高中数学 数列的求和的教学反思素材 新人教A版必修5
- 格式:doc
- 大小:30.00 KB
- 文档页数:4
等比数列百科名片如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,公比通常用字母q 表示(q≠0). 注:q=1时,{a n }为常数列. 简介与公式如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列就叫做等比数列(geometric sequence).这个常数叫做等比数列的公比(common ratio),公比通常用字母q 表示(q≠0). 注:q=1时,{a n }为常数列.(1)等比数列的通项公式是:a n =a 1qn -1等比数列通项公式(2)求和公式:S n =na 1(q=1).S n =a 1(1-q n )/(1-q)=(a 1-a 1q n )/(1-q)=(a 1-a n q)/(1-q)1n n n1a a q S 1qa (1q )=(q 1).1q -=--≠-另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任意一个正数C 为底,用一个等差数列的各项做指数构造幂n aC ,则是等比数列。
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.等比中项定义:从第二项起,每一项(有穷数列和末项除外)都是它的前一项与后一项的等比中项.(5)无穷递缩等比数列各项和公式:无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n 无限增大时的极限叫做这个无穷等比数列各项的和.(6)由等比数列组成的新的等比数列的公比:{a n }是公比为q 的等比数列.①若A=a 1+a 2+…+a n ,B=a n+1+…+a 2n ,C=a 2n+1+…+a 3n ,则A ,B ,C 构成新的等比数列,公比Q=q n .②若A=a 1+a 4+a 7+…+a 3n-2,B=a 2+a 5+a 8+…+a 3n-1,C=a 3+a 6+a 9+…+a 3n ,则A ,B ,C 构成新的等比数列,公比Q=q.性质(2)在等比数列中,依次每 k 项之和仍成等比数列.(3)“G 是a ,b 的等比中项”“G 2=ab (G≠0)”.(4)若{a n }是等比数列,公比为q 1,{b n }也是等比数列,公比是q 2,则 {a 2n },{a 3n }…是等比数列,公比为q 12,q 13…(5)等比数列中,连续的、等长的、间隔相等的片段和为等比数列.(6)若{a n }为等比数列且各项为正,公比为q ,则log 以a 为底a n 的对数成等差数列,公差为以a 为底q 的对数.(7)等比数列前n 项之和S n =a 1(1-q n )/(1-q)=a 1(q n -1)/(q-1)= a 1q n /(q-1)-a 1/(q-1).注意:上述公式中q n 表示q 的n 次方.求通项公式的方法(1)待定系数法:已知a n+1=2a n +3,a 1=1,求a n .构造等比数列a n+1+x=2(a n +x ).a n+1=2a n +x ,∵a n+1=2a n +3,∴x=3.所以n 1n a 3a 3+++=2.应用等比数列在生活中也是常常运用的。
明目标、知重点 1.掌握等比数列的前n 项和公式及公式推导思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1)na 1(q =1). (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和公式的变式若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中A =a 1q -1.3.错位相减法推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.[情境导学]国际象棋起源于古代印度.相传国王要奖赏象棋的发明者,问他想要什么.发明者说:“请在象棋的第一个格子里放1颗麦粒,第二个格子放2颗麦粒,第三个格子放4颗麦粒,以此类推,每个格子放的麦粒数都是前一个格子的两倍,直到第64个格子.请给我足够的麦粒以实现上述要求”.国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g ,据查目前世界年度小麦产量约6亿吨,根据以上数据,判断国王是否能实现他的诺言. 探究点一 等比数列前n 项和公式的推导思考1 在情境导学中,如果把各格所放的麦粒数看成是一个数列,那么这个数列是怎样的一个数列?通项公式是什么?答 所得数列为1,2,4,8,…,263.它首项为1,公比为2的等比数列,通项公式为a n =2n -1. 思考2 在情境导学中,国王能否满足发明者要求的问题,可转化为一个怎样的数列问题? 答 转化为求通项为a n =2n-1的等比数列前64项的和.思考3 类比求等差数列前n 项和的方法,能否用倒序相加法求数列1,2,4,8,…,263的和?为什么?答 不能用倒序相加法,因为对应各项相加后的和不相等. 思考4 如何求等比数列{a n }的前n 项和S n?答 设等比数列{a n }的首项是a 1,公比是q ,前n 项和为S n . S n 写成:S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① 则qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n .② 由①-②得:(1-q )S n =a 1-a 1q n . 当q ≠1时,S n =a 1(1-q n )1-q;当q =1时,由于a 1=a 2=…=a n ,所以S n =na 1.小结 (1)千粒麦子的质量约为40 g,1.84×1019粒麦子相当于7 000多亿吨,而目前世界年度小麦产量约6亿吨,所以国王是无法满足发明者要求的. 0(2)等比数列{a n }的前n 项和S n 可以用a 1,q ,a n 表示为 S n=⎩⎪⎨⎪⎧na 1,q =1,a 1-a nq1-q ,q ≠1.例1 求下列等比数列前8项的和: (1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.解 (1)因为a 1=12,q =12,所以S 8=12[1-(12)8]1-12=255256.(2)由a 1=27,a 9=1243,可得1243=27·q 8.又由q <0,可得q =-13.所以S 8=27[1-(-13)8]1-(-13)=1 64081.反思与感悟 涉及等比数列前n 项和时,要先判断q =1是否成立,防止因漏掉q =1而出错. 跟踪训练1 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2. 因此S n =a 1(1-q n )1-q=2n +1-2.探究点二 等比数列前n 项和的实际应用例2 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今起,大约几年可使总销售量达到30 000台(结果保留到个位)?解 根据题意,每年销售量比上一年增加的百分率相同.所以,从今年起,每年的销售量组成一个等比数列{a n },其中a 1=5 000,q =1+10%=1.1,S n =30 000. 于是得到5 000(1-1.1n )1-1.1=30 000.整理,得1.1n =1.6.两边取对数,得n lg 1.1=lg 1.6. 用计算器算得n =lg 1.6lg 1.1≈0.200.041≈5(年).答 大约5年可以使总销量达到30 000台.反思与感悟 解应用题先要认真阅读题目,尤其是一些关键词:“平均每年的销售量比上一年的销售量增加10%”.理解题意后,将文字语言向数字语言转化,建立数学模型,再用数学知识解决问题.跟踪训练2 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟上升的高度, 由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为 S n =a 1+a 2+…+a n =a 1(1-q n )1-q=25×⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=125×⎣⎡⎦⎤1-⎝⎛⎭⎫45n <125. 故这个热气球上升的高度不可能超过125 m. 探究点三 错位相减法求和思考 教材中推导等比数列前n 项和的方法叫错位相减法.这种方法也适用于一个等差数列{a n }与一个等比数列{b n }对应项之积构成的新数列求和.如何用错位相减法求数列{n2n }前n项和?答 设S n =12+222+323+…+n2n ,则有12S n =122+223+…+n -12n +n2n +1,两式相减,得S n -12S n =12+122+123+…+12n -n 2n +1,即12S n =12(1-12n )1-12-n 2n +1=1-12n -n2n +1. ∴S n =2-12n -1-n2n =2-n +22n .例3 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 分x =1和x ≠1两种情况.当x =1时,S n =1+2+3+…+n =n (n +1)2.当x ≠1时,S n =x +2x 2+3x 3+…+nx n , xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n +1)2 (x =1),x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).反思与感悟 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪训练3 求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1), 则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)·a n ② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)·a n , (1-a )S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -1) =1-(2n -1)a n +2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0),n 2(a =1),1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).1.等比数列1,x ,x 2,x 3,…的前n 项和S n 为( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1,n , x =1 D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1,n , x =1答案 C解析 当x =1时,S n =n ; 当x ≠1时,S n =1-x n 1-x.2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172答案 C解析 方法一 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q +a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152. 3.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( ) A .179 B .211 C .243 D .275 答案 B解析 ∵q 4=a 5a 1=1681=(23)4,且q >0,∴q =23,∴S 5=a 1-a 5q 1-q =81-16×231-23=211.4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为________. 答案 11a (1.15-1)解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a . ∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1). [呈重点、现规律]1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减的方法求和.一、基础过关1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12答案 D解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3,得q 2+q -6=0. ∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13C.19 D .-19答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.5.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q ⇒q 3=3.∴a 4=a 1·q 3=1×3=3.6.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,那么a n =________. 答案 2n -1解析 a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2,a 3-a 2=22,…a n-a n -1=2n -1.各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1.7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q . 解 当q =1时,S n =na 1,S 3+S 6=3a 1+6a 1=9a 1=S 9≠2S 9; 当q ≠1时,a 1(1-q 3)1-q +a 1(1-q 6)1-q =2×a 1(1-q 9)1-q ,得2-q 3-q 6=2-2q 9, ∴2q 9-q 6-q 3=0,解得q 3=-12或q 3=1(舍去),∴q =-342.8.求和:1×21+2×22+3×23+…+n ×2n . 解 设S n =1×21+2×22+3×23+…+n ×2n 则2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1 ∴-S n =21+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )×2n +1-2 ∴S n =(n -1)·2n +1+2. 二、能力提升9.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米 B .299米 C .199米 D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝⎛⎭⎫128=2993964≈300(米). 10.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)答案 C解析 先根据等比数列的定义判断数列{a n }是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算.由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-(-13)101-⎝⎛⎭⎫-13=3(1-3-10).11.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 答案 13解析 由已知4S 2=S 1+3S 3,即4(a 1+a 2)=a 1+3(a 1+a 2+a 3).∴a 2=3a 3, ∴{a n }的公比q =a 3a 2=13.12.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2013年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%. (1)以2013年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2013年最多出口多少吨?(保留一位小数) 参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910).∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910,∴a ≤12.3.故2013年最多出口12.3吨. 三、探究与拓展13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.高中数学-打印版精心校对 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n2n -1,①S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n2n=1-(12+14+…+12n -1)-2-n2n=1-(1-12n -1)-2-n 2n =n2n .所以S n =n 2n -1.当n =1时也成立. 综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.。
课题数列求和课型复习课课时: 1 授课时间:教学目标知识与技能:数列求和方法.过程与方法:求和方法及其获取思路.情感态度与价值观:通过学生对数列的观察能力的训练,培养学生认识客观事物的数学本质的能力.教学重点数列求和方法及其获取思路.教学难点数列求和方法及其获取思路.教学手段多媒体辅助教学教学方法先学后教,讲练结合教学过程1.倒序相加法:等差数列前n项和公式的推导方法:(1))(211121nnnnnnn aanSaaaSaaaS+=⇒⎩⎨⎧+++=+++=-例1.求和:222222222222110108339221011++++++++分析:数列的第k项与倒数第k项和为1,故宜采用倒序相加法.小结: 对某些前后具有对称性的数列,可运用倒序相加法求其前n项和.2.错位相减法:等比数列前n项和公式的推导方法:(2)11132321)1(++-=-⇒⎩⎨⎧++++=++++=nnnnnnn aaSqaaaaqSaaaaS例2.求和:)0()12(5332≠-++++xxnxxx n3.分组法求和二次备课例3求数列 1614,813,412,211的前n 项和; 例4.设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。
例5.求数列 ,1,,1 ,1 ,1 122-+++++++n a a a a a a 的前n 项和S n .)1(11 111,1 ;2)1(21 ,111,1:1n n n n n n a aa a aa a a n n n S n a a --=--=++=≠+=+++==+++==- 则若于是则若解]1)1([11)]([11 11111122aa a n a a a a n a a a a a a a S n nn n ----=+++--=--++--+--= 于是4.裂项法求和 例6.求和:n++++++++++21132112111 解:设数列的通项为a n ,则)111(2)1(2+-=+=n n n n a n ,12)111(2)]111()3121()211[(221+=+-=+-++-+-=+++=∴n nn n n a a a S n n 例7.求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n三、课堂小结1.常用数列求和方法有:(1) 公式法: 直接运用等差数列、等比数列求和公式;(2) 化归法: 将已知数列的求和问题化为等差数列、等比数列求和问题;(3) 倒序相加法: 对前后项有对称性的数列求和; (4) 错位相减法: 对等比数列与等差数列组合数列求和; (5) 并项求和法: 将相邻n 项合并为一项求和; (6) 分部求和法:将一个数列分成n 部分求和;(7) 裂项相消法:将数列的通项分解成两项之差,从而在求和时产生相消为零的项的求和方法.四、作业(.1616814412).1项的和前求数列:n +++ (2).在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.(3).在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10板书设计数列求和倒序相加法:二、例题讲解 三、总结 四、作业布置教学反思。
专题:求数列的通项公式——累加法和累乘法学习目标1. 掌握并能熟练应用数列通项公式的常用方法:累加法和累乘法;2. 通过对例题的求解引导学生从中归纳相应的方法,明确不同的方法适用不同的前提、形式,使学生形成解决数列通项公式的通法;3. 感受知识的产生过程,通过方法的归纳,形成事物及知识间联系与区别的哲学观点,体会数学累加思想和累乘思想。
________________________________________________________________________________ 自学探究:回顾等差、等比数列的通项公式推导过程,完成下列任务。
例:已知数},{n a 其中,,111n a a a n n +==+①求它的通项n a 。
变题1:把①式改为;11+=+n n a a变题2:把①式改为;21n n n a a +=+小结1:通过求解上述几个题,你得到什么结论?变题3:把①式改为;11n n a nna +=+变题4:把①式改为;21n n a a =+小结2:通过求解上述2个题,你得到什么结论?挑战高考题:1.(2015.某某.17)已知数列{}n a 满足n nn a a a 2,211==+,)*∈N n (。
(1)求n a2.(2008.某某.5)在数列{}n a 中,)11ln(,211na a a n n ++==+,则=n a ( ). A.n ln 2+ B.n ln 1-n 2)(+ C.n n ln 2+ D.n n ln 1++你能否自己设计利用累加法或累乘法求解数列通项公式的题?通过本节课的学习你收获了什么?。
数列概念学案学习目标:了解数列的概念和数列几种常见表示方法(列表、图像、通项公式)并能根据一定条件求数列的通项公式。
学习重点:数列概念学习难点:根据条件求数列的通项公式 学习过程:一、课前准备:阅读P 3—4 二、新课导入:①什么是数列数: ②数列项是: ③按项分类数列分为: 和 ④数列通项公式: 自主测评1、判断下列是否有通项公式若有,写出其通项公式。
①3,3,3,3…… ②2,4,6,8,10…… ③1,3,5,7,9…… ④0,1,0,1,0,1…… ⑤0,1,-2,4,-7,6,10,5,9……2、数列n a 中,22(3)2n a log n ,写出数列前五项,32log 是这个数列的第几项探究:(1)是不是所有数列都有通项公式,能否举例说明(2)若数列有通项公式,通项公式是不是唯一的,若不是能否举例说明三、巩固应用例1. P 5 试一试:P 6 T 1-2 例2. P 5 试一试:P 6 T 3 1、写出下列数列的一个通项公式 ①-2,-2,-2,-2…… ②7,77,777,7777…… ③0.7,0.77,0.777,0.7777…… ④3,5,9,17,33……⑤0,-1,0,1,0,-1,0,1…… ⑥1112,,,6323……四、总结提升 1、探究新知:2、数列通项公式n a 与函数有何联系 五、知识拓展 数列前几项和123n n S a a a a a n-1…+且11(1)()nnn a n a s s n -=⎧=⎨-⎩≥2六、能力拓展 1、数列2102102101,1,1,1223(1)gg g n n …………××中首次出现负值的项是第几项 ≥≤2、已知数例n a 的通项公式254na n n(1)数列n a 中有多少项是负项?(2)当n 为何值时,n a 有最小值,最小值是多少?3、已知数列n a 的前n 项和221n s n n ,求数列n a 的通项公式?自我评价:这节课你学到了什么,你认为做自己的好的地方在哪里?作业:P 9 A :T 4 T 6 B :T 1。
数列求和一、教学目标:1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.二、教学重点:并项求和法、分组求和法.三、教学难点:确定数列的通项公式.四、教学过程:(一)考点知识点梳理1.公式法(1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -1 2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-a n q 1-q=a 1 1-q n 1-q ,q ≠1.2.数列求和的常用方法(1)并项求和法 在一个数列的前n 项和中,可两两结合求解,则称之为并项求和.(2)分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.3.常用几个数列的求和公式(1)、)1(213211+=++++==∑=n n n k S n k n (2)、)12)(1(61321222212++=++++==∑=n n n n k S n k n (3)、2333313)1(21321⎥⎦⎤⎢⎣⎡+=++++==∑=n n n k S n k n (二)典例分析考点一 并项求和法形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.【例1】求数列{})12()1(-∙-n n 的前2015项和2015S . 考点二 分组转化法求和【例2】已知数列{a n }的通项公式是a n =n n 2+,求其前n 项和S n .目的:此题较简单,使学生初步体会分组求和的方法,由简入难.【例3】求数列 1665,825,49,23的前n 项和S n . 分析:此题重在于找到数列的通项公式,利用公式的类型选择相应的求和方法.【例4】 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ](ln 2-l n 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n 2ln 3-1; 当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3 =3n -n -12ln 3-ln 2-1. 解:∵32=1+12,94=2+14,258=3+18,6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n ) =(1+2+3+…+n )+(12+122+123+…+12n ) =n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n .综上所述,S n =⎩⎪⎨⎪⎧ 3n +n 2ln 3-1,n 为偶数,3n -n -12ln 3-ln 2-1,n 为奇数. 规律方法 (1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或者等比数列的,可以分项数为奇数和偶数时使用等差数列或等比数列的求和公式.练习:1(资料【训练1】) (2014·湖州质检)在等比数列{a n }中,已知a 1=3,公比q ≠1,等差数列{b n }满足b 1=a 1,b 4=a 2,b 13=a 3.(1)求数列{a n }与{b n }的通项公式;(2)记c n =(-1)n b n +a n ,求数列{c n }的前n 项和S n .解 (1)设等比数列{a n }的公比为q ,等差数列{b n }的公差为d .由已知,得a 2=3q ,a 3=3q 2,b 1=3,b 4=3+3d ,b 13=3+12d ,故⎩⎪⎨⎪⎧ 3q =3+3d ,3q 2=3+12d ⇒⎩⎪⎨⎪⎧ q =1+d ,q 2=1+4d ⇒q =3或1(舍去). 所以d =2,所以a n =3n ,b n =2n +1.(2)由题意,得c n =(-1)n b n +a n =(-1)n (2n +1)+3n, S n =c 1+c 2+…+c n=(-3+5)+(-7+9)+…+[(-1)n -1(2n -1)+ (-1)n (2n +1)]+3+32+…+3n .当n 为偶数时,S n =n +3n +12-32=3n +12+n -32; 当n 为奇数时,S n =(n -1)-(2n +1)+3n +12-32=3n +12-n -72. 所以S n =⎩⎪⎨⎪⎧ 3n +12+n -32,n 为偶数,3n +12-n -72,n 为奇数.2、求数列9,99,999,﹍的前n 项和.3、求和:)22221()2221()221()21(1132322-++++++++++++++n分析:找到通项公式,利用分组求和法.4、已知函数132)(--=x x f x ,点),(n a n 在函数)(x f 的图像上,数列{}n a 的前n 项和为n S . (1)求使0<n a 的n 的最大值;(2)求n S .五:课堂点拨,归纳提升:六、板书设计:七:课后作业,巩固提升:1、求和:)2141211()41211()211(11-+++++++++n2、已知等差数列{}n a 满足:.14,9625=+=a a a(1)、求数列{}n a 的通项公式.(2)、若n n n a b 2+=,求数列{}n b 的前n 项和n S .3、(2013 安徽高考)设数列{}n a 满足8,2421=+=a a a ,且对任意*∈N n ,函数 [归纳领悟]1.数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.2.常见类型及方法(1)a n =kn +b ,利用等差数列前n 项和公式直接求解;(2)a n =a ·q n -1,利用等比数列前n 项和公式直接求解;(3)a n =b n ±c n ,数列{b n },{c n }是等比数列或等差数列,采用分组求和法求{a n }的前n 项和.x a x a x a a a x f n n n n n sin cos )()(2121++++-++-=满足0)2(='πf . (1)、求数列{}n a 的通项公式.(2)、若)21(2n a n n a b +=,求数列{}n b 的前n 项和n S .。
数列求和一:数列求和方法1.有些数列,直接求和不易进行,可以将便于求和的项放在一起进行分组求和. 如①有些数列可以对奇偶项分别求和,此时要注意项数分奇偶讨论; ②有些数列可以将每一项适当拆开,再进行分组; ③有些数列首尾项相加后为定值,可以用倒序相加的方法.2.如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②()1n n k =+ ;③()()12121n n =+- ;=3.这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{}n n a b ⋅ 的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列.考点1:分组求和例1.(1)已知等差数列{}n a 满足132a =,2340a a +=,则{||}n a 前12项之和为( ) A .144-B .80C .144D .304【解答】解:因为23123643408a a a d d d +=+=+=⇒=-,所以408n a n =-. 所以408,5|||408|840,5n n n a n n n -⎧=-=⎨->⎩…,所以前12项之和为5(320)7(856)8022430422⨯+⨯++=+=. 故选:D .(2)已知{a n }的前n 项和S n =n 2﹣9n ﹣1,则|a 1|+|a 2|+…+|a 30|的值为 . 【解答】解:{a n }的前n 项和S n =n 2﹣9n ﹣1, 可得n =1时,a 1=S 1=﹣9;n ≥2时,a n =S n ﹣S n ﹣1=n 2﹣9n ﹣1﹣(n ﹣1)2+9(n ﹣1)+1=2n ﹣10, 可得n ≤5,a n <0,n ≥6时,a n >0,可得|a 1|+|a 2|+…+|a 30|=S 30﹣S 5﹣S 5=900﹣270﹣1﹣2(25﹣45﹣1)=671. 故答案为:671.(3)已知数列{}n a 的前项和1159131721(1)(43)n n S n -=-+-+-+⋯+--,则51S 的值为( ) A .199-B .199C .101-D .101【解答】解:1159131721(1)(43)n n S n -=-+-+-+⋯+--, 可得51159131721193197201S =-+-+-+⋯+-+ 4(4)(4)201425201101=-+-+⋯+-+=-⨯+=.故选:D .例2.数列{a n }是首项为23,公差为整数的等差数列,且从第七项开始为负数. (1)求数列{a n }的公差;(2)求数列{a n }的前n 项和S n 的最大值;(3)记T n =|a 1|+|a 2|+…+|a n |(n ∈N ),求使T n >214成立的最小n . 【解答】解:(1)数列{a n }是首项为23,公差d 为整数的等差数列, 且从第七项开始为负数,可得a 7<0,a 6≥0, 即23+6d <0,23+5d ≥0,解得−235≤d <−236, 可得整数d =﹣4;(2)S n =12n (a 1+a n )=12n (23+23﹣4n +4)=﹣2n 2+25n =﹣2(n −254)2+6258, 可得n =6时,S n 取得最大值78; (3)T n =|a 1|+|a 2|+…+|a n |(n ∈N ), 当n ≤6时,T n =S n =﹣2n 2+25n ;当n ≥7时,T n =﹣(S n ﹣S 6)+S 6=2S 6﹣S n =156+2n 2﹣25n . T n >214,可得n ≥7,由156+2n 2﹣25n >214,解得n >14.5, 可得n 的最小值为15.例3.数列121231231,,,,,,,,,,,,22333nn n n n⋯⋯⋯的前25项和为( )A .20714B .20914C .21114D .1067【解答】解:数列121231231,,,,,,,,,,,,22333nn n n n⋯⋯⋯的前25项和为: 251212312345612341223336666667777T =++++++⋯++++++++++, 20914= 故选:B .考点2:裂项相消例4.(1)已知数列{}n a 满足:1(2)n a n n =+,则{}n a 的前10项和10S 为( )A .1112B .1124C .175132D .175264【解答】解:数列{}n a 满足:1(2)n a n n =+,可得111()22n a n n =-+,1011111111(1)23249111012S =-+-+⋯+-+-1111175(1)221112264=+--=. 故选:D .(2)已知数列{}n a 的通项公式*)n a n N =∈,n S 为数列{}n a 的前n 项和,满足9(*)n S n N >∈,则n 的最小值为( )A .98B .99C .100D .101【解答】解:n a ==可得121n S ++⋯+=,9n S >19>,解得99n >,可得n 的最小值为100. 故选:C .(3)设数列{}n a 的前n 项和为n S ,且*11,2(1)()nn S a a n n N n ==+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290B .920C .511D .1011【解答】解:2(1)nn S a n n=+-, 2(1)n n na S n n ∴=+-,当2n …时,11(1)2(1)(2)n n n a S n n ---=+--, 两式相减可得1(1)4(1)n n n na n a a n ---=+-, 即1(1)()4(1)n n n a a n ---=-, 14n n a a -∴-=,∴数列{}n a 是以1为首项,以4为公差的等差数列,2(1)422n n n S n n n -∴=+⨯=-, 23222(1)n S n n n n n ∴+=+=+,∴11111()32(1)21n S n n n n n ==-+++,∴数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是111111115(1)(1)2223101121111-+-+⋯+-=-=,故选:C .(4)已知{}n a 是公比不为1的等比数列,数列{}n b 满足:2a ,n b a ,2n a 成等比数列,2221n n n c b b +=,若数列{}n c 的前n 项和n T λ…对任意的*n N ∈恒成立,则λ的最大值为( )A .13B .16C .115D .215【解答】解:{}n a 是公比q 不为1的等比数列,数列{}n b 满足:2a ,n b a ,2n a 成等比数列,故222nb n a a a =,即为1221111()n b n a q a q a q --=g , 可得2(1)2n b n -=,即1n b n =+,22211111()(21)(23)22123n n n c b b n n n n +===-++++,即有1111111()235572123n T n n =-+-+⋯+-++111()2323n =-+, 由111()()2323f n n =-+随着n 的增大而增加,可得()f n 的最小值为f (1)115=,数列{}n c 的前n 项和n T λ…对任意的*n N ∈恒成立,可得115λ„, 则λ的最大值为115, 故选:C . (5)数列1,112+,1123++,⋯,112n++⋯+的前n 项和为( ) A .221n n + B .21nn + C .21n n ++ D .21nn + 【解答】解:112112()(1)12(1)12n n n n n n n ===-+++⋯+++.数列1,112+,1123++,⋯,112n++⋯+的前n 项和: 数列111111111112(1)1212312223341n n n +++⋯+=-+-+-+⋯+-+++++⋯++ 122(1)11nn n =-=++. 故选:B .考点3:错位相减例5.在数列{}n a 中,若112a =,且对任意的*n N ∈有112n n a n a n ++=,则数列{}n a 前10项的和为() A .509256B .511256C .756512D .755512【解答】解:Q112n n a n a n ++=,则324112312342122232(1)2n n n a a a a n na a a a n --⋯=⋯=⨯⨯⨯-g g g g . ∴112n n a n a -=,2n n na =. 231232222n n nS =+++⋯+,221111122222n n n n nS +-=++⋯++. ∴211111..22222n n n nS +=+++-, 222n n n S +∴=-,则10123509221024256256S =-=-=. 故选:A .例6.已知数列{a n }的前n 项和为S n ,且S n =12n 2+12n ,在等比数列{b n }中,b 1=a 1,b 4=a 8. (1)求{a n }和{b n }的通项公式; (2)求数列{a n b n }的前n 项和T n . 【解答】解:(1)S n =12n 2+12n ,可得a 1=S 1=1,n ≥2时,a n =S n ﹣S n ﹣1=12n 2+12n −12(n ﹣1)2+12(n ﹣1)=n , 上式对n =1也成立,则a n =n ,n ∈N *;等比数列{b n }的公比设为q ,b 1=a 1=1,b 4=a 8=8, 可得q 3=8,即q =2,可得b n =2n ﹣1;(2)a n b n =n •2n ﹣1,可得前n 项和T n =1•1+2•2+3•4+…+n •2n ﹣1,2T n =1•2+2•4+3•8+…+n •2n , 相减可得﹣T n =1+2+4+…+2n ﹣1﹣n •2n=1−2n1−2−n •2n ,化简可得T n =1+(n ﹣1)•2n .例7.已知数列{a n }满足a 1+3a 2+5a 3+…+(2n ﹣1)a n =2n . (1)求{a n }的通项公式; (2)设数列{a n 2n+3}的前n 项和为S n ,求证:S n <23. 【解答】解:(1)当n =1时,a 1=2,当n ≥2时,有a 1+3a 2+5a 3+…+(2n ﹣3)a n ﹣1=2n ﹣2, a 1+3a 2+5a 3+…+(2n ﹣1)a n =2n .相减得(2n ﹣1)a n =2,即a n =22n−1(n ≥2), 经检验:a 1=2满足a n =22n−1,所以a n =22n−1(n ∈N *); (2)证明:由(1)知,a n =22n−1, a n 2n+3=2(2n−1)(2n+3)=12(12n−1−12n+3),S n =12(1−15+13−17+15−19+⋯+12n−3−12n+1+12n−1−12n+3)=12(1+13−12n+1−12n+3)=23−12(12n+1+12n+3)<23.例8.已知正项数列{a n }的前n 和为S n ,且2a 1S n =a n 2+a n , (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =(13)n ⋅a n ,求数列{b n }的前n 项和T n .【解答】解:(Ⅰ)正项数列{a n }的前n 和为S n ,且2a 1S n =a n 2+a n , 可得n =1时,2a 1S 1=2a 12=a 12+a 1,解得a 1=1; n ≥2时,2S n ﹣1=a n ﹣12+a n ﹣1,又2S n =a n 2+a n , 相减可得2a n =a n 2+a n ﹣a n ﹣12﹣a n ﹣1, 化为(a n ﹣a n ﹣1﹣1)(a n +a n ﹣1)=0, 即为a n ﹣a n ﹣1=1,可得a n =1+n ﹣1=n ; (Ⅱ)b n =(13)n ⋅a n =n3n ,则前n 项和T n =13+29+327+⋯+n 3n , 则13T n =19+227+381+⋯+n3n+1, 相减可得23T n =13+19+127+⋯+13n −n3n+1 =13(1−13n )1−13−n3n+1, 化为T n =34−2n+34⋅3n . 例9.设各项为正的数列{a n }的前n 项和为S n ,已知S n =16a n 2+12a n ,(n ∈N *).(Ⅰ)求数列{a n }的通项公式; (Ⅱ)令b n =a n4n,求数列{b n }的前n 项和T n . 【解答】(Ⅰ)解:当n ≥2时,S n =16a n 2+12a n S n−1=16a n−12+12a n−1,由(1)(2)得:S n −S n−1=16a n 2+12a n −16a n−12−12a n−1 化简得:6a n =(a n 2−a n−12)+3a n −3a n−1即:3(a n +a n ﹣1)=(a n ﹣a n ﹣1)(a n +a n ﹣1) 又a n >0,所以a n ﹣a n ﹣1=3,数列{a n }是等差数列当n =1时,S 1=16a 12+12a 1=a 1,得a 1=3∴a n =3n(Ⅱ)解:∴b n =3n ⋅(14)n ∴T n =3⋅(14)+6⋅(14)2+9⋅(14)3+⋯+3n ⋅(14)n ①14T n =3⋅(14)2+6⋅(14)3+9⋅(14)4+⋯+(3n −3)⋅(14)n +3n ⋅(14)n+1②由①②得:34T n =3⋅(14)+3⋅(14)2+3⋅(14)3+⋯+3⋅(14)n −3n ⋅(14)n+1=34×1−(14)n 1−14−3n ⋅(14)n+1=1−(14)n −3n ⋅(14)n+1,T n =43−3n+43⋅(14)n .课后作业:1.已知等差数列{}n a 满足132a =,2340a a +=,则{||}n a 前12项之和为( ) A .144-B .80C .144D .304【解答】解:因为23123643408a a a d d d +=+=+=⇒=-,所以408n a n =-. 所以408,5|||408|840,5n n n a n n n -⎧=-=⎨->⎩…,所以前12项之和为5(320)7(856)8022430422⨯+⨯++=+=. 故选:D .2.已知数列{}n a 满足:1(2)n a n n =+,则{}n a 的前10项和10S 为( )A .1112B .1124C .175132D .175264【解答】解:数列{}n a 满足:1(2)n a n n =+,可得111()22n a n n =-+,1011111111(1)23249111012S =-+-+⋯+-+-1111175(1)221112264=+--=. 故选:D .3.设数列{a n }满足a 1=14,且a n+1=a n +a n 2,n ∈N ∗,设1a 1+1+1a 2+1+⋯+1a 2019+1的和为S n ,则S n 的取值在哪两个相邻整数之间( ) A .(1,2)B .(2,3)C .(3,4)D .(4,5)【解答】解:由a n +1=a n +a n 2=a n (a n +1), 可得1a n+1=1a n (a n +1)=1a n−1a n +1,即有1a n +1=1a n −1a n+1,则1a 1+1+1a 2+1+⋯+1a 2019+1=1a 1−1a 2+1a 2−1a 3+⋯+1a 2019−1a 2020=4−1a2020<4,由a 1=14,且a n+1=a n +a n 2,n ∈N ∗, 可得a n +1>a n , 又a 2=14+116=516,a 3=105256,a 4>12,a 5>34,a 6>1,…,a 2020>1, 可得3<4−1a 2020<4,故选:C .4.设各项为正的数列{a n }的前n 项和为S n ,已知S n =16a n 2+12a n ,(n ∈N *).(Ⅰ)求数列{a n }的通项公式; (Ⅱ)令b n =a n4n,求数列{b n }的前n 项和T n . 【解答】(Ⅰ)解:当n ≥2时,S n =16a n 2+12a n S n−1=16a n−12+12a n−1, 由(1)(2)得:S n −S n−1=16a n 2+12a n −16a n−12−12a n−1 化简得:6a n =(a n 2−a n−12)+3a n −3a n−1即:3(a n +a n ﹣1)=(a n ﹣a n ﹣1)(a n +a n ﹣1) 又a n >0,所以a n ﹣a n ﹣1=3,数列{a n }是等差数列当n =1时,S 1=16a 12+12a 1=a 1,得a 1=3∴a n =3n(Ⅱ)解:∴b n =3n ⋅(14)n ∴T n =3⋅(14)+6⋅(14)2+9⋅(14)3+⋯+3n ⋅(14)n ①14T n =3⋅(14)2+6⋅(14)3+9⋅(14)4+⋯+(3n −3)⋅(14)n +3n ⋅(14)n+1②由①②得:34T n =3⋅(14)+3⋅(14)2+3⋅(14)3+⋯+3⋅(14)n −3n ⋅(14)n+1=34×1−(14)n 1−14−3n ⋅(14)n+1=1−(14)n −3n ⋅(14)n+1,T n =43−3n+43⋅(14)n.。
《数列的求和》的教学反思
这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。
我将从以下几个方面进行反思:
(一)对课前备课的反思
教学反思不仅仅只是针对课堂教学实际的反思,也应该包括对备课、教案进行反思。
在备课过程中,教学设计前后共修改了4次,最后形成完整的一节课的设计。
为什么反复修改了4次之多,其中有几个很关键的地方值得一提。
首先,是备学生。
我所教的是文科普通班,入班前的数学平均分仅为44分,在第一次测验中平均分还不到60分,学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高。
因此在选择教学内容上就考虑到了学生现有的认知水平。
其次,课程内容的选择。
内容是数列的求和是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。
等到高三复习时再讲还是在高一阶段就慢慢渗透给学生还是值得商榷的。
我认为高中数学的学习应该是螺旋上升的,而不是直线型。
在高一阶段学生能够掌握的知识是要渗透给学生,学生经历过的,形成一定的经验,到了高三复习阶段就能唤醒这些经验和记忆。
关于数列的求和的方法有很多,常见的如倒序相加法、并项法、拆项法、分组求和法、裂项相消法、错位相减法等。
在本节课主要介绍了并项法和分组求和法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。
这样对后继学习裂项相消法、错位相减法做一些铺垫。
第三,教学呈现方式的定位。
这是很关键的环节,直接影响到本节课的成败。
本节课设计上一个难点就是如何设计例题。
不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。
(二)对课中教学的反思
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。
本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。
本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
1.亮点之处:
(1)学生创新解答
在例1求222222222210099989796954321-+-+-+-+-的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。
但是学生出现了两种做法。
一种是转化成199+195+191+…+7+3,这样转化是学生最容易想到的。
另一种是转化成了100+99+98+…+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。
在接下来的练习中,教师的设想是学生能够想到将相邻两项合并成一项结果是1,这样很容易就能得到结果。
但是高元顺同学并没有在我设想的思路上走,而是给出了一个特别的回答,他的回答是:我是这样认为的,如果这个数列是6项的话,那么第5项是-5,第6项是6,用-1+2=1,1+(-3)=-2,-2+4=2,2+(-5)=-3,-3+6=3,因此得到前6项的和就等于项数的一半。
这个数列是100项,那就等于50。
S 200 就等于100,所以S 201 就等于-101。
他的回答博得听课的老师的一致赞同。
他使用的方法通过找规律提出猜想,实际上就是使用了数学思想方法中一个很重要的方法——递推法。
(2)学生成为课堂的主体,教师要甘当学生的绿叶
由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。
教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。
在本节课上我放手让学生去思考,让学生去摸索。
不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。
特别是在例2中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。
朱馨同学的板书详尽,将思路方法概括表述出来,过程完整。
只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。
在这两个例题教学过程中我体会到了学生获得成功的喜悦,这也说明了给学生以思考的时间和空间,学生的回答是不会让老师感到失望了,而是充满了惊喜。
(3)从容面对课堂中的偶发事件
在教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。
若是第二种就可以很自然就引出另一种求和方法——分组求和法。
但是高元顺同学的回答出乎我的意料,这种做法在我预想之外,当时我面带微笑鼓励他说下去,对他的陈述及时做出肯定和鼓励,同事我的脑子在快速的反应怎样总结他的解法,
等他陈述完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和只差恰好就等于项数n。
尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。
2.不足之处
本节课从教学设计到教学实践难免有疏漏失误之处。
在讲完课之后静心思考,对本节课做了系统的回顾、梳理,我在以下方面存在不足:
1.教学时间没有把握好
在知识准备环节,本来以为学生能很顺利地完成公式的复习,但是没有考虑了学生受现场的影响,没有做及时的反应。
我只好在将这些公式板书出来,浪费了一些时间。
但是从后来的结果上看将公式板书出来也是有一定好处的。
例1和练习1给学生的思考的时间较多,对于这样较容易上手的题目应该快速解决的。
例2是本节课的重难点所在,应该留有20分钟的时间让学生思考解决,但是由于时间没有把握好,这部分用了只有15分不到。
2.处理偶发事件的应变能力不足
虽然表现得从容不慌,但是从教学效果上看处理偶发事件的应变能力明显不足。
这点需要在今后的教学实践中摸索和积累。
3.师生互动仍需加强。
在教学过程中我接连提问了几个同学,他们的回答都是和高同学的一样、差不多。
实际上他们并没有认真去思考。
我因为时间的关系没有继续鼓励调动下去,而是转为教师讲解。
这样的处理不是很恰当,我应该鼓励一下学生,让有思路的同学能够主动积极的回答的出来。
(三)课后反思,再设计
一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。
在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。
学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。
同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。
若是再教这部分内容时我应该重新调整一下我的教学顺序,如在复习完公式后,可以先提出1+2+3+…+100=?在此基础上进行变式1-2+3-4…-99+100=?,这样再给出练习1,学生有了经验自然很容易就解决了。
在例题2问题中,可以再降低一下难度,因此可以将后面的练习3作为例题。
而将原例2作为练习的题目。
这样的做更体现了知识的循序渐进和螺旋
上升,学生容易理解和接受。
(四)感受
上一届的“凤凰杯”让我印象深刻,同时也期盼着也能参加“成长杯”。
当李加莉老师宣布由我来参加这届的“成长杯”我感觉我的压力好大了。
经过一段时间的精心选题和反复修改教学设计,我终于站在了“成长杯”的讲台了,心情复杂——激动、兴奋、紧张……直到下课的铃声想起我的一颗心才算踏实下来。
东北师范大学的孔凡哲教授曾在给我们讲座时说过:没有精心的预设,就没有精彩的生成。
我一直都是深刻记得这句话,也在教学中实践它。
但是我仍然感觉自己做不到“精彩”而更多的是“平淡无奇”。
是这节课我有了深刻的体会,让我开始审视我前面几个月所走过了路,才发现教学真的是需要智慧,做到用心去体会,用心去设计,用心去聆听学生的声音……
感谢这次参赛机会,让我在失败中磨练,在挫折中不断完善自己,最终坚强地站在讲台上,让我感受到了“成长”的喜悦。
希望在今后的教学中我能总结经验,不断的完善自己,增强专业知识和技能,有效教学和创新教学,让自己尽快“成长”起来,飞得更高更远!。