第二章_整式的加减整章基础知识复习
- 格式:doc
- 大小:47.00 KB
- 文档页数:2
1.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A.(1-15%)(1+20%)a元B.(1-15%)20%a元C.(1+15%)(1-20%)a 元D.(1+20%)15%a元A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg.则3月份鸡的价格为()A.24(1-a%-b%)元/kg B.24(1-a%)b% 元/kgC.(24-a%-b% )元/kg D.24(1-a%)(1-b%)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/kg,∴2月份鸡的价格为24(1-a%)元/kg,∵3月份比2月份下降b%,∴三月份鸡的价格为24(1-a%)(1-b%)元/kg.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.代数式x2﹣1y的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-4B解析:B 【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案. 【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩则()()5711n m +-=14-故答案选B. 【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同. 8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .0B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8b B .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B 【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数. 【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )] =10a ﹣6b ﹣6a +2b +3a ﹣b =7a ﹣5b . 故选B . 【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键. 14.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D. 【点睛】此题考查多项式,解题关键在于掌握其定义.1.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.2.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六. 【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2. 【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒, 第2个图形有14=6×1+8根火柴棒, 第3个图形有20=6×2+8根火柴棒, ……,第n 个图形有6n+2根火柴棒.4.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2 【详解】解:第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; …第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 【点睛】本题考查规律型:图形的变化类.5.22223124,4135-=-=225146-=,……221012m m -=+m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】 ()22113n n n +-++=,将210n +=代入即可得出答案.【详解】 解:22223124,4135--=225146-=……,()22113n n n +-++=210n+=∴=n8∴=+=19m n故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.---,…,按如图所示的规律有序排列.根据图中排列规律可7.将一列数1,2,3,4,5,6知,“峰1”中峰顶位置(C的位置)是4,那么“峰206”中C的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.8.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.11.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.1.已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.2.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a ,个位数字为b ,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键. 3.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 4.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--, 当1a =-,2b =-时, 原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.。
第2章《整式的加减》章节复习资料【7】1.下列计算正确的有()(1)5a3﹣3a3=2;(2)﹣10a3+a3=﹣9a3;(3)4x+(﹣4x)=0;(4)(﹣xy)﹣(+xy)=﹣xy;(5)﹣3mn﹣2nm=﹣5mn.A.1个B.2个C.3个D.4个2.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+b B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5 D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a3.若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对4.若多项式3x2﹣2xy﹣y2减去多项式M所得的差是﹣5x2+xy﹣2y2,则多项式M是()A.﹣2x2﹣xy﹣3y2B.2x2+xy+3y2C.8x2﹣3xy+y2D.﹣8x2+3xy﹣y25.已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A.﹣ B.C.﹣D.6.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣8b D.4a﹣10b7.如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的整式8.若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.09.一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定赔或赚10.若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.211.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为.12.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是.13.甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品.商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙元.14.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|=.15.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为米.16.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.17.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=.18.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为.19.已知a2+ab=3,ab+b2=1,试求a2+2ab+b2=,a2﹣b2=.20.已知,则代数式(m+2n)﹣(m﹣2n)的值为.21.将多项式按字母X的降幂排列.22.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b的值可能是多少?说明你的理由.23.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.24.试至少写两个只含有字母x、y的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或﹣1;(3)不含常数项;(4)每一项必须同时含字母x、y,但不能含有其他字母.25.已知关于x的多项式(a﹣1)x2+x|a+2|﹣2x+b,问是否存在实数a,b,使得这个多项式为二次三项式?若存在,请求出a,b的值,若不存在,请说明理由.26.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①﹣2x,4x2,﹣8x3,16x4,﹣32x5,64x6,…②2x2,﹣3x3,5x4,﹣9x5,17x6,﹣33x7,…③(1)根据你发现的规律,第一行第8个单项式为;(2)第二行第n个单项式为;(3)第三行第8个单项式为;第n个单项式为.27.已知关于x、y的多项式5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1(1)若该多项式不含三次项,求m的值;(2)在(1)的条件下,当x2+y2=13,xy=﹣6时,求这个多项式的值.28.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.29.学规律在数学中有着极其重要的意义,我们要善于抓住主要矛盾,提炼出我们需要的信息,从而解决问题.(1)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,通过观察,用你所发现的规律确定32014的个位数字是;(2)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;(3)观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第5个单项式为;第7个单项式为;第n个单项式为.30.马虎的李明在计算多项式M加上x2﹣3x+7时,因错看成加上x2+3x+7,尽管计算过程没有错误,也只能得到一个错误的答案为5x2+2x﹣4.(1)求多项式M;(2)求出本题的正确答案.第2章《整式的加减》章节复习资料参考答案与试题解析一.选择题(共10小题)1.(2014秋•赛罕区校级期末)下列计算正确的有()(1)5a3﹣3a3=2;(2)﹣10a3+a3=﹣9a3;(3)4x+(﹣4x)=0;(4)(﹣xy)﹣(+xy)=﹣xy;(5)﹣3mn﹣2nm=﹣5mn.A.1个B.2个C.3个D.4个【解答】解:5a3﹣3a3=2a3;﹣10a3+a3=﹣9a3;4x+(﹣4x)=0;(﹣xy)﹣(+xy)=﹣xy;﹣3mn﹣2nm=﹣5mn.故选C.2.(2014•新泰市校级模拟)下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+bB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a【解答】解:A、a2﹣(2a﹣b2+b)=a2﹣2a+b2﹣b,故A错误;B、﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故B错误;C、2x2﹣3(x﹣5)=2x2﹣3x+15,故C错误;D、﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3﹣(﹣4a2+1﹣3a)=﹣a3+4a2﹣1+3a,故D正确.故选D.3.(2014秋•温州期末)若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对【解答】解:由题意可得,解得m=1.故选B.4.(2016春•启东市月考)若多项式3x2﹣2xy﹣y2减去多项式M所得的差是﹣5x2+xy﹣2y2,则多项式M是()A.﹣2x2﹣xy﹣3y2B.2x2+xy+3y2C.8x2﹣3xy+y2D.﹣8x2+3xy﹣y2【解答】解:根据题意得:M=3x2﹣2xy﹣y2﹣(﹣5x2+xy﹣2y2)=3x2﹣2xy﹣y2+5x2﹣xy+2y2=8x2﹣3xy+y2.故选C.5.(2014秋•淄川区期末)已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A.﹣ B.C.﹣D.【解答】解:方法1:∵x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1)∴x+y﹣2x﹣2y+2=3﹣3y﹣3x﹣4y﹣4x+4∴﹣x﹣y+2=7﹣7y﹣7x∴6x+6y=5∴x+y=方法2:∵x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1)∴(x+y)﹣2(x+y)+2=3﹣3(x+y)﹣4(x+y)+4∴(x+y)﹣2(x+y)+3(x+y)+4(x+y)=3+4﹣2∴6(x+y)=5∴x+y=故选D.6.(2015•廊坊二模)如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣8b D.4a﹣10b【解答】解:根据题意得:新矩形的长为a﹣b,宽为a﹣3b,则新矩形周长为2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选C.7.(2015秋•南通期中)如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的整式【解答】解:若两个三次多项式中,三次项的系数不相等,这两个三次多项式相减后就仍为三次多项式;若两个三次多项式中,三次项的系数相等,这两个三次多项式相减后三次多项式就会变为低于三次的整式.故选B.8.(2016春•台州校级月考)若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.0【解答】解:∵原式=x2y+(6﹣7m)xy+y3,若不含二次项,即6﹣7m=0,解得m=.故选B.9.(2004•梅州)一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了 B.赔了C.不赔不赚 D.不能确定赔或赚【解答】解:根据题意,列式(30+60)﹣(30a+60b)=15(a﹣b),当b<a时,盈利,当b=a时,不赚不赔,当b>a时,亏损,由于不知a,b具体值,所以无法确定.故选D.10.(2014秋•临海市校级期中)若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.2【解答】解:∵多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,所以(1)和(2)(5)是错误的.故选C.二.填空题(共10小题)11.(2016•河北模拟)已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为﹣2.【解答】解:因为多项式x|m|+(m﹣2)x﹣10是二次三项式,可得:m﹣2≠0,|m|=2,解得:m=﹣2,故答案为:﹣212.(2012秋•武侯区期末)若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是2.【解答】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.13.(2012•万州区校级二模)甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品.商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙50元.【解答】解:(12+9)÷3=7,乙比丙多拿了2件,所以一件是20÷2=10元.10×(12﹣7)=50.甲付给丙50元.故答案为:5014.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|=5﹣4a.【解答】解:依题意得:原式=(1﹣a)+(﹣2a+1)+(﹣a+3)=5﹣4a.15.(2015秋•双城市期末)如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为(a﹣2b)米.【解答】解:(3a﹣b)﹣(2a+b)=3a﹣b﹣2a﹣b=a﹣2b(米).故小明家楼梯的竖直高度(即:BC的长度)为(a﹣2b)米.故答案为:(a﹣2b).16.(2014秋•上杭县校级月考)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是﹣xy.【解答】解:根据题意得:﹣x2+3xy﹣y2+x2﹣4xy+y2+x2﹣y2=﹣xy,故答案为:﹣xy.17.(2013秋•滨湖区校级期末)某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=a+n﹣1.【解答】解:由题意得:后面每一排都比前一排多一个座位及第一排有a个座位可得出第n排的座位数第n排的座位数:a+(n﹣1)又第n排有m个座位故a、n和m之间的关系为m=a+n﹣1.18.(2015秋•沛县期末)定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为8.【解答】解:当x=3时,原式=2※3﹣4※3=9﹣(4﹣3)=9﹣1=8,故答案为:819.(2015春•万源市校级月考)已知a2+ab=3,ab+b2=1,试求a2+2ab+b2=4,a2﹣b2=2.【解答】解:∵a2+ab=3,ab+b2=1,∴a2+2ab+b2=(a2+ab)+(ab+b2)=3+1=4,a2﹣b2=(a2+ab)﹣(ab+b2)=3﹣1=2.故答案为:4,2.20.(2014•贵池区校级模拟)已知,则代数式(m+2n)﹣(m﹣2n)的值为﹣5.【解答】解:原式=(m+2n)﹣(m﹣2n)=4n,当时,原式=.故答案为:﹣5.三.解答题(共10小题)21.(2015秋•太康县期中)将多项式按字母X的降幂排列.【解答】解:将多项式按字母x的降幂排列为:﹣7x4y2+3x2y﹣xy3+.22.(2009•余杭区模拟)已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b的值可能是多少?说明你的理由.【解答】解:(1)若axy b与﹣5xy为同类项,∴b=1,∵和为单项式,∴;(2)若4xy2与axy b为同类项,∴b=2,∵axy b+4xy2=0,∴a=﹣4,∴.23.(2015秋•渝北区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.24.(2015秋•太和县校级期中)试至少写两个只含有字母x、y的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或﹣1;(3)不含常数项;(4)每一项必须同时含字母x、y,但不能含有其他字母.【解答】解:此题答案不唯一,如:x3y3﹣x2y4+xy5;﹣x2y4﹣xy﹣xy2.25.已知关于x的多项式(a﹣1)x2+x|a+2|﹣2x+b,问是否存在实数a,b,使得这个多项式为二次三项式?若存在,请求出a,b的值,若不存在,请说明理由.【解答】解:若(a﹣1)x2+x|a+2|﹣2x+b,是二次三项式,可得a=﹣1,b≠0或a=﹣3,b≠0或a=0,a=﹣4,b≠0所以当a=﹣1,b≠0或a=﹣3,b≠0或a=﹣4,b≠0.得(a﹣1)x2+x|a+2|﹣2x+b为二次三项式.26.(2013秋•硚口区期中)观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①﹣2x,4x2,﹣8x3,16x4,﹣32x5,64x6,…②2x2,﹣3x3,5x4,﹣9x5,17x6,﹣33x7,…③(1)根据你发现的规律,第一行第8个单项式为128x8;(2)第二行第n个单项式为(﹣2)n x n;(3)第三行第8个单项式为﹣129x9;第n个单项式为(﹣1)n+1(1+2n﹣1)x n+1.【解答】解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为128x8;因为第二行的每个单项式,数字因数后面都是前面的(﹣2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(﹣2)n x n;通过观察第三行的这组单项式,这组单项式符合(﹣1)n+1(1+2n﹣1)x n+1,第8个单项式是﹣129x9;第n个单项式为(﹣1)n+1(1+2n﹣1)x n+1.故答案为:(1)128x8,(2)(﹣2)n x n,(3)﹣129x9 ,(﹣1)n+1(1+2n﹣1)x n+127.(2015秋•和平区期中)已知关于x、y的多项式5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1 (1)若该多项式不含三次项,求m的值;(2)在(1)的条件下,当x2+y2=13,xy=﹣6时,求这个多项式的值.【解答】解:(1)5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1=5x2﹣2xy2﹣(3xy+4y2+9xy﹣2y2﹣2mxy2+7x2)﹣1=5x2﹣2xy2﹣(12xy+2y2﹣2mxy2+7x2)﹣1=5x2﹣2xy2﹣12xy﹣2y2+2mxy2﹣7x2﹣1=﹣2x2﹣2y2﹣12xy+(﹣2+2m)xy2﹣1,∵该多项式不含三次项,∴﹣2+2m=0,故m的值为:1;(2)∵原式=﹣2x2﹣2y2﹣12xy+(﹣2+2m)xy2﹣1=﹣2(x2+y2)﹣12xy﹣1=﹣2×13﹣12×(﹣6)﹣1=45.28.(2015秋•永川区校级期中)已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.【解答】解:由题意可知:小红的年龄为(2m﹣4)岁,小华的年龄为岁,则这三名同学的年龄的和为:=m+2m﹣4+(m﹣2+1)=4m﹣5.答:这三名同学的年龄的和是4m﹣5岁.29.(2015秋•富顺县校级期中)学规律在数学中有着极其重要的意义,我们要善于抓住主要矛盾,提炼出我们需要的信息,从而解决问题.(1)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,通过观察,用你所发现的规律确定32014的个位数字是9;(2)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是2;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=218,a n=2n;(3)观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第5个单项式为16x5;第7个单项式为64x7;第n个单项式为(﹣2)n﹣1x n.【解答】解:(1)式子末尾数字以3、9、7、1这4个一循环,2014÷4=503…2,所以32014的末位数字是9.(2)每一项与前一项之比是一个常数,这个常数是2,所以a18=218,a n=2n;(3)由题意可知,第5个单项式为16x5,第7个单项式为64x7.第n个单项式是(﹣2)n﹣1x n.故答案为:9;2,218,2n;16x5,64x7,(﹣2)n﹣1x n.30.(2014秋•盐都区期末)马虎的李明在计算多项式M加上x2﹣3x+7时,因错看成加上x2+3x+7,尽管计算过程没有错误,也只能得到一个错误的答案为5x2+2x﹣4.(1)求多项式M;(2)求出本题的正确答案.【解答】解:(1)根据题意列得:M=5x2+2x﹣4﹣(x2+3x+7)=4x2﹣x﹣11;(2)正确答案为:4x2﹣x﹣11+(x2﹣3x+7)=4x2﹣x﹣11+x2﹣3x+7=5x2﹣4x﹣4.。
1.用字母表示数(1)用字母或含有字母的式子表示数或数量关系,为我们今后的学习和研究带来了极大的方便.从具体的数字抽象到用字母表示数,在认识上是一个重大飞跃.(2)同一问题中不同的数量要用不同的字母表示;不同的问题中不同的数量可以用相同的字母表示;一个字母表示的数往往不止一个,具有任意性,但要受实际问题的限制.2.单项式(1)单项式:由__________组成的式子叫做单项式.如12ab,m2,–x2y.特别地,单独的__________或__________也是单项式.单项式的系数:单项式中的__________.单项式的次数:一个单项式中,__________.(2)注意:①圆周率π是常数,单项式中出现π时,要将其看成系数.②当一个单项式的系数是“1”或“–1”时,“1”通常省略不写,如a2,–m2;次数为“1”时,通常也省略不写,如x.③单项式的系数包括它前面的符号,且只与数字因数有关.④单项式中的数与字母是乘积关系,如23a不是单项式.⑤单项式的次数与数字因数无关,只与字母有关,是单项式中所有字母的指数的和,如单项式b的次数是1,而不是0,常数–5的次数是0,9×103a2b3c 的次数是6,与103无关.3.多项式(1)多项式:几个__________的和叫做多项式.如x2+2xy+2,a2–2.在多项式中,每个单项式叫做多项式的项,不含字母的项叫做__________.多项式里,次数最高项的次数,叫做这个多项式的__________.(2)注意:①多项式的每一项都包括它前面的符号,且每一项都是单项式.②多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和.③一个多项式有几项,就叫它几项式.4.整式:单项式与多项式统称__________.如果一个式子既不是单项式,也不是多项式,那么它一定不是整式.一、用含字母的式子表示数或数量关系列式时要注意:1.数与字母相乘或字母与字母相乘,通常将乘号写作“·”或省略不写.2.数与字母相乘,数写在字母前面.3.数字因数为“1”或“–1”时,常省略“1”.4.当数字因数为带分数时,要写成假分数.5.除法运算要用分数线.6.式子后面有单位且式子是和或差的形式时,应把式子用括号括起来.【例1】用含字母的式子表示下列数量关系.(1)小雪买单价为a元的笔记本4本,共花_________元;(2)三角形的底为a,高为h,则三角形的面积是_________;(3)若正方体的棱长是a–1,则正方体的表面积为_________;(4)自来水每吨m 元,电每度n 元,则小明家本月用水8吨,用电100度,应交费_________元. 二、单项式(1)一个式子是单项式需具备两个条件:①式子中不含运算符号“+”号或“–”号;②分母中不含有字母. (2)确定单项式系数的方法是把式子中的所有字母及其指数去掉,剩余的为其系数.(3)计算单项式的次数时要注意:①没有写指数的字母,实际上其指数为1,计算时不能将其遗漏;②不能将系数的指数计算在内.【例2】指出下列各代数式中的单项式,并写出各单项式的系数和次数−5,−a ,21xy 2,πmn ,−c ab ,23ab ,2a +b ,4)(3n m .三、多项式一个式子是多项式需具备两个条件: (1)式子中含有运算符号“+”或“–”; (2)分母中不含有字母.【例3】多项式–5x 2–xy 4+26xy +3共有__________项,该多项式的次数为__________,最高次项的系数是__________.1.单项式2a 3b 的次数是( ) A .2B .3C .4D .52.在下列各式中,二次单项式是( ) A .x 2+1B .xy 2C .2xyD .(–)213123.单项式–2xy 3的系数和次数分别是( ) A .–2,4B .4,–2C .–2,3D .3,–24.下列说法正确的是( ) A .的系数是–3 B .2m 2n 的次数是2次C .是多项式D .x 2–x –1的常数项是15.下列关于多项式5ab 2–2a 2bc –1的说法中,正确的是( ) A .它是三次三项式B .它是四次两项式C .它的最高次项是–2a 2bcD .它的常数项是16.的系数、次数分别为( )A .,7B .,6 C .,8 D .5π,67.对于式子:,,,3x 2+5x –2,abc ,0,,m ,下列说法正确的是( )A .有5个单项式,1个多项式B .有3个单项式,2个多项式C .有4个单项式,2个多项式D .有7个整式8.下列单项式中,次数为3的是( )A .B .m nC .3a 2D .9.下列关于单项式的说法中,正确的是( )A .系数是2,次数是2B .系数是–2,次数是3C .系数是,次数是2D .系数是,次数是335xy-23x y -245π6x y 565π65π622x y +2a b 122x y x +223x y-272ab c -223x y-23-23-10.下列关于单项式–的说法中,正确的是( )A .系数是1,次数是2B .系数是–,次数是2C .系数是,次数是3D .系数是–,次数是3 11.多项式x 2–2xy 3–y –1是( ) A .三次四项式 B .三次三项式C .四次四项式D .四次三项式12.下列说法正确的是( )A .的系数是–2B .32ab 3的次数是6次C .是多项式D .x 2+x –2的常数项为213.下列结论正确的是( )A .0不是单项式B .52abc 是五次单项式C .–x 是单项式D .是单项式 14.单项式2ab 2的系数是__________. 15.多项式2a 2b –ab 2–ab 的次数是__________.16.若单项式–2x 3y n 与4x m y 5合并后的结果还是单项式,则m –n =__________. 17.观察下面的一列单项式:2x ;–4x 2;8x 3;–16x 4,…根据你发现的规律,第n 个单项式为__________.18.已知多项式(m –1)x 4–x n +2x –5是三次三项式,则(m +1)n =__________. 19.将多项式a 3+b 2–3a 2b –3ab 2按a 的降幂排列为:__________.23π5x y35153π51223vt-5x y+1x20.指出下列多项式是几次几项式:(1)x 3–x +1; (2)x 3–2x 2y 2+3y 2.21.单项式–与–是次数相同的单项式,求m 的值.22.已知:关于x 的多项式(a –6)x 4+2x ––a 是一个二次三项式,求:当x =–2时,这个二次三项式的值.23.单项式的系数是( )A .B .–C .D .–258m a b 34117x y 12bx 32π3x y zπ3π3131324.单项式–ab 2的系数是( )A .1B .–1C .2D .325.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式26.下列说法中,正确的是( )A .单项式的系数是–2,次数是3B .单项式a 的系数是0,次数是0C .–3x 2y +4x –1是三次三项式,常数项是1D .单项式的次数是2,系数为 27.如果整式x n –3–5x 2+2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .628.一组按规律排列的式子:a 2,,,,…,则第2017个式子是( ) A .B .C .D .29.–的系数是__________,次数是__________.30.单项式2x 2y 的次数是:__________.31.已知多项式kx 2+4x –x 2–5是关于x 的一次多项式,则k =__________.32.单项式–22x y的系数是__________.33.多项式3x m +(n –5)x –2是关于x 的二次三项式,则m ,n 应满足的条件是__________.34.多项式a 3–3ab 2+3a 2b –b 3按字母b 降幂排序得__________.223x y-232ab-92-43a 65a 87a20172016a 20174033a 40344033a 40324031a 25xy35.观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2016个,第2017个单项式.36.已知多项式x3–3xy2–4的常数是a,次数是b.(1)则a =__________,b =__________;并将这两数在数轴上所对应的点A、B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离之和为11,求点C在数轴上所对应的数.37.单项式2xy 3的次数是( )A .1B .2C .3D .4A .B.π C .2 D .12π21.同类项(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,几个常数项也是同类项.(2)注意:①两个单项式是不是同类项有两个“无关”,第一与单项式的系数无关(在系数不为零的前提下),第二与单项式中字母排列顺序无关.②同类项都是单项式.2.合并同类项(1)把多项式中的同类项合并成一项,叫做__________.(2)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数__________.(3)合并同类项的一般步骤:①找出同类项,当项数较多时,通常在同类项的下面作出相同的标记.②利用加法交换律把同类项放一起,在交换位置时,连同项的符号一起交换.③利用合并同类项的法则合并同类项,系数相加,字母及其指数不变.④写出合并后的结果.(4)把一个多项式的各项按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的__________排列;把一个多项式的各项按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的__________排列.3.去括号(1)去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__________.(2)去括号时,要将括号连同它前面的符号一起去掉;在去括号时,首先要明确括号前是“+”还是“–”;需要变号时,括号里的各项都变号;不需要变号时,括号里的各项都不变号;去括号的依据是乘法分配律,当括号前面有非“±1”的数字因数时,应先利用分配律把括号前面的数字因数与括号内的每一项相乘去掉括号,切勿漏乘.(3)多层括号的去法:先观察式子的特点,再考虑去括号的顺序.一般由内向外,先去小括号,再去中括号,最后去大括号,但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.4.整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减运算法则进行化简求值时,一般先去括号、合并同类项,再代入字母的值进行计算.在具体运算中,也可以先将同类项合并,再去括号,但要按运算顺序去做.(3)整式加减的结果要最简:①不能有同类项;②含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数;(4)不再含括号.一、同类项同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.【例1】下列式子中是同类项的是()A.62和x2B.11abc和9bcC.3m 2n 3和–n3m2D.0.2a2b和ab2A.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2 D.a=4,b=3,c=4二、合并同类项合并同类项法则实质为“一相加,两不变”,“一相加”指各同类项的系数相加,“两不变”指字母不变且字母的指数也不变.简单记为“只求系数和,字母指数不变样”.【例3】下列运算中结果正确的是()A.4a+3b=7ab B.4xy–3xy=xyC.–2x+5x=7x D.2y–y=1三、去括号去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体.【例4】下列去括号正确的是()A.–(a+b–c)=–a+b–c B.–2(a+b–3c)=–2a–2b+6c C.–(–a–b–c)=–a+b+c D.–(a–b–c)=–a+b–c四、整式的加减1.整式加减的实质是去括号、合并同类项.2.应用整式的加减运算法则进行化简求值时的步骤:一化、二代、三计算.3.进行整式的加减时,若遇到相同的多项式,可将相同的多项式分别作为一个整体进行合并.【例5】化简m–(m–n)的结果是()A.2m–n B.n–2m C.–n D.n1.下列去括号正确的是()A.–(3x–1)=–3x–1 B.–(3x–1)=3x–1C.–(3x–1)=–3x+1 D.–(3x–1)–3x+1 2.–a+b–c的相反数是()A.a–b–c B.a–b+c C.a+b–c D.a+b+c 3.计算–(a–1)–(–a+2)+3的结果是()A.6 B.2 C.0 D.–2a+2 4.化简2a–[3b–5a–(2a–7b)]的值为()A.9a–10b B.5a+4bC.–a–4b D.–7a+10b5.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.6.将下列各式去括号:(1)(a–b)–(c–d)=________;(2)–(a+b)+(c–d)=________;(3)–(a–b)–(c–d)=________;(4)(a+b)–3(c–d)=________.7.多项式–8ab2+3a2b与多项式–2ab2+5a2b的差为________.8.若m、n互为相反数,则(3m–2n)–(2m–3n)的值为________.9.化简:(1)2xy+3(4xy–2x)–2(xy–2x);(2)3x2–2(x+x2–3)+3(–2x–4+3x2).10.化简:(1)–(9x3–4x2+5)–(–3–8x3+3x2);(2)2(a2b+ab2)–2(a2b–1)–3(ab2+1).11.观察下列各式:(1)–a+b=–(a–b);(2)2–3x=–(3x–2);(3)5x+30=5(x+6);(4)–x–6=–(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1–b=–2,求-1+a2+b+b2的值.12.在修某县人民路的BRT (快速公交)时,需要对部分建筑进行拆迁,该县政府成立了拆迁工作组,他们步行去做拆迁产生的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km ):出发点,–0.7,+2.7,–1.3,+0.3,–1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处距离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们的步行速度为2km/h ,工作组早上九点出发,做完工作时是下午几点?13.不改变3a 2–2b 2–b+a+ab 的值,把二次项放在前面有“+”的括号内,一次项放在前面有“–”的括号内,下列各式正确的是( )A .+(3a 2+2b 2+ab)–(b+a)B .+(–3a 2–2b 2–ab)–(b –a)C .+(3a 2–2b 2+ab)–(b –a)D .+(–3a 2+2b 2+ab)–(b –a)14.下列各式中,去括号错误的是( )A .3x 2–(2x –y)=3x 2–2x+yB .C .5a+(–2a 2–b 2)=5a –2a 2–b 2D .(–a+3b)–(a 2+b 2)=–a+3b –a 2–b 2()22332244x x x x -+=--15.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a 2+3ab –b 2)–(–3a 2+ab+5b 2)=5a 2–6b 2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是________.16.先化简,再求值:,其中、满足3202x y -++=.17.计算3x 2–x 2的结果是( )A .2B .2x 2C .2xD .4x 2A .3B .6C .8D .919.化简:2x –x=( )A .2B .1C .2xD .x20.下列运算正确的是( ) A .3a+2a=5a 2B .3a+3b=3abC .2a 2bc –a 2bc=a 2bcD .a 5–a 2=a 321.下列式子正确的是( )A .7m+8n=8m+7nB .7m+8n=15mnC .7m+8n=8n+7mD .7m+8n=56mn22113124323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭x y。
单项式一.知识点:1、单项式:由 数或字母 的乘积组成的式子称为单项式。
补充,单独一个 数 或一个 字母 也是单项式,如a ,π,5 。
应用:判断下列各式子哪些是单项式? (1)12x -;(2)35a b -;(3) 1y x +。
解:(1) 12x -不是单项式,因为含有字母与数的差; (2)35a b -是单项式,因为是数与字母的积; (3)1y x +不是单项式,因为含有字母与数的和,又含有字母与字母的商;练习:判断下列各式子哪些是单项式? (1)21+x ; (2) a bc ; (3) b 2; (4) -3a b 2; (5) y ; (6) 2-xy 2; (7) -0.5 ;(8) 11x +。
2、单项式系数:单项式是由数字因数和字母因数两部分组成的,其中的数字因数叫做单项式的系数。
应用:指出各单项式的系数:(1) 31a 2h ,(2) 322r ,(3) a bc ,(4)-m ,(5) 223ab π-注意:π是数字而不是字母。
解:(1) 31a 2h 的系数是31,(2) 322r 的系数是32, (3) a bc 的系数是1 (4)-m 的系数是-1, (5) 223ab π-的系数是23π- 注意:π是数字而不是字母。
3、单项式次数:单项式中所有 字母 的指数的 和 叫做单项式的次数。
注意:π是数字而不是字母。
应用:1.指出各单项式的次数:(1)31a 2h ,(2)3232r h ,(3)423ab π- 解:(1)因为字母a 的指数是2,字母h 的指数是1,213+=,所以 31a 2h 的次数是3, (2) 3232328r h r h =,因为字母r 的指数是2,字母h 的指数是3,235+=,所以3232r h 的次数是5, (3) 442233ab ab ππ--=, 因为字母a 的指数是1,字母b 的指数是4,145+=, 所以423ab π-的次数是5。
第二章《整式的加减》同步单元基础与培优高分必刷卷全解全析1.B【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行解答即可.【详解】解:根据单项式系数的定义,单项式-3x 3y 2的系数是-3,次数是3+2=5.故选:B .【点睛】此题主要考查了单项式,关键是掌握单项式系数和次数的定义.2.B【分析】根据单项式和多项式统称为整式,判断即可.【详解】解:在式子1x ,x +y +1,2021,﹣a ,23x y -,13x +中,整式是:x +y +1,2021,﹣a ,﹣23x y -,13x +,共有5个,故选:B【点睛】本题考查了整式,熟练掌握单项式和多项式统称为整式是解题的关键.3.A【分析】根据同类项是指所含字母相同且相同字母的指数也相同的项,可求出a 、b ,再把a 、b 代入求解即可.【详解】解:∵单项式-xyb +1 与xa -2y 3是同类项,∴a -2=1,b +1=3,∴a =3,b =2,∴(ab -7)2021=()2021671-=-,故选:A .【点睛】本题考查同类项的定义,解题的关键是熟练掌握同类项的定义.4.A【分析】根据合并同类项的法则逐项计算即可判断选择.【详解】A .220x y yx -=,故A 计算正确,符合题意;B .2334y y 和不是同类项,不能合并,故B 计算错误,不符合题意;C .32a a a -=,故C 计算错误,不符合题意;D .325a a a +=,故D 计算错误,不符合题意;故选:A .【点睛】本题考查合并同类项.掌握合并同类项的法则是解题关键.5.D【分析】由223m m ++的值为5,得出222m m +=,将其整体代入代数式即可求解.【详解】解:∵223m m ++5=,∴222m m +=∴()22485425m m m m +-=+-425=´-85=-3=.故选D .【点睛】本题考查了代数式求值,整体代入是解题的关键.6.D【分析】先用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.【详解】解:如图,由图和已知条件可知:AB =a ,EF =b ,AC =n ﹣b ,GE =n ﹣a .阴影部分的周长为:2(AB +AC )+2(GE +EF )=2(a +n ﹣b )+2(n ﹣a +b )=2a +2n ﹣2b +2n ﹣2a +2b=4n .∴求图中阴影部分的周长之和,只需知道n 一个量即可.故选:D .【点睛】本题主要考查了整式的加减,能用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽是解决本题的关键.7.A【分析】设运动t 秒,得到A 、B 、C 三点运动后分别表示-2-2t 、3t 、4+4t ,求出5AC -6AB ,5BC -10AB ,即可判断.【详解】解:设运动t 秒,∵点A 、B 、C 三点,在数轴上分别表示﹣2、0、4,∴A 、B 、C 三点,运动后分别表示-2-2t 、3t 、4+4t ,∴5AC -6AB =5(4+4t +2+2t )-6(3t +2+2t )=18,故5AC ﹣6AB 的值不变,∴甲的说法正确;∵5BC -10AB =5(4+4t -3t )-10(3t +2+2t )=-45t ,故5BC ﹣10AB 的值改变,∴乙的说法不正确;故选:A .【点睛】此题考查了数轴上动点问题,数轴上两点之间的距离,正确表示出三点运动后表示的数计算两点之间的距离是解题的关键.8.C【分析】利用去括号法则,逐一选项计算即可.【详解】解:A.5x ﹣(x ﹣2y +5z )=5x ﹣x +2y ﹣5z ,正确,不合题意;B.2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c +2d ,正确,不合题意;C.3x 2﹣3(x +6)=3x 2﹣3x ﹣18,原题解答错误,符合题意;D .﹣(x ﹣2y )﹣(x 2+y 2)=﹣x +2y ﹣x 2﹣y 2,正确,不合题意;故选:C .【点睛】本题考查了去括号法则,熟练掌握去括号时,括号前是“-”号,去掉括号后,括号内的每一项都要变号是解题的关键.9.D【分析】先将2220a a +-=化为222a a +=,2243a a ++化为()2223a a ++,再将222a a +=代入,求出算式的值即可得出答案.【详解】解:2220a a +-=Q 222a a \+=2243a a \++()2223a a =++223=´+=7故选D .【点睛】本题考查了代数式求值问题,求代数式的值可以直接代入、计算,如果给出的代数式可以化简,要先化简再求值.10.B【分析】先求出a ﹣2b 的值,然后将x =﹣1代入要求的代数式,从而利用整体代入即可得出答案.【详解】解:由题意得,当x =1时,代数式321ax bx --的值为2022,∴a ﹣2b ﹣1=2022,∴a ﹣2b =2023,当x =﹣1时,代数式=﹣a +2b +1=﹣(a ﹣2b )+1=﹣2023+1=﹣2022.故选:B .【点睛】此题考查了代数式求值的知识,解答本题的关键是求出a +b 的值,然后整体代入,整体思想是数学解题经常用到的,同学们要注意掌握.11.D【分析】先根据数轴得到0c b a a <<-<<,c b a >>,再判断绝对值里的式子的符号,利用绝对值的性质化简后再计算即可.【详解】解:由数轴可知0c b a a <<-<<,c b a >>,∴0a c +<,0a b +<,0c b -<,∴a c a b c b+-+--()()()a c abc b =-++++-a c a b c b=--+++-=0.故选:D .【点睛】本题考查整式的加减,用数轴上的点表示有理数,绝对值的化简,解题关键是根据有理数在数轴上的位置判断绝对值里的式子的符号.12.B【分析】根据图形特点,首先写出前三个图形中小正六边形的个数,从而得到规律并写出第n 个图形中小正六边形的个数,然后把n =10代入进行计算即可得解.【详解】解:如图,第1个图形中有小正六边形1个,1=3×12-3×1+1,第2个图形中有小正六边形7个,7=3×22-3×2+1,第3个图形中有小正六边形19个,19=3×32-3×3+1,…,依此类推,第n 个图形中有小正六边形(3n 2-3n +1)个,所以,第10个图形中有小正六边形3×102-3×10+1=271个.故选:B .【点睛】此题考查了规律型:图形的变化类,得到第n 个图形中小正六边形的个数变化规律的表达式是解题的关键.13.()510a -【分析】根据轮船逆水航行5小时的路程等于时间5乘以逆水航行速度,即可求解.【详解】解:根据题意得:这艘轮船逆水航行5小时的路程是()()52510a a -=-千米.故答案为:()510a -【点睛】本题主要考查了列代数式,根据题意得到轮船逆水航行5小时的路程等于时间5乘以逆水航行速度是解题的关键.14.-2【分析】直接利用多项式的次数与项数的确定方法得出答案.【详解】解:∵多项式()33232m x y m x -++是一个五次两项式,∴|m |+3=5,m +2=0,解得:m =-2或m =2(不合题意,故舍去).故答案为:-2.【点睛】本题主要考查了多项式,正确确定多项式的次数与项数,是解题关键.15.2263x x +-【分析】先去括号,再合并同类项,即可求解.【详解】解:原式225363x x x =+--2263x x =+-,故答案为:2263x x +-.【点睛】本题主要考查了整式加减混合运算,熟练掌握整式加减混合运算法则是解题的关键.16.1【分析】将原式两边同时乘以x ,即得出234560x x x x x x +++++=,再将两边同时加1,最后将234510x x x x x +++++=代入,即可求解.【详解】234510x x x x x +++++=,两边同时乘以x ,得:234560x x x x x x +++++=,再两边同时加1,得2345611x x x x x x ++++++=.234510x x x x x +++++=把代入,得:601x +=,61x \=,故答案为:1.【点睛】本题考查代数式求值,掌握整体代入的思想是解题关键.17.-3【分析】简单的因式分解,把等式化成含字母的代数式等于整数的形式,再把第二个代数式通过简单变形后,运用代入法,把数据带入式子化简整理后正好去除字母得到结果.【详解】∵2220110m m --=,等式变形后,()220110m m --=即:()22011m m -=把代数式3220132014m m m ---变形后3220132014m m m ---322220132014m m m m m =----+322220132014m m m m =---+322220132014m m m m =---+()()2220132014m m m m =---+()()22201120142m m m m =----+()()2201120142m m m m m m =--´--+把()22011m m -=代入上式,得原式()()2201120142m m m m m m =--´--+2011201120112014m m =-´-´+3=-故答案为:3-.【点睛】本题考查了整式的化简求值,解题关键是将已知等式进行化简,找到与待求式子之间的关系.18.13【分析】根据平方及绝对值的非负性得出a =3,b =-5,c =2,然后代入求解即可.【详解】解:()23520a b c -+-++-=∴30a -=,50b -+=,20c -=,∴a =3,b =5,c =2,∴2a +b +c =13,故答案为:13.【点睛】题目主要考查平方及绝对值的非负性,求代数式的值,熟练掌握平方及绝对值的非负性是解题关键.19.-30【分析】直接把a 、b 的值代入代数式求解即可.【详解】解:∵a =-2.5,b =-4,∴()()()()()()2222332.54 2.54 2.542540153022a b ab ab -+-=--´-+-´--´-´-=--=-,故答案为:-30.【点睛】本题主要考查了代数式求值,含乘方的有理数混合计算,熟知含乘方的有理数混合计算法则是解题的关键.20.(1)2ab(2)2x 2+xy(3)x +5xy(4)b 2-2b【解析】(1)-ab +5ab -2ab=(-1+5-2)ab=2ab(2)(5x 2-xy )+(2xy -3x 2)=5x 2-xy +2xy -3x 2=5x 2-3x 2+2xy -xy=2x 2+xy(3)2(2x -xy )-(3x -7xy )=4 x -2 xy -3x +7xy= x +5xy(4)3(a +b 2)-(2b -3a )-2(b 2+3a )=3a +3b 2-2b +3a -2b 2-6a= b 2-2b【点睛】此题主要考查了整式的加减,解题关键是掌握其运算法则以及运算技能.21.(1)4a +7(2)a +17(3)65a +20【分析】(1)根据足球a 个,即可由排球的个数是足球的2倍还多12个,得到排球()212a +个,由篮球比足球少5个,得到篮球()5a -个,求和即可得到结论;(2)由(1)知排球()212a +个,篮球()5a -个,作差即可得到结论;(3)由(1)知足球a 个,排球()212a +个,篮球()5a -个,结合足球每个25元,排球每个10元,篮球每个20元,乘积求和即可得到结论.(1)解:Q 学校有足球a 个,排球的个数是足球的2倍还多12个,篮球比足球少5个,\排球()212a +个,篮球()5a -个,\这个学校共有球个数为()()()212547a a a a +++-=+个;(2)解:由(1)知排球()212a +个,篮球()5a -个,\排球比篮球多()()()212517a a a +--=+个;(3)解:由(1)知足球a 个,排球()212a +个,篮球()5a -个,结合足球每个25元,排球每个10元,篮球每个20元,\学校购进这些球共花()()2510212205a a a +++-252012020100a a a =+++-()6520a =+元.【点睛】本题考查列代数式解实际应用题,读懂题意,找准关系正确用代数式表示三种球的数量是解决问题的关键.22.(1)2020(2)-1【分析】(1)整体代入即可;(2)将要求的式子变为x – y 形式,再代入即可.(1)解:∵20x x +=∴22020x x ++02020=+2020=.(2)解:3(x –y )-x + y +5()()35x y x y =---+将x – y = -3代入式子得,原式=()()3335=´---+935=-++=-1.【点睛】本题考查了已知式子的值,求代数式的值,解决本题的关键是计算的过程不出错.23.(1)<;<;>(2)-2a +2b【分析】(1)根据数轴可知c +b 、a +c 、b -a 与0的大小;(2)利用绝对值的性质即可化简.(1)解:由数轴可知:c <a <-1<1<b ,c b >,∴c +b <0,a +c <0,b -a >0;(2)解:∵c +b <0,a +c <0,b -a >0,∴原式=b -a -(a +c )+(c +b )=b -a -a -c +c +b=2b -2a .【点睛】本题考查数轴与绝对值的性质,整式的加减,要注意去绝对值的条件,本题属于基础题型.24.(1)b =1,a =-3(2)-9【分析】(1)直接合并同类项进而得出2,x x 的系数为零进而得出答案;(2)直接利用y =1时得出t -5m =6,进而得出答案.(1)解:∵多项式232(21)(2352)x ax ty bx x my ++---++的值与字母x 的取值无关,∴232(21)(2352)x ax ty bx x my ++---++23(22)(3)53b x a x ty my =-+++--,则2-2b =0,a +3=0,解得:b =1,a =-3;(2)解:∵当y =1时,代数式的值3,则t -5m -3=3,故t -5m =6,∴当y =-1时,原式=-t +5m -3=-6-3=-9.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.25.(1)22x y xy -+(2)6a -+【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母指数表示不变,据此计算即可.(1)解:22223322x y xy xy x y-+-+=2222(32)(32)x y x y xy xy -++-=22x y xy -+;(2)解: 22225643a a a a a -+++-=222(23)(45)6a a a a a +-+-+=6a -+.【点睛】本题考查了合并同类项法则的应用,熟练掌握合并同类项法则是解题的关键.26.(1)下一个装饰图案是两个四分之一圆和三个半圆;(2)218b p ,216b p ,224b p ;(3)发现装饰物面积变化的规律是28b n p(n 为正整数)【分析】(1)根据所给的条件和所给的图形,即可得到下一个装饰图案是两个四分之一圆和三个半圆;(2)结合图形和圆的面积公式即可求出图1、图2、图3中装饰物所占的面积;(3)根据图1、图2、图3得出的装饰物所占的面积,即可求出装饰物面积变化的规律公式.(1)下一个装饰图案是两个四分之一圆和三个半圆;(2)根据题意得:图1中装饰物所占的面积是:2211228b b p p æö=ç÷èø;图2中装饰物所占的面积是:22416b b p p æö=ç÷èø,图3中装饰物所占的面积是:222162624b b b p p p æöæö+´=ç÷ç÷èøèø,(3)发现装饰物面积变化的规律是28b n p(n 为正整数).【点睛】本题考查了代数式求值和列代数式等知识点的应用,这是一个实际问题,要求即能用数学知识解决,又要讲究漂亮和美观.27.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5【分析】(1)由题意知,甲只能向东移动才有可能停在数轴正半轴上,则只需考虑①与②的情形即可确定对错;(2)①根据题意乙猜对n 次,则乙猜错了(10-n )次,利用平移规则即可推算出结果;②根据题意乙猜对n 次,则乙猜错了(10-n )次,利用平移规则即可推算出结果;(3)由题意可得刚开始两人的距离为8,根据三种情况下计算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.(1)解:∵甲、乙两人(看成点)分别在数轴-3和5的位置上,∴甲乙之间的距离为8.∵若甲乙都错,则甲向东移动1个单位,在同时乙向西移动1个单位,∴第一次移动后甲的位置是-3+1=-2,停在了数轴的负半轴上,∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴第一次移动后甲的位置是-3+4=1,停在了数轴的正半轴上.故答案为:甲对乙错;(2)解:①∵乙猜对n 次,∴乙猜错了(10-n )次.∵甲错乙对,乙向西移动4个单位,∴乙猜对n 次后,乙停留的位置对应的数为:5-4n .∵若甲对乙错,乙向东移动2个单位,∴乙猜错了(10-n)次后,乙停留的位置对应的数为:m=5-4n+2(10-n)=25-6n;②∵n为正整数,∴当n=4时该位置距离原点O最近.故答案为:4;(3)解:k=3 或k=5.由题意可得刚开始两人的距离为8,∵若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位,∴若都对或都错,移动后甲乙的距离缩小2个单位.∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴若甲对乙错,移动后甲乙的距离缩小2个单位.∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴若甲错乙对,移动后甲乙的距离缩小2个单位.∴甲乙每移动一次甲乙的距离缩小2个单位.∵甲与乙的位置相距2个单位,∴甲乙共需缩小6个单位或10个单位.∵6÷2=3,10÷2=5,∴k的值为3或5.故答案为:3或5.【点睛】本题主要考查了列代数式,数轴,本题是动点型题目,找出移动后甲乙距离变化的规律是解题的关键.。
第二章 整式的加减复习 [基础知识]
一、【本章基本概念】★☆▲ 1、______和______统称整式。
①单项式:由 与 的乘积..式子称为单项式。
单独一个数或一个字母也是单项式,如a ,5。
·单项式的系数:单式项里的 叫做单项式的系数。
·单项式的次数:单项式中 叫做单项式的次数。
②多项式:几个 的和叫做多项式。
其中,每个单项式叫做多项式的 ,不含字母的项叫
做 。
·多项式的次数:多项式里 的次数,叫做多项式的次数。
·多项式的命名:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:3n 4-2n 2+1是一个四次三项式。
2、同类项——必须同时具备的两个条件(缺一不可):
①所含的 相同;
②相同 也相同。
·合并同类项,就是把多项式中的同类项合并成一项。
方法:把各项的 相加,而 不变。
3、去括号法则
法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,
括号里各项都 符号;
法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,
括号里各项都 符号。
▲去括号法则的依据实际是 。
4、整式的加减
整式的加减的过程就是 。
如遇到括号,则先 ,再 ,合并到 为止。
5、本单元需要注意的几个问题
①整式(既单项式和多项式)中,分母一律不能含有字母。
②π不是字母,而是一个数字,
③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。
④去括号时,要特别注意括号前面的因数。
《去(添)括号法则[记法
]》
去括号、添括号,
符号变化最重要。
括号前面是正号, 里面各项保留好*。
括号前面是负号, 里面各项都变号
[*“各项保留好”指保留项的符号不变]
二、【概念基础练习】
1、在3222
112,3,1,,,,4,,43xy x x y m n x ab x x --+---+,π
2b 中,单项式有:
多项式有: 。
2、填一填
整
式 -ab
πr
2
2
32ab -
-a+b
2
4
53-+y x A 3b 2-2a 2b 2+b 3-7ab+5
系
数
次
数
项
3、一种商品每件a 元,按成本增加20%定出的价格是 ;后来因库存积压,又以原价的八五折出售,则现价是 元;每件还能盈利 元。
4、已知-7x 2y m 是7次单项式则m= 。
5、已知-5x m y 3与4x 3y n 能合并,则m n = 。
6、7-2xy -3x 2y 3+5x 3y 2z -9x 4y 3z 2是 次 项式,其中最高次项是 ,最高次项的系数是 ,常数项是 ,是按字母 作 幂排列。
7、-3a+3a=-3( ), 2 a -2a=2( ), -5 a -5a=-5( ), 4a + 4a= 4 ( ), 8、已知x -y=5,xy=3,则3xy -7x+7y= 。
9、已知A=3x+1,B=6x -3,则3A -B= 。
10、计算
①(a 3-2a 2+1)-2(3a 2-2a+2
1) ②x -2(1-2x+x 2)+3(-2+3x -x 2) 11、已知ab=3,a+b=4,求3ab -[2a - (2ab -2b)+3]的值。
12、若(x 2+ax -2y +7)―(bx 2―2x +9 y -1)的值与字母x 的取值无关,求a 、b 的值。