2012届高考数学第一轮复习——第九单元 立体几何3
- 格式:ppt
- 大小:2.58 MB
- 文档页数:30
第九部分 立体几何初步(2012年上海卷文)5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 (2012湖南卷文)4.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.1. (2012年福建卷理一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱(2012年安徽卷理)(6)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件()D 即不充分不必要条件【解析】选A①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ②如果//a m ;则a b ⊥与b m ⊥条件相同(2012年天津卷文)(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积3m.【解析】由三视图可知这是一个下面是个长方体,上面是个平躺着的五棱柱构成的组合体。
长方体的体积为24243=⨯⨯,五棱柱的体积是6412)21(=⨯⨯+,所以几何体的总体积为30。
【答案】30(2012年山东卷理)(14)如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为____________。
解析:61112113111=⨯⨯⨯⨯==--DE D F EDF D V V . (2012年山东卷文)(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____. (2012江西卷文)7.若一个几何体的三视图如图所示,则此几何体的体积为A .112 B.5 C.4 D. 92【答案】C【解析】本题的主视图是一个六棱柱,由三视图可得地面为变长为1的正六边形,高为1,则直接带公式可求.(2012年四川卷文)6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行(2012年四川卷文)14、如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________。
O a α A P O a α A P 9.3-2三垂线定理【教学目标】正确理解和熟练掌握三垂线定理及其逆定理,并能运用它解决有关垂直问题。
【知识梳理】 1.斜线长定理从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短. 2.重要公式 如图,已知OB ⊥平面α于B ,OA 是平面α的斜线,A 为斜足,直线AC ⊂平面α,设∠OAB =θ1,又∠CAB =θ2,∠OAC =θ.那么cos θ=cos θ1⋅cos θ2.3.直线和平面所成的角①平面斜线与它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.②一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平面内,那么就说直线和平面所成的角是0︒的角.4.三垂线定理和三垂线定理的逆定理名称语言表述 图 示 字母表示 应 用 三垂线定 理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.PO a AO a a PA ⊥⇒⎪⎭⎪⎬⎫⊥⊂⊥αα ①证两直线垂直 ②作点线距 ③作二面角 的平面角 三垂线定理的逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.AO a PO a a PA ⊥⇒⎪⎭⎪⎬⎫⊥⊂⊥αα 同 上三垂线定理和三垂线定理的逆定理的主要应用是证明两条直线垂直,尤其是证明两条异面直线垂直,此外,还可以作出点到直线的距离和二面角的平面角.在应用这两个定理时,要抓住平面和平面的垂线,简称“一个平面四条线,线面垂直是关键”.【点击双基】1.下列命题中,正确的是 ( )(A )垂直于同一条直线的两条直线平行(B )平行于同一平面的两条直线平行(C )平面的一条斜线可以垂直于这个平面内的无数条直线(D )a 、b 在平面外,若a 、b 在平面内的射影是两条相交直线,则a 、b 也是相交直线2.直线a 、b 在平面α内的射影分别为直线a 1、b 1,下列命题正确的是( )(A )若a 1⊥b 1,则a ⊥b (B )若a ⊥b ,则a 1⊥b 1(C )若a 1//b 1,则a 与b 不垂直 (D )若a //b ,则a 1与b 1不垂直3.直线a 、b 在平面外,若a 、b 在平面内的射影是一个点和不过此点的一条直线,则a与b 是 ( )(A )异面直线 (B )相交直线(C )异面直线或相交直线 (D )异面直线或平行直线C αD A B OC A P BD M N Q l 4.P 是△ABC 所在平面外一点,若P 点到△ABC 各顶点的距离都相等,则P 点在平面ABC 内的射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心5.P 是△ABC 所在平面外一点,若P 点到△ABC 各边的距离都相等,且P 点在平面ABC 内的射影在△ABC 的内部,则射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心6.P 是△ABC 所在平面外一点,连结P A 、PB 、PC ,若P A ⊥BC ,PB ⊥AC ,则P 点在平面ABC 内的射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心7.从平面外一点向这个平面引两条斜线段,它们所成的角为θ.这两条斜线段在平面内的射影成的角为α(90︒≤α<180︒),那么θ与α的关系是 ( )(A )θ<α (B )θ>α (C )θ≥α (D )θ≤α8.已知直线l 1与平面α成30︒角,直线l 2与l 1成60︒角,则l 2与平面α所成角的取值范围是 ( )(A )[0︒,60︒] (B )[60︒,90︒] (C )[30︒,90︒] (D )[0︒,90︒]【典例剖析】例1.如果四面体的两组对棱互相垂直,求证第三组对棱也互相垂直.已知:四面体ABCD 中,AB ⊥CD ,AD ⊥BC ;求证:AC ⊥BD ;证法一:作AO ⊥平面BCD 于O , 连OB 、OC 、OD ,∵AB ⊥CD ,∴OB ⊥CD ,同理,由AD ⊥BC 得OD ⊥BC ,∴O 是△BCD 的垂心,∴OC ⊥BD ,从而AC ⊥BD .证法二:设AB =a ,AC =b ,AD =c ,则BC =b -a ,BD =c -a ,CD=c -b ,∵AB ⊥CD ,AD ⊥BC ,∴a ⋅(c -b )=0,c ⋅(b -a )=0,则a ⋅c =a ⋅b ,a ⋅c =c ⋅b .∴a ⋅b =c ⋅b ,即a ⋅b -c ⋅b =0,从而有b ⋅(c -a )=0,故AC ⊥BD .例2.如图,在三棱锥P -ABC 中,∠ACB =90︒,∠ABC =60︒,PC ⊥平面ABC ,AB =8,PC =6,M 、N 分别是P A 、PB 的中点,设△MNC 所在平面与△ABC 所在平面交于直线l .(1)判断l 与MN 的位置关系,并进行证明; (2)求点M 到直线l 的距离.解:(1)l //MN ,证明如下: ∵M 、N 分别是P A 、PB 的中点,∴MN //AB ,MN ⊄平面ABC ,AB ⊂平面ABC , ∴MN //平面ABC .又∵MN ⊂平面MNC ,平面MNC 平面ABC =l ,∴MN //l .(2)取AC 的中点Q ,连MQ ,则MQ //PC ,而PC ⊥平面ABC ,∴MQ ⊥平面ABC .作QD ⊥直线l 于D ,连MD ,则MD ⊥直线l .线段MD 的长即为M 到直线l 的距离.在Rt △ABC 中,可求得AC =43,∴QC =23.又MQ =21PC =3,∠QCD =30︒,∴QD =21QC =3. 于是 MD =22QD MQ +=23.DC O B A abcN M P C B A 例3.如图,P 是ΔABC 所在平面外一点,且PA ⊥平面ABC 。
三、解答题28.【2012高考新课标理19】(本小题满分12分)如图,直三棱柱111ABC A B C -中,112A CBC A A ==,D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小. 【答案】(1)在R t D A C ∆中,AD AC = 得:45ADC ︒∠=同理:1114590A D C C D C ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作O H BD ⊥于点H ,连接11,C O C H 111111A CBC C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A B D 1O H B D C H B D ⊥⇒⊥得:点H 与点D 重合且1C D O ∠是二面角11C BD A --的平面角设A C a =,则12C O =,111230CD C O C DO ︒==⇒∠=既二面角11C BD A --的大小为30︒29.【2012高考江苏16】(14分)如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面AD E ⊥平面11BCC B ; (2)直线1//A F 平面ADE .【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面A B C 。
又∵AD ⊂平面A B C ,∴1CC AD ⊥。
又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E = ,,∴AD ⊥平面11BCC B 。
又∵AD ⊂平面ADE ,∴平面AD E ⊥平面11BCC B 。
⾼考数学⽴体⼏何专题复习题及答案 数学是⾼考考试中的主科之⼀,我们要对⾼考数学⽴体⼏何进⾏强化复习,⽴体⼏何是⾼考数学考试中丢分的重灾区。
下⾯是店铺为⼤家整理的⾼考数学⽴体⼏何专题复习题,希望对⼤家有所帮助! ⾼考数学⽴体⼏何专题复习题 专题四 ⽴体⼏何 第1讲 三视图及空间⼏何体的计算问题 (建议⽤时:60分钟) ⼀、选择题 1.(2014•湖北卷)在如图所⽰的空间直⾓坐标系O-xyz中,⼀个四⾯体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四⾯体的正视图和俯视图分别为 ( ).A.①和②B.③和①C.④和③D.④和② 解析 由三视图可知,该⼏何体的正视图是⼀个直⾓三⾓形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2)且内有⼀个虚线(⼀个顶点与另⼀直⾓边中点的连线),故正视图是④;俯视图即在底⾯的射影是⼀个斜三⾓形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②. 答案 D 2.(2013•东北三校第三次模拟)如图,多⾯体ABCD E FG的底⾯ABCD为正⽅形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是 ( ). 解析 注意BE,BG在平⾯CDGF上的投影为实线,且由已知长度关系确定投影位置,排除A,C选项,观察B,D选项,侧视图是指光线,从⼏何体的左⾯向右⾯正投影,则BG,BF的投影为虚线,故选D. 答案 D 3.(2014•安徽卷)⼀个多⾯体的三视图如图所⽰,则该多⾯体的表⾯积为 ( ).A.21+3B.18+3C.21D.18 解析 由三视图知,⼏何体的直观图如图所⽰.因此该⼏何体的表⾯积为6×2×2-6×12×1×1+2×34×(2)2=21+3. 答案 A 4.(2013;⼴东卷)某四棱台的三视图如图所⽰,则该四棱台的体积是 ( ).A.4B.143C.163D.6 解析 由四棱台的三视图可知该四棱台的上底⾯是边长为1的正⽅形,下底⾯是边长为2的正⽅形,⾼为2.由棱台的体积公式可知该四棱台的体积V=13(12+1×22+22)×2=143,故选B. 答案 B 5.如图,在矩形ABCD中,AB=2,BC=3,沿BD将矩形ABCD折叠,连接AC,所得三棱锥A B CD正视图和俯视图如图,则三棱锥A B CD侧视图的⾯积为 ( ).A.613B.1813C.213D.313 解析 由正视图及俯视图可得,在三棱锥A B CD中,平⾯ABD⊥平⾯BCD,该⼏何体的侧视图是腰长为2×322+32=613的等腰直⾓三⾓形,其⾯积为12×6132=1813. 答案 B 6.在具有如图所⽰的正视图和俯视图的⼏何体中,体积最⼤的⼏何体的表⾯积为 ( ).A.13B.7+32C.72πD.14 解析 由正视图和俯视图可知,该⼏何体可能是四棱柱或者是⽔平放置的三棱柱或⽔平放置的圆柱.由图象可知四棱柱的体积最⼤.四棱柱的⾼为1,底⾯边长分别为1,3,所以表⾯积为2(1×3+1×1+3×1)=14. 答案 D 7.(2013•湖南卷)已知正⽅体的棱长为1,其俯视图是⼀个⾯积为1的正⽅形,侧视图是⼀个⾯积为2的矩形,则该正⽅体的正视图的⾯积等于 ( ).A.32B.1C.2+12D.2 解析 易知正⽅体是⽔平放置的,⼜侧视图是⾯积为2的矩形.所以正⽅体的对⾓⾯平⾏于投影⾯,此时正视图和侧视图相同,⾯积为2. 答案 D ⼆、填空题 8.某⼏何体的三视图如图所⽰,则该⼏何体的体积为____________. 解析 由三视图可知该⼏何体由长⽅体和圆柱的⼀半组成.其中长⽅体的长、宽、⾼分别为4,2,2,圆柱的底⾯半径为2,⾼为4.所以V=2×2×4+12×22×π×4=16+8π. 答案 16+8π 9.(2013•江苏卷)如图,在三棱柱A1B1C1A BC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F A DE的体积为V1,三棱柱A1B1C1A BC的体积为V2,则V1∶V2=________. 解析 设三棱柱A1B1C1-ABC的⾼为h,底⾯三⾓形ABC的⾯积为S,则V1=13×14S•12h=124Sh=124V2,即V1∶V2=1∶24. 答案 1∶24 10.如图,正⽅体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________. 解析 利⽤三棱锥的体积公式直接求解. VD1-EDF=VF-DD1F=13S△D1DE•AB=13×12×1×1×1=16. 答案 16 11.(2014重庆卷改编)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为________. 解析 由俯视图可以判断该⼏何体的底⾯为直⾓三⾓形,由正视图和侧视图可以判断该⼏何体是由直三棱柱(侧棱与底⾯垂直的棱柱)截取得到的.在长⽅体中分析还原,如图(1)所⽰,故该⼏何体的直观图如图(2)所⽰.在图(1)中,直⾓梯形ABPA1的⾯积为12×(2+5)×4=14,计算可得A1P=5.直⾓梯形BCC1P的⾯积为12×(2+5)×5=352.因 答案 60 12.已知三棱锥S ABC的所有顶点都在球O的球⾯上,△ABC是边长为1的正三⾓形,SC为球O的直径,且SC=2,则此三棱锥的体积为________. 解析 在Rt△ASC中,AC=1,∠SAC=90°,SC=2,所以SA=4-1=3.同理,SB=3.过A点作SC的垂线交SC于D点,连接DB,因为△SAC≌△SBC,故BD⊥SC,AD=BD,故SC⊥平⾯ABD,且△ABD为等腰三⾓形.因为∠ASC=30°,故AD=12SA=32,则△ABD的⾯积为12×1×AD2-122=24,则三棱锥S-ABC的体积为13×24×2=26. 答案 26 三、解答题 13.已知某⼏何体的俯视图是如图所⽰的矩形,正视图是⼀个底边长为8、⾼为4的等腰三⾓形,侧视图是⼀个底边长为6、⾼为4的等腰三⾓形. (1)求该⼏何体的体积V; (2)求该⼏何体的侧⾯积S. 解 由已知可得,该⼏何体是⼀个底⾯为矩形,⾼为4,顶点在底⾯的射影是矩形中⼼的四棱锥E‐ABCD,AB=8,BC=6. (1)V=13×8×6×4=64. (2)四棱锥E A BCD的两个侧⾯EAD,EBC是全等的等腰三⾓形,且BC边上的⾼h1=42+822=42; 另两个侧⾯EAB,ECD也是全等的等腰三⾓形,AB边上的⾼h2=42+622=5. 因此S=2×12×6×42+12×8×5=40+242. 14.如图,四边形ABCD是边长为2的正⽅形,直线l与平⾯ABCD平⾏,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平⾯ABCD内的两点,EE′和FF′都与平⾯ABCD垂直. (1)证明:直线E′F′垂直且平分线段AD; (2)若∠EAD=∠EAB=60 °,EF=2.求多⾯体ABCDEF的体积. (1)证明 ∵EA=ED且EE′⊥平⾯ABCD, ∴E′D=E′A,∴点E′在线段AD的垂直平分线上. 同理,点F′在线段BC的垂直平分线上. ⼜四边形ABCD是正⽅形, ∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上. ∴直线E′F′垂直且平分线段AD. (2)解 如图,连接EB、EC,由题意知多⾯体ABCDEF可分割成正四棱锥E A BCD和正四⾯体E B CF 两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME=3,∴EE′=2. ∴VE A BCD=13•S正⽅形ABCD•EE′=13×22×2=423. ⼜VE B CF=VC B EF=VC B EA=VE A BC=13S△ABC•EE′=13×12×22×2=223, ∴多⾯体ABCDEF的体积为VE A BCD+VE B CF=22. 15.(2013•⼴东卷)如图1,在边长为1的等边三⾓形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G.将△ABF沿AF折起,得到如图2所⽰的三棱锥A-BCF,其中BC=22. (1)证明:DE∥平⾯BCF; (2)证明:CF⊥平⾯ABF; (3)当AD=23时,求三棱锥F-DEG的体积VF D EG. (1)证明 在等边三⾓形ABC中,AB=AC. ∵AD=AE, ∴ADDB=AEEC,∴DE∥BC, 同理可证GE∥平⾯BCF. ∵DG∩GE=G,∴平⾯GDE∥平⾯BCF, ∴DE∥平⾯BCF. (2)证明 在等边三⾓形ABC中,F是BC的中点,∴AF⊥FC, ∴BF=FC=12BC=12. 在图2中,∵BC=22, ∴BC2=BF2+FC2,∴∠BFC=90°, ∴FC⊥BF. ∵BF∩AF=F,∴CF⊥平⾯ABF. (3)解 ∵AD=23, ∴BD=13,AD∶DB=2∶1, 在图2中,AF⊥FC,AF⊥BF, ∴AF⊥平⾯BCF, 由(1)知平⾯GDE∥平⾯BCF, ∴AF⊥平⾯GDE. 在等边三⾓形ABC中,AF=32AB=32, ∴FG=13AF=36,DG=23BF=23×12=13=GE, ∴S△DGE=12DG•EG=118, ∴VF-DEG=13S△DGE•FG=3324. ⾼考数学答题技巧 1.调整好状态,控制好⾃我。
高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。
解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。