数量是一定的。
7.和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。
十四、因子载荷的统计含义
1.因子载荷ij a 的统计含义:
由模型
1c o v (,)c o v (,)
m i j i j j i j j X F a F F ε
==+∑
=1cov(,)cov(,)m
ij j j i j j a F F F ε=+∑
=ij a
即ij a 是i X 与j F 的协方差,而注意到,i X 与j F (i=1,2,3,…, p ; j=1,2… m )都是均值为0,方差为1的变量,因此,ij a 同时也是i X 与j F 的相关系数。
十五、求解因子载荷有哪些方法
如主成分法,主轴因子法,最小二乘法,极大似然法,α因子提取法;常用的主要是主成分法,主轴因子法与极大似然法。