2015年全国高考文科数学试题及答案-湖南卷
- 格式:doc
- 大小:2.01 MB
- 文档页数:13
2015年普通高等学校招生全国统一考试(新 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷2015·新课标Ⅰ卷 第1页一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .22.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量错误!=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)3.已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A 。
错误! B.错误! C.错误! D 。
错误!5.已知椭圆E 的中心在坐标原点,离心率为错误!,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。
62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛7.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172B.错误! C .10 D .12 8.函数f (x )=cos (ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A 。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年普通高等学校招生全国统一考试湖南文科数学本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015湖南,文1)已知(1-i)2z=1+i(i为虚数单位),则复数z=()A.1+iB.1-iC.-1+iD.-1-i 答案:D解析:由已知得z=(1-i)2=-2i=-2i(1-i)(1+i)(1-i)=-2-2i=-1-i.2.(2015湖南,文2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6答案:B解析:依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第2,3,4,5组,因此,成绩在该区间上的运动员人数是4.3.(2015湖南,文3)设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:由x>1能推得x3>1,充分性成立.由x3>1得(x-1)(x2+x+1)>0,∵x2+x+1>0恒成立,∴x>1,∴“x>1”是“x3>1”的充要条件.故选C.4.(2015湖南,文4)若变量x,y满足约束条件x+y≥1,y-x≤1,x≤1,则z=2x-y的最小值为()A.-1B.0C.1D.2答案:A解析:画出满足约束条件的平面区域如图.作直线y=2x,平移直线y=2x,当x=0,y=1,即直线过点A(0,1)时,z取得最小值,此时z min=2×0-1=-1.故选A.5.(2015湖南,文5)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.67B.37C.89D.49答案:B解析:由题意得,输出的S 为数列1(2n -1)(2n +1)的前3项和,而1(2n -1)(2n +1)=112n -1-1,即S n =1 1-1=n .故当输入n=3时,S=S 3=3,故选B . 6.(2015湖南,文6)若双曲线x 2a 2−y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A. 73B.54C.43D.53答案:D解析:∵双曲线的渐近线方程为y=±b ax ,且过点(3,-4),∴-4=-b ×3,∴b a =43.∴离心率e= 1+ b 2= 1+ 4 =5,故选D .7.(2015湖南,文7)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( ) A. B.2C.2D.4答案:C解析:由已知1+2= ab ,可知a ,b 同号,且均大于0.由 =1a +2b ≥2 2ab,得ab ≥2 2.即当且仅当1=2,即b=2a 时等号成立,故选C .8.(2015湖南,文8)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数 答案:A解析:要使函数有意义,应满足 1+x >0,1-x >0,解得-1<x<1,即函数f (x )定义域为(-1,1),关于原点对称.此时f (-x )=ln(1-x )-ln(1+x )=-f (x ),所以f (x )为奇函数.又f (x )=ln 1+x 1-x=ln 21-x-1 ,由复合函数的单调性可知f (x )在(0,1)上是增函数.故选A .9.(2015湖南,文9)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|PA +PB +PC|的最大值为( ) A.6 B.7 C.8 D.9 答案:B解析:设坐标原点为O ,则PA +PB +PC =PO +OA +PO +OB +PO +OC =3PO +OB +(OA +OC ),由于AB ⊥BC ,所以AC 是圆的直径,因此OA +OC =0,于是|PA +PB +PC |=|3PO +OB |= (3PO +OB )2= 9|PO |2+6PO ·OB +|OB |2= 9×22+12-6OP ·OB= 37-6|OP ||OB |cos ∠POB= 37-12cos ∠POB ,故当∠POB=π时,cos ∠POB 取最小值-1,此时|PA +PB +PC |取最大值7.10.(2015湖南,文10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积原工件的体积()A.89πB.8 27πC.24(2-1)3D.8(2-1)3答案:A解析:由三视图可知该几何体是一个圆锥,其底面半径r=1,母线长l=3,所以其高h=l2-r2=32-12=22.故该圆锥的体积V=πr2h=π×12×22=22π.由题意可知,加工后的正方体是该圆锥的一个内接正方体,如图所示.正方体ABCD-EFGH的底面在圆锥的底面内,下底面中心与圆锥底面的圆心重合,上底面中心在圆锥的高线上,设正方体的棱长为x.在轴截面SMN中,由O1G∥ON可得,O1G=SO1,即22x=22-x22,x=22.所以正方体的体积为V1=2233=16227.所以该工件的利用率为V1=1622722π3=8.故选A.二、填空题:本大题共5小题,每小题5分,共25分.11.(2015湖南,文11)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=.答案:{1,2,3}解析:∁U B={2},A∪(∁U B)={1,2,3}.12.(2015湖南,文12)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,若曲线C的极坐标方程为ρ=2sin θ,则曲线C的直角坐标方程为.答案:x2+y2-2y=0解析:∵ρ=2sin θ,且ρ2=x2+y2,ρsin θ=y,∴ρ2=2ρsin θ,∴x2+y2=2y.∴曲线C的直线坐标方程为x2+y2-2y=0.13.(2015湖南,文13)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=.答案:2解析:如图所示,由题意知,圆心O到直线3x-4y+5=0的距离|OC|=3+(-4)=1,故圆的半径r=1cos60°=2.14.(2015湖南,文14)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是. 答案:(0,2)解析:函数f(x)的零点个数即为函数g(x)=|2x-2|=2x-2,x≥1,2-2x,x<1的图象与直线y=b的交点个数.如图,分别作出函数y=g(x)与直线y=a的图象,由图可知,当0<a<2时,直线y=a与y=g(x)有两个交点.所以a 的取值范围为(0,2).15.(2015湖南,文15)已知ω>0,在函数y=2sin ωx与y=2cos ωx的图象的交点中,距离最短的两个交点的距离为23,则ω=.答案:π解析:如图所示,在同一直角坐标系中,作出函数y=2sin ωx与y=2cos ωx的图象.A,B为符合条件的两交点.则Aπ4ω,2,B-3π4ω,-2,由|AB|=23,得πω+(22)2=23,解得πω=2,即ω=π2.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(2015湖南,文16)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.解:(1)所有可能的摸出结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为4=1,不中奖的概率为1-1=2>1.故这种说法不正确.17.(本小题满分12分)(2015湖南,文17)设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A.(1)证明:sin B=cos A;(2)若sin C-sin A cos B=3,且B为钝角,求A,B,C.解:(1)由a=b tan A及正弦定理,得sin A=a=sin A,所以sin B=cos A.(2)因为sin C-sin A cos B=sin[180°-(A+B)]-sin A cos B=sin(A+B)-sin A cos B=sin A cos B+cos A sin B-sin A cos B=cos A sin B,所以cos A sin B=3.由(1)sin B=cos A,因此sin2B=3.又B为钝角,所以sin B=32,故B=120°.由cos A=sin B=3知A=30°.从而C=180°-(A+B)=30°.综上所述,A=30°,B=120°,C=30°.18.(本小题满分12分)(2015湖南,文18)如图,直三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F-AEC 的体积. 解:(1)证明:如图,因为三棱柱ABC-A 1B 1C 1是直三棱柱,所以AE ⊥BB 1.又E 是正三角形ABC 的边BC 的中点,所以AE ⊥BC. 因此,AE ⊥平面B 1BCC 1.而AE ⊂平面AEF ,所以,平面AEF ⊥平面B 1BCC 1. (2)设AB 的中点为D ,连结A 1D ,CD. 因为△ABC 是正三角形,所以CD ⊥AB.又三棱柱ABC-A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角.由题设,∠CA 1D=45°,所以A 1D=CD= 3AB= 3.在Rt △AA 1D 中,AA 1= A 1D 2-AD 2= 3-1= 2,所以FC=1AA 1=2.故三棱锥F-AEC 的体积V=1S △AEC ·FC=1×3×2=6.19.(本小题满分13分)(2015湖南,文19)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n+2=3S n -S n+1+3,n ∈N *. (1)证明:a n+2=3a n ; (2)求S n .解:(1)由条件,对任意n ∈N *,有a n+2=3S n -S n+1+3,因而对任意n ∈N *,n ≥2,有a n+1=3S n-1-S n +3.两式相减,得a n+2-a n+1=3a n -a n+1,即a n+2=3a n ,n ≥2. 又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *,a n+2=3a n .(2)由(1)知,a n ≠0,所以an +2n=3,于是数列{a 2n-1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n-1=3n-1,a 2n =2×3n-1.于是S 2n =a 1+a 2+…+a 2n =(a 1+a 3+…+a 2n-1)+(a 2+a 4+…+a 2n )=(1+3+…+3n-1)+2(1+3+…+3n-1)=3(1+3+…+3n-1)=3(3n -1), 从而S 2n-1=S 2n -a 2n =3(3n -1)-2×3n-1=3(5×3n-2-1). 综上所述,S n = 32(5×3n -22-1),当n 是奇数,3(3n2-1),当n 是偶数. 20.(本小题满分13分)(2015湖南,文20)已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 22+x 2b2=1(a>b>0)的一个焦点.C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC 与BD同向. (1)求C 2的方程;(2)若|AC|=|BD|,求直线l 的斜率.解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1. ① 又C 1与C 2的公共弦的长为2 6,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为 ± 6,32,所以94a 2+6b2=1.②联立①,②得a 2=9,b 2=8,故C 2的方程为y 2+x 2=1. (2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因AC 与BD 同向,且|AC|=|BD|,所以AC =BD ,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4,③ 设直线l 的斜率为k ,则l 的方程为y=kx+1. 由 y =kx +1,x 2=4y ,得x 2-4kx-4=0,而x 1,x 2是这个方程的两根,所以x 1+x 2=4k ,x 1x 2=-4. ④由 y =kx +1,x 2+y 2=1得(9+8k 2)x 2+16kx-64=0,而x 3,x 4是这个方程的两根, 所以x 3+x 4=-16k9+8k2,x 3x 4=-649+8k2.⑤将④,⑤代入③,得16(k 2+1)=162k2(9+8k 2)2+4×649×8k2,即16(k 2+1)=162×9(k 2+1)(9+8k 2)2,所以(9+8k 2)2=16×9,解得k=± 6,即直线l 的斜率为± 64.21.(本小题满分13分)(2015湖南,文21)已知a>0,函数f (x )=a e x cos x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.(1)证明:数列{f (x n )}是等比数列;(2)若对一切n ∈N *,x n ≤|f (x n )|恒成立,求a 的取值范围. 解:(1)f'(x )=a e x cos x-a e x sin x= 2a e x cos x +π4.令f'(x )=0,由x ≥0,得x+π=m π-π, 即x=m π-3π,m ∈N *.而对于cos x +π4 ,当k ∈Z 时,若2k π-π2<x+π4<2k π+π2,即2k π-3π4<x<2k π+π4,则cos x +π4>0;若2k π+π2<x+π4<2k π+3π2,即2k π+π4<x<2k π+5π4,则cos x +π4<0.因此,在区间 (m -1)π,mπ-3π 与 mπ-3π,mπ+π 上,f'(x )的符号总相反,于是当x=m π-3π(m ∈N *)时,f (x )取得极值,所以x n =n π-3π(n ∈N *).此时,f (x n )=a e nπ-34πcos nπ-3π =(-1)n+1 2a e nπ-34π.易知f (x n )≠0,而f (x n +1)n )=(-1)n +2 2a 2e (n +1)π-34π(-1)n +1 22a enπ-34π=-e π是常数,故数列{f (x n )}是首项为f (x 1)=2a e π4,公比为-e π的等比数列.(2)对一切n ∈N *,x n ≤|f (x n )|恒成立,即n π-3π4≤2a 2enπ-34π恒成立,亦即2a≤enπ-34πnπ-3π4恒成立(因为a>0).设g (t )=e t (t>0),则g'(t )=e t (t -1)t 2.令g'(t )=0得t=1.当0<t<1时,g'(t )<0,所以g (t )在区间(0,1)上单调递减.当t>1时,g'(t )>0,所以g (t )在区间(1,+∞)上单调递增.因为x 1∈(0,1),且当n ≥2时,x n ∈(1,+∞),x n <x n+1,所以[g (x n )]min =min{g (x 1),g (x 2)}=min g π ,g 5π =g π =4e π4,因此,x n ≤{f (x n )}恒成立,当且仅当 2≤4e π4.解得a ≥2πe -π4,故a 的取值范围是2πe -π4,+∞ .。
2015年普通高等学校招生全国统一考试(新课标1卷)文数一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A ) 5 (B )4 (C )3 (D )2 2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( ) (A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= (A )74- (B )54- (C )34- (D )14-11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2 (C )4 (D )812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4 二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = . 14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a = .15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 . 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且a = 求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -.19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费x =49时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()0,1A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=,其中O 为坐标原点,求MN . 21. (本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22. (本小题满分10分)选修4-1:几何证明选讲 如图AB 是O 直径,AC 是O 切线,BC 交O 与点E .(I )若D 为AC 中点,证明:DE 是O 切线;(II )若OA = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、 选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D (9)C (10)A (11)B (12)C二、 填空题(13)6 (14)1 (15)4 (16)三、 解答题17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac+-=14 ……6分(II )由(I )知2b =2ac.因为B=o90,由勾股定理得222a c =b +.故22a c =2ac +,的所以△ABC 的面积为1. ……12分 18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD. 因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o120 ,可得AG=GC=2x ,GB=GD=2x .因为AE ⊥EC,所以在Rt △AEC 中,可的EG=2x .由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=2x .由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·3x =.故x =2 ……9分从而可得所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为……12分 19、解:(I )由散点图可以判断,y 关于年宣传费x 的回归方程式类型.(II)令w =,先建立y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()iii i i w w y y w w ==--==-∑∑, 56368 6.8100.6c y dw =-=-⨯=,所以y 关于w 的线性回归方程为y=100.668w +,因此y 关于x 的回归方程为y 100.6=+(Ⅲ)(i )由(II)知,当x =49时,年销售量y 的预报值y 100.6=+,年利润z 的预报值z=576.60.24966.32⨯-= ……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12xx +. 13.6=6.82=,即x =46.24时,z 取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分 20、解:(I )由题设,可知直线l 的方程为1y kx =+. 因为l 与C 1.解得k所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k ++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++()24181k k k +=++.由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l上,所以2MN =. ……12分 21、解:(I )()f x 的定义域为()()20,,2(0)xaf x e x x'+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点; 当0a 〉时,因为2xe 单调递增,ax-单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点. ……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0; 当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x .由于02020x a ex -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a n a≥+. ……12分 22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB. 在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE. 连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o90,所以∠DEC+∠OEB=o90,故∠OED=o90,DE 是O 的切线.……5分(II )设CE=1,AE=x ,由已知得AB=由射影定理可得,2AE CE BE =⋅,所以2x =42120x x +-=.可得x =ACB=60o.……10分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ=.故12ρρ-=MN =由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分(II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +.由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知2(1)iz-=1+i【i为虚数单位】,则复数z=( )A、1+iB、1-iC、-1+iD、-1-i 【答案】D【解析】试题分析:.由题根据所给复数式子进行化简即可得到复数z的代数式;由题22(1)(1)22(1i)1,1112i i i ii z iz i i-----=+∴====--++,故选D.考点:复数的运算2、在一次马拉松比赛中,35名运动员的成绩【单位:分钟】如图I所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B考点:茎叶图3、设x∈R,则“x>1”是“2x>1”的【】A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】C【解析】试题分析:.由题根据明天的关系进行发现即可得到所给两个明天的关系;由题易知“x>1”可以推得“2x>1”,“2x>1”可以得到“x>1”,所以“x>1”是“2x>1”的充要条件,故选C.考点:命题与条件4、若变量x、y满足约束条件111x yy xx+≥⎧⎪-≤⎨⎪≤⎩,则z=2x-y的最小值为( )A、-1B、0C、1D、2 【答案】A考点:简单的线性规划5、执行如图2所示的程序框图,如果输入n=3,中输入的S=( )A、67B、37C、89D、49【答案】B考点:程序框图6、若双曲线22221x ya b-=的一条渐近线经过点【3,-4】,则此双曲线的离心率为A B、54C、43D、53【答案】D【解析】试题分析:由题利用双曲线的渐近线方程经过的点,得到a、b关系式,然后求出双曲线的离心率即可、因为双曲线22221x ya b-=的一条渐近线经过点【3,-4】,2225349163c b a c a a e a ∴=∴-=∴=,(),=. 故选D.考点:双曲线的简单性质7、若实数a ,b 满足12a b+=,则ab 的最小值为( )A B 、2 C 、 D 、4 【答案】C考点:基本不等式8、设函数f 【x 】=ln 【1+x 】-ln 【1-x 】,则f 【x 】是( )A 、奇函数,且在【0,1】上是增函数B 、奇函数,且在【0,1】上是减函数C 、偶函数,且在【0,1】上是增函数D 、偶函数,且在【0,1】上是减函数 【答案】A 【解析】试题分析:求出函数的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可、 函数f 【x 】=ln 【1+x 】-ln 【1-x 】,函数的定义域为【-1,1】,函数f 【-x 】=ln 【1-x 】-ln 【1+x 】=-[ln 【1+x 】-ln 【1-x 】]=-f 【x 】,所以函数是奇函数、()2111'111f x x x x =+=+-- ,已知在【0,1】上()'0f x > ,所以f(x)在(0,1)上单调递增,故选A.考点:利用导数研究函数的性质9、已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为【2,0】,则PA PB PC ++ 的最大值为A 、6B 、7C 、8D 、9 【答案】B【解析】试题分析:由题根据所给条件不难得到该圆221x y +=是一AC 位直径的圆,然后根据所给条件结合向量的几何关系不难得到24PA PB PC PO PB PB ++++==,易知当B 为【-1,0】时取得最大值.由题意,AC 为直径,所以24PA PB PC PO PB PB ++++== ,已知B 为【-1,0】时,4PB +取得最大值7,故选B.考点:直线与圆的位置关系、平面向量的运算性质10、某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为【材料利用率=新工件的体积/原工件的体积】A 、89πB 、827πC D【答案】A考点:三视图、基本不等式求最值、圆锥的内接长方体 二、填空题:本大题共5小题,每小题5分,共25分. 11、已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.考点:集合的运算12、在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____. 【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可、曲线C 的极坐标方程为222sn sn ρθρρθ=∴=, ,它的直角坐标方程为222x y y += ,2211x y ∴+-=(). 故答案为:2211x y +-=()、考点:圆的极坐标方程13. 若直线3x-4y+5=0与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=【O 为坐标原点】,则r=_____. 【答案】 【解析】试题分析:直线3x-4y+5=0与圆2220x y r r +=(>)交于A 、B 两点,∠AOB=120°,则△AOB 为顶角为120°的等腰三角形,顶点【圆心】到直线3x-4y+5=0的距离为12r ,代入点到直线距离公式,可构造关于r 的方程,解方程可得答案、如图直线3x-4y+5=0与圆2220x y r r +=(>)交于A 、B 两点,O 为坐标原点,且∠AOB=120°,则圆心【0,0】到直线3x-4y+5=0的距离为12r 12r r =∴,=2 .故答案为2.考点:直线与圆的位置关系14、若函数f 【x 】=| 2x-2 |-b 有两个零点,则实数b 的取值范围是_____. 【答案】0<b <2考点:函数零点15、已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为ω =_____. 【答案】2πω=考点:三角函数图像与性质三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16. 【本小题满分12分】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.【I 】用球的标号列出所有可能的摸出结果;【II 】有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.【答案】【I 】111211122122{,},{,},{,},{,},{,},{,},A a A a A b A b A a A a21221212{,},{,},{,},{,},{,},{,},A b A b B a B a B b B b (II) 说法不正确;【解析】试题分析:【I 】利用列举法列出所有可能的结果即可;(II)在【I 】中摸出的2个球都是红球的结果数,然后利用古典概率公式计算即可得到其对应的概率,什么镇江概率大于不中奖概率是错误的;试题解析:【I 】所有可能的摸出结果是:111211122122{,},{,},{,},{,},{,},{,},A a A a A b A b A a A a21221212{,},{,},{,},{,},{,},{,},A b A b B a B a B b B b【II 】不正确,理由如下:由【I 】知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为11122122{,},{,},{,},{,},A a A a A a A a 共4种,所以中奖的概率为41123=,不中奖的概率为1211333-=>,故这种说法不正确.考点:概率统计17. 【本小题满分12分】设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. 【I 】证明:sin cos B A =; (II)若3sin sin cos 4C A B -=,且B 为锐角,求,,A B C . 【答案】【I 】略;(II) 30,120,30.A B C === 【解析】试题分析:【I 】由题根据正弦定理结合所给已知条件可得sin sin cos sin A AA B=,所以sin cos B A = ;(II)根据两角和公式化简所给条件可得3sin sin cos cos sin 4C A B A B -==,可得23sin 4B =,结合所给角B 的范围可得角B,进而可得角A,由三角形内角和可得角C.试题解析:【I 】由tan a b A =及正弦定理,得sin sin cos sin A a AA b B==,所以sin cos B A =. 【II 】因为sin sin cos sin[180()]sin cos C A B A B A B -=-+-sin()sin cos sin cos cos sin sin cos cos sin A B A B A B A B A B A B =+-=+-=3cos sin 4A B ∴=有【I】知sin cos B A =,因此23sin 4B =,又B为钝角,所以sin B =,故120B =,由cos sin 2A B ==知30A =,从而180()30C A B =-+=, 综上所述,30,120,30,A B C ===考点:正弦定理及其运用18. 【本小题满分12分】如图4,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点.【I 】证明:平面AEF ⊥平面11B BCC ;【II 】若直线1AC 与平面11A ABB 所成的角为45,求三棱锥F AEC -的体积.【答案】【I 】略;(II)12. 【解析】试题分析:【I 】首先证明1AE BB ⊥,AE BC ⊥,得到AE ⊥平面11B BCC ,利用面面垂直的判定与性质定理可得平面AEF ⊥平面11B BCC ; (II)设AB 的中点为D,证明直线1CA D ∠直线1AC 与平面11A ABB 所成的角,由题设知145CA D ∠=,求出棱锥的高与底面面积即可求解几何体的体积.试题解析:【I 】如图,因为三棱柱111ABC A B C -是直三棱柱, 所以1AE BB ⊥,又E 是正三角形ABC 的边BC 的中点, 所以AE BC ⊥,因此AE ⊥平面11B BCC ,而AE ⊂平面AEF , 所以平面AEF ⊥平面11B BCC .【II 】设AB 的中点为D ,连接1,A D CD ,因为ABC ∆是正三角形,所以CD AB ⊥,又三棱柱111ABC A B C -是直三棱柱,所以1CD AA ⊥,因此CD ⊥平面11A AB B ,于是1CA D ∠直线1AC 与平面11A ABB 所成的角,由题设知145CA D ∠=,所以1A D CD=3AB == 在1Rt AA D ∆中,1AA===1122FC AA ==故三棱锥F AEC -的体积11332AEC V S FC =⨯==.考点:柱体、椎体、台体的体积;面面垂直的判定与性质19. 【本小题满分13分】设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,【I 】证明:23n n a a +=; 【II 】求n S .【答案】【I 】略;(II) 2*2*23(531),(21,)23(31),(2,)2n n nn k k N S n k k N -⎧⨯-=+∈⎪⎪=⎨⎪-=∈⎪⎩【解析】试题分析:【I 】当*,2n N n ∈≥时,由题可得23n n a S +=*13,()n S n N +-+∈,113n n a S +-=*3,()n S n N -+∈,两式子相减可得2113n n n n a a a a +++-=-,即23,(2)n n a a n +=≥,然后验证当n=1时,命题成立即可; (II)通过求解数列{}n a 的奇数项与偶数项的和即可得到其对应前n 项和的通项公式.试题解析:【I 】由条件,对任意*n N ∈,有23n n a S +=*13,()n S n N +-+∈, 因而对任意*,2n N n ∈≥,有113n n a S +-=*3,()n S n N -+∈, 两式相减,得2113n n n n a a a a +++-=-,即23,(2)n n a a n +=≥, 又121,2a a ==,所以3121121333()33a S S a a a a =-+=-++=, 故对一切*n N ∈,23n n a a +=. 【II 】由【I 】知,0n a ≠,所以23n na a +=,于是数列21{}n a -是首项11a =,公比为3的等比数列,数列2{}n a 是首项12a =,公比为3的等比数列,所以112123,23n n n n a a ---==⨯, 于是21221321242()()n n n n S a a a a a a a a a -=+++=+++++++1113(31)(133)2(133)3(133)2nn n n ----=+++++=++= 从而1221223(31)323(531)22n n n n n n S S a ----=-=-⨯=⨯-, 综上所述,2*2*23(531),(21,)23(31),(2,)2n n nn k k N S n k k N -⎧⨯-=+∈⎪⎪=⎨⎪-=∈⎪⎩.考点:数列递推关系、数列求和20.【本小题满分13分】已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为过点F 的直线l 与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC 与BD 同向. 【I 】求2C 的方程;【II 】若AC BD =,求直线l 的斜率.【答案】【I 】22198y x += ;(II) . 【解析】试题分析:【I 】由题通过F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,可得221a b -=,根据1C 与2C的公共弦长为1C 与2C 都关于y 轴对称可得229614a b+=,然后得到对应曲线方程即可; (II) 设11223344(,),(,),(,),(,),A x y B x y C x y D x y 根据AC BD =,可得2234341212()4()4x x x x x x x x +-=+-,设直线l 的斜率为k ,则l 的方程为1y kx =+,联立直线与抛物线方程、直线与椭圆方程、利用韦达定理进行计算即可得到结果.试题解析:【I 】由21:4C x y =知其焦点F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,所以221a b -= ①; 又1C 与2C的公共弦长为1C 与2C 都关于y 轴对称,且1C 的方程为21:4C x y =,由此易知1C 与2C的公共点的坐标为3()2,229614a b ∴+= ②, 联立①②得229,8a b ==,故2C 的方程为22198y x +=. 【II 】如图,设11223344(,),(,),(,),(,),A x y B x y C x y D x y因AC 与BD 同向,且AC BD =,所以AC BD =,从而3142x x x x -=-,即3412x x x x -=-,于是2234341212()4()4x x x x x x x x +-=+- ③设直线l 的斜率为k ,则l 的方程为1y kx =+,由214y kx x y =+⎧⎨=⎩得2440x kx --=,由12,x x 是这个方程的两根,12124,4x x k x x ∴+==-④ 由221189y kx x y =+⎧⎪⎨+=⎪⎩得22(98)16640k x kx ++-=,而34,x x 是这个方程的两根,3434221664,9898k x x x x k k +=-=-++, ⑤ 将④、⑤代入③,得2322221646416(1)(98)98k k k k ⨯+=+++.即22222169(1)16(1)(98)k k k ⨯++=+ 所以22(98)169k +=⨯,解得4k =±,即直线l的斜率为4± 考点:直线与圆锥曲线的位置关系;椭圆的性质21. 【本小题满分13分】函数2()cos ([0,)f x ae x x =∈+∞,记n x 为()f x 的从小到大的第*()n n N ∈个极值点.【I 】证明:数列{()}n f x 是等比数列;【II 】若对一切*,()n n n N x f x ∈≤恒成立,求a 的取值范围.【答案】【I 】略;(II) 2[,)4e π-+∞【解析】试题分析:【I】由题()cos()4x f x x π'=+,令()0f x '= ,求出函数的极值点,根据等比数列定义即可得到结果;(II)由题问题等价于3434n ea n ππππ-≤-恒成立问题,设()(0)te g t t t =>,然后运用导数知识得到2mi n 1254[()]min[(),()]min[(),()]()444n g x g x g x g g g e πππππ====,所以24e a ππ≤,求得2a π-≥,得到a 的取值范围;试题解析:【I】()cos sin cos()4x xx f x ae x ae x x π'=-=+令()0f x '=,由0x ≥,得42x m πππ+=-,即*3,4x m m N ππ=-∈, 而对于cos()4x π+,当k Z ∈时,若22242k x k πππππ-<+<+,即32244k x k ππππ-<<+,则cos()04x π+>;若322242k x k πππππ+<+<+,即52244k x k ππππ+<<+,则cos()04x π+<;因此,在区间3((1),)4m m πππ--与3(,)44m m ππππ-+上,()f x '的符号总相反,于是当*3,4x m m N ππ=-∈时,()f x 取得极值,所以*3,4n x n n N ππ=-∈,此时,331443()cos()(1)4n n n n f x aen ππππππ--+=-=-,易知()0n f x ≠,而3(1)241(1)()()2n n n n f x e f x πππ+-++-==-是常数, 故数列{()}n f x是首项为41()f x ae π=,公比为e π-的等比数列.【II 】对一切*,()n n n N x f x ∈≤恒成立,即34342n n aeππππ--≤恒成立,亦即3434n e n ππππ-≤-恒成立,设()(0)t e g t t t =>,则2(1)()t e t g t t -'=,令()0g t '=得1t =,当01t <<时,()0g t '<,所以()g t 在区间(0,1)上单调递减; 当1t >时,()0g t '>,所以()g t 在区间(1,)+∞上单调递增; 因为(0,1)n x ∈,且当2n ≥时,1(1,),,n n n x x x +∈+∞<所以2min1254[()]min[(),()]min[(),()]()444n g x g x g x g g g e πππππ====因此,*,()n n n N x f x ∈≤24e ππ≤,解得2a π-≥, 故实数a的取值范围是2,)π-+∞.考点:恒成立问题;等比数列的性质。
2015年全国统一高考数学试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解.解答:解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)考点:平面向量的坐标运算.专题:平面向量及应用.分析:顺序求出有向线段,然后由=求之.解答:解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.点评:本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.3.(5分)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由已知等式变形,然后利用复数代数形式的乘除运算化简求得z﹣1,进一步求得z.解答:解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.点评:本题考查复数代数形式的乘除运算,是基础的计算题.4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.解答:解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C点评:本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题.5.(5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3B.6C.9D.12考点:圆锥曲线的综合;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.解答:解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以a(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.点评:本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据圆锥的体积公式计算出对应的体积即可.解答:解:设圆锥的底面半径为r,则×2×3r=8,解得r=,故米堆的体积为××3×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.点评:本题主要考查椎体的体积的计算,比较基础.7.(5分)已知{a n}是公差为1的等差数列;S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式及其前n项和公式即可得出.解答:解:∵{a n}是公差为1的等差数列,S8=4S4,∴=4×(4a1+),解得a1=.则a10==.故选:B.点评:本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z考点:余弦函数的单调性.专题:三角函数的图像与性质.分析:由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.解答:解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8考点:程序框图.专题:算法和程序框图.分析:由题意可得,算法的功能是求S=1﹣﹣≤t 时n的最小值,由此可得结论.解答:解:由程序框图知:算法的功能是求S=1﹣﹣≤t 时n的最小值,再根据t=0.01,可得当n=6时,S=1﹣﹣=>0.01,而当n=7时,S=1﹣﹣=≤0.01,故输出的n值为7,故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题.10.(5分)(2015春•河南校级月考)已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=()A.﹣B.﹣C.﹣D.﹣考点:分段函数的应用;函数的零点.专题:函数的性质及应用.分析:由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.解答:解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.点评:本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8考点:由三视图求面积、体积.专题:立体几何.分析:通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.解答:解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.点评:本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015春•河南校级月考)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1 B.1C.2D.4考点:函数的图象与图象变化.专题:开放型;函数的性质及应用.分析:先求出与y=2x+a的反函数的解析式,再由题意f(x)的图象与y=2x+a的反函数的图象关于原点对称,继而求出函数f(x)的解析式,问题得以解决.解答:解:∵与y=2x+a的图象关于y=x对称的图象是y=2x+a的反函数,x=log2y﹣a(y>0),即g(x)=log2x﹣a,(x>0).∵函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,∴f(x)=﹣g(﹣x)=﹣log2(﹣x)+a,x<0,∵f(﹣2)+f(﹣4)=1,∴﹣log22+a﹣log24+a=1,解得,a=2,故选:C.点评:本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法,属于基础题二、本大题共4小题,每小题5分.13.(5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.考点:等比数列的前n项和;等比关系的确定.专题:计算题;等差数列与等比数列.分析:由a n+1=2a n,结合等比数列的定义可知数列{a n}是a1=2为首项,以2为公比的等比数列,代入等比数列的求和公式即可求解.解答:解:∵a n+1=2a n,∴,∵,a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:6点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,解题的关键是熟练掌握基本公式.14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=1.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出函数的导数,利用切线的方程经过的点求解即可.解答:解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.点评:本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.(5分)若x,y满足约束条件,则z=3x+y的最大值为4.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(1,1)此时z的最大值为z=3×1+1=4,故答案为:4.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.考点:双曲线的简单性质.专题:计算题;开放型;圆锥曲线的定义、性质与方程.分析:利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.解答:解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2 ≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.点评:本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.(II)利用(I)及勾股定理可得c,再利用三角形面积计算公式即可得出.解答:解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=2ac,解得a=c=.∴S△ABC==1.点评:本题考查了正弦定理余弦定理、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系与距离.分析:(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;(Ⅱ)根据三棱锥的条件公式,进行计算即可.解答:证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵AE⊥EC,∴△EBG为直角三角形,则BE=x,∵三棱锥E﹣ACD的体积V===,解得x=2,从而得AE=EC=ED=,∴△EAC的面积为3,∴△EAD的面积和△ECD的面积均为,故该三棱锥的侧面积为3+2.点评:本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i ﹣)(y i ﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.考点:线性回归方程.专题:概率与统计.分析:(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.解答:解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w 的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,年利润的预报值最大.点评:本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.考点:直线与圆的位置关系;平面向量数量积的运算.专题:开放型;直线与圆.分析:(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.解答:(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由=1,解得:k1=,k2=.故当<k<,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,可得(1+k2)x2﹣4(k+1)x+7=0,∴x1+x2=,x1•x2=,∴y1•y2=(kx1+1)(kx2+1)=,由•=x1•x2+y1•y2==12,解得k=1,故直线l的方程为y=x+1,即x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.点评:本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.21.(12分)(2015春•河南校级月考)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;导数的运算.专题:开放型;导数的综合应用.分析:(Ⅰ)先求导,在分类讨论,当a≤0时,当a>0时,根据零点存在定理,即可求出;(Ⅱ)设导函数f′(x)在(0,+∞)上的唯一零点为x0,根据函数f(x)的单调性得到函数的最小值f(x0),只要最小值大于2a+aln,问题得以证明.解答:解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,当b满足0<b<时,且b<,f(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.点评:本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.考点:圆的切线的判定定理的证明.专题:直线与圆.分析:(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.解答:解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°点评:本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.五、【选修4-4:坐标系与参数方程】23.(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.解答:解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入ρ2﹣3ρ+4=0,求得ρ1=2,ρ2=,∴|MN|=ρ1﹣ρ2=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=.点评:本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a 的取值范围.解答:解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
高中数学学习材料(灿若寒星精心整理制作)2015年普通高等学校招生全国统一考试数学文试题(湖南卷,含解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知2(1)iz-=1+i(i为虚数单位),则复数z=( )A、1+iB、1-iC、-1+iD、-1-i 【答案】D【解析】试题分析:.由题根据所给复数式子进行化简即可得到复数z的代数式;由题22(1)(1)22(1i)1,1112i i i ii z iz i i-----=+∴====--++,故选D.考点:复数的运算2、在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B考点:茎叶图3、设x∈R,则“x>1”是“2x>1”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】C【解析】试题分析:.由题根据明天的关系进行发现即可得到所给两个明天的关系;由题易知“x>1”可以推得“2x>1”,“2x>1”可以得到“x>1”,所以“x>1”是“2x>1”的充要条件,故选C.考点:命题与条件4、若变量x、y满足约束条件111x yy xx+≥⎧⎪-≤⎨⎪≤⎩,则z=2x-y的最小值为( )A、-1B、0C、1D、2 【答案】A考点:简单的线性规划5、执行如图2所示的程序框图,如果输入n=3,中输入的S=( )A、67B、37C、89D、49【答案】B考点:程序框图6、若双曲线22221x ya b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为A、73B、54C、43D、53【答案】D【解析】试题分析:由题利用双曲线的渐近线方程经过的点,得到a、b关系式,然后求出双曲线的离心率即可.因为双曲线22221x ya b-=的一条渐近线经过点(3,-4),2225349163cb ac a a ea∴=∴-=∴=,(),=.故选D.考点:双曲线的简单性质7、若实数a,b满足12aba b+=,则ab的最小值为( )A、2B、2C、22D、4【答案】C考点:基本不等式8、设函数f(x)=ln (1+x)-ln(1-x),则f(x)是( )A、奇函数,且在(0,1)上是增函数B、奇函数,且在(0,1)上是减函数C、偶函数,且在(0,1)上是增函数D、偶函数,且在(0,1)上是减函数【答案】A【解析】试题分析:求出函数的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.函数f(x)=ln(1+x)-ln(1-x),函数的定义域为(-1,1),函数f(-x)=ln(1-x)-ln(1+x)=-[ln(1+x )-ln (1-x )]=-f (x ),所以函数是奇函数.()2111'111f x x x x=+=+-- ,已知在(0,1)上()'0f x > ,所以f(x)在(0,1)上单调递增,故选A. 考点:利用导数研究函数的性质9、已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++ 的最大值为A 、6B 、7C 、8D 、9 【答案】B 【解析】试题分析:由题根据所给条件不难得到该圆221x y +=是一AC 位直径的圆,然后根据所给条件结合向量的几何关系不难得到24PA PB PC PO PB PB ++++==,易知当B 为(-1,0)时取得最大值. 由题意,AC 为直径,所以24PA PB PC PO PB PB ++++== ,已知B 为(-1,0)时,4PB +取得最大值7,故选B.考点:直线与圆的位置关系、平面向量的运算性质10、某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A 、89πB 、827πC 、224(21)π-D 、28(21)π-【答案】A考点:三视图、基本不等式求最值、圆锥的内接长方体 二、填空题:本大题共5小题,每小题5分,共25分. 11、已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.考点:集合的运算12、在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可.曲线C 的极坐标方程为222sn sn ρθρρθ=∴=,,它的直角坐标方程为222x y y += , 2211x y ∴+-=(). 故答案为:2211x y +-=(). 考点:圆的极坐标方程13. 若直线3x-4y+5=0与圆()2220x y r r +=>相交于A,B 两点,且120oAOB ∠=(O 为坐标原点),则r=_____. 【答案】 【解析】试题分析:直线3x-4y+5=0与圆2220x y r r +=(>)交于A 、B 两点,∠AOB=120°,则△AOB 为顶角为120°的等腰三角形,顶点(圆心)到直线3x-4y+5=0的距离为12r ,代入点到直线距离公式,可构造关于r 的方程,解方程可得答案.如图直线3x-4y+5=0与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x-4y+5=0的距离为12r ,2251234r r =∴+,=2 .故答案为2.考点:直线与圆的位置关系14、若函数f (x )=| 2x -2 |-b 有两个零点,则实数b 的取值范围是_____. 【答案】0<b <2考点:函数零点15、已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____. 【答案】2πω=考点:三角函数图像与性质三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015 年湖南省高考数学试卷(文科)一、选择题(每题 5 分,共50 分)1.(5 分)(2015?湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣ 1+i D.﹣ 1﹣ i【剖析】由条件利用两个复数代数形式的乘除法法例,求得z 的值.【解答】解:∵已知=1+i(i为虚数单位),∴ z===﹣1﹣i,应选: D.2.( 5 分)( 2015?湖南)在一次马拉松竞赛中, 35 名运动员的成绩(单位:分钟)的茎叶图以下图.若将运动员按成绩由好到差编为1﹣35,再用系统抽样方法从中抽取 7 人,则此中成绩在区间 [ 139,151] 上的运动员人数是()A.3B.4C.5D.6【剖析】对各数据分层为三个区间,而后依据系统抽样方法从中抽取7 人,获得抽取比率为,而后各层依据此比率抽取.【解答】解:由已知,将个数据分为三个层次是[ 130,138] ,[ 139,151] ,[ 152,153] ,依据系统抽样方法从中抽取7 人,获得抽取比率为,因此成绩在区间 [ 139,151] 中共有 20 名运动员,抽取人数为20×;=4应选: B.3>1”的()3.(5 分)(2015?湖南)设 x∈R,则“x>1“是“xA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件【剖析】利用充要条件的判断方法判断选项即可.3【解答】解:因为 x∈R,“x>1“? “x>1”,3因此“x>1“是“x> 1”的充要条件.应选: C.4.(5 分)(2015?湖南)若变量 x, y 知足拘束条件,则z=2x﹣y的最小值为()A.﹣ 1B.0C.1D.2【剖析】由拘束条件作出可行域,由图获得最优解,求出最优解的坐标,数形联合得答案.【解答】解:由拘束条件作出可行域如图,由图可知,最优解为A,联立,解得 A(0,1).∴z=2x﹣y 的最小值为 2×0﹣1=﹣ 1.应选: A.5.(5 分)(2015?湖南)履行以下图的程序框图,假如输入n=3,则输出的S=()A.B.C.D.【剖析】列出循环过程中 S 与 i 的数值,知足判断框的条件即可结束循环.【解答】解:判断前 i=1,n=3, s=0,第 1 次循环, S=,i=2,第 2 次循环, S=,i=3,第 3 次循环, S=,i=4,此时,i>n,知足判断框的条件,结束循环,输出结果:S===应选: B.6.(5 分)(2015?湖南)若双曲线﹣=1 的一条渐近线经过点(3,﹣ 4),则此双曲线的离心率为()A.B.C.D.【剖析】利用双曲线的渐近线方程经过的点,获得a、b关系式,而后求出双曲线的离心率即可.【解答】解:双曲线﹣=1 的一条渐近线经过点(3,﹣4),可得3b=4a,即9(c2﹣a2) =16a2,解得=.应选: D..(分)(2015?湖南)若实数,知足+=,则ab的最小值为()7 5 a bA.B.2C.2D.4【剖析】由 +=,可判断>,>,而后利用基础不等式即a 0b 0可求解 ab 的最小值【解答】解:∵+ =,∴a> 0,b> 0,∵(当且仅当b=2a 时取等),∴,解可得,ab,即ab 的最小值为2,应选: C.8.( 5 分)( 2015?湖南)设函数 f( x)=ln(1+x)﹣ln(1﹣x),则A.奇函数,且在( 0,1)上是增函数f( x)是()B.奇函数,且在(0,1)上是减函数C.偶函数,且在( 0,1)上是增函数D.偶函数,且在( 0,1)上是减函数【剖析】求出好的定义域,判断函数的奇偶性,以及函数的单一性推出结果即可.【解答】解:函数 f (x) =ln( 1+x)﹣ ln(1﹣x),函数的定义域为(﹣ 1, 1),函数 f (﹣ x)=ln(1﹣x)﹣ ln( 1+x)=﹣[ ln (1+x)﹣ ln( 1﹣ x)] =﹣f (x),所以函数是奇函数.清除C,D,正确结果在A,B,只要判断特别值的大小,即可推出选项,x=0 时,f( 0) =0;x= 时, f() =ln( 1+ )﹣ ln(1﹣)=ln3>1,明显 f( 0)< f(),函数是增函数,因此 B 错误, A 正确.应选: A..(5分)(湖南)已知,,在圆2+y2上运动,且⊥,若点P92015? A B C x =1AB BC 的坐标为( 2, 0),则 ||的最大值为()A.6B.7C.8D.9【剖析】由题意, AC为直径,因此 ||=|2+| .B 为(﹣ 1,0)时,| 2+| ≤7,即可得出结论.【解答】解:由题意, AC为直径,因此 ||=|2+|因此 B 为(﹣ 1,0)时, | 2+ |≤7.因此 || 的最大值为 7.另解:设 B(cosα, sin α),| 2+| =| 2 (﹣ 2 , 0 ) + ( cosα﹣ 2 , sin α) | =| ( cosα﹣ 6 , sin α)| ==,当 cosα=﹣1 时, B 为(﹣ 1,0),获得最大值7.应选: B.10.( 5 分)(2015?湖南)某工件的三视图以下图,现将该工件经过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的新工件的体积一个面内,则原工件资料的利用率为(资料利用率=)()原工件的体积A.B.C.D.【剖析】由题意,原资料对应的几何体是圆锥,其内接正方体是加工的新工件,求出它们的体积,正方体的体积与圆锥的体积比为所求.【解答】解:由题意,由工件的三视图获得原资料是圆锥,底面是直径为2的圆,母线长为 3,因此圆锥的高为2,圆锥是体积为;其内接正方体的棱长为x,则,解得x=,因此正方体的体积为,新工件的体积因此原工件资料的利用率为:原工件的体积=;应选: A.二、填空题(本大题共 5 小题,每题 5 分,共 25 分)11.( 5 分)( 2015?湖南)已知会合 U={ 1,2,3,4} ,A={ 1,3} ,B={ 1,3,4} ,则 A∪( ?U B)= { 1,2,3} .【剖析】第一求出会合 B 的补集,而后再与会合 A 取并集.【解答】解:会合 U={ 1,2,3,4} , A={ 1,3} , B={ 1, 3,4} ,因此 ?U B={ 2} ,因此 A∪( ?U B)={ 1,2,3} .故答案为: { 1, 2,3} .12.(5 分)(2015?湖南)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,若曲线C 的极坐标方程为ρ=2sin,θ则曲线C 的直角坐标方程为 x2+(y﹣ 1)2=1 .【剖析】直接利用极坐标与直角坐标互化,求解即可.2【解答】解:曲线 C 的极坐标方程为ρ=2sn,θ即ρ=2ρ sn,θ它的直角坐标方程为: x2+y2=2y,即 x2+(y﹣1)2=1.故答案为: x2+( y﹣ 1)2=1.13.( 5 分)(2015?湖南)若直线 3x﹣4y+5=0 与圆 x2+y2=r2(r> 0)订交于 A,B两点,且∠ AOB=120°,(O 为坐标原点),则 r= 2.【剖析】若直线 3x﹣4y+5=0 与圆 x2+y2=r2( r>0)交于 A、B 两点,∠AOB=120°,则△ AOB为顶角为 120°的等腰三角形,极点(圆心)到直线3x﹣ 4y+5=0 的距离 d= r,代入点到直线距离公式,可结构对于r 的方程,解方程可得答案.【解答】解:若直线 3x﹣4y+5=0 与圆 x2+y2=r2(r> 0)交于 A、 B 两点, O 为坐标原点,且∠ AOB=120°,则圆心( 0, 0)到直线3x﹣4y+5=0 的距离d=rcos= r ,即= r,解得 r=2,故答案为: 2.14.( 5 分)( 2015?湖南)已知函数 f(x)=| 2x﹣ 2| ﹣b 有两个零点,则实数b 的取值范围是0<b<2.【剖析】由函数 f( x) =| 2x﹣2| ﹣b 有两个零点,可得 | 2x﹣ 2| =b 有两个零点,进而可得函数 y=| 2x﹣2| 函数 y=b 的图象有两个交点,联合函数的图象可求 b 的范围【解答】解:由函数f(x)=| 2x﹣2| ﹣ b 有两个零点,可得 | 2x﹣2| =b 有两个零点,进而可得函数 y=| 2x﹣ 2| 函数 y=b 的图象有两个交点,联合函数的图象可得,0<b<2 时切合条件,故答案为:0<b<215.( 5 分)(2015?湖南)已知ω>0,在函数 y=2sin ωx与 y=2cos ωx的图象的交点中,距离最短的两个交点的距离为 2,则ω=.【剖析】依据正弦线,余弦线得出交点(( k1,)(,(k2,),k1,k2都为整数,两个交点在同一个周期内,距离近来,即可得出方程求解即可.【解答】解:∵函数 y=2sin ωx与 y=2cosωx的图象的交点,∴依据三角函数线可得出交点((k1,),((k2,),k1,k2都为整数,∵距离最短的两个交点的距离为2,∴这两个交点在同一个周期内,∴ 12=()2+()2,ω=故答案为:三、解答题16.( 12 分)(2015?湖南)某商场举行有奖促销活动,顾客购置必定金额的商品后即可抽奖,抽奖方法是:从装有 2 个红球 A1,A2和 1 个白球 B 的甲箱与装有 2 个红球 a1,a2和 2 个白球 b1,b2的乙箱中,各随机摸出 1 个球,若摸出的2 个球都是红球则中奖,不然不中奖.(Ⅰ)用球的标列出全部可能的摸出结果;(Ⅱ)有人以为:两个箱子中的红球比白球多,因此中奖的概率大于不中奖的概率,你以为正确吗?请说明原因.【剖析】(Ⅰ)中奖利用列举法列出全部可能的摸出结果;(Ⅱ)在(Ⅰ)中求出摸出的 2 个球都是红球的结果数,而后利用古典概型概率计算公式求得概率,并说明中奖的概率大于不中奖的概率是错误的.【解答】解:(Ⅰ)全部可能的摸出的结果是:{ A1,a1} , { A1, a2} , { A1,b1} ,{ A1,b2} ,{ A2,a1} ,{ A2, a2} ,{ A2,b1} , { A2, b2} ,{ B,a1} , { B,a2} ,{ B,b1} ,{ B, b2 } ;(Ⅱ)不正确.原因以下:由(Ⅰ)知,全部可能的摸出结果共 12 种,此中摸出的 2 个球都是红球的结果为:{ A1,a1} , { A1, a2} , { A2,a1} ,{ A2,a2} ,共 4 种,∴中奖的概率为.不中奖的概率为: 1﹣>.故这类说法不正确.17.(12 分)(2015?湖南)设△ ABC的内角 A,B,C 的对边分别为 a,b,c,a=btanA.(Ⅰ)证明: sinB=cosA;(Ⅱ)若 sinC﹣sinAcosB= ,且 B 为钝角,求 A,B,C.【剖析】(Ⅰ)由正弦定理及已知可得=,由 sinA≠ 0,即可证明sinB=cosA.(Ⅱ)由两角和的正弦函数公式化简已知可得sinC﹣ sinAcosB=cosAsinB=,由( 1)sinB=cosA,可得sin2B=,联合范围可求B,由sinB=cosA及 A 的范围可求A,由三角形内角和定理可求C.【解答】解:(Ⅰ)证明:∵ a=btanA.∴=tanA,∵由正弦定理:,又 tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵ sinC=sin[ π﹣( A+B)] =sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由( 1)sinB=cosA,∴sin2B= ,∵ 0< B<π,∴sinB= ,∵ B 为钝角,∴B= ,又∵ cosA=sinB=,∴A= ,∴C=π﹣A﹣B= ,综上, A=C= ,B=.18.( 12 分)( 2015?湖南)如图,直三棱柱ABC﹣ A1B1C1的底面是边长为2 的正三角形, E,F 分别是 BC,CC 的中点,1(Ⅰ)证明:平面AEF⊥平面 B1BCC1;(Ⅱ)若直线 A1 C 与平面 A1ABB1所成的角为 45°,求三棱锥 F﹣ AEC的体积.【剖析】(Ⅰ)证明 AE⊥ BB1, AE⊥BC,BC∩ BB1=B,推出 AE⊥平面 B1 BCC1,利用平面余平米垂直的判断定理证明平面AEF⊥平面 B1BCC1;(Ⅱ)取 AB 的中点 G,说明直线 A1C与平面 A1ABB1所成的角为 45°,就是∠ CA1G,求出棱锥的高与底面面积即可求解几何体的体积.【解答】(Ⅰ)证明:∵几何体是直棱柱,∴BB1⊥底面 ABC,AE? 底面 ABC,∴AE⊥ BB1,∵直三棱柱 ABC﹣ A1B1C1的底面是边长为 2 的正三角形, E 分别是 BC的中点,∴AE⊥BC,BC∩ BB1=B,∴ AE⊥平面 B1BCC1,∵ AE? 平面 AEF,∴平面 AEF⊥平面 B1BCC1;(Ⅱ)解:取 AB 的中点 G,连接 A1G,CG,由(Ⅰ)可知 CG⊥平面 A1ABB1,直线 A1C 与平面 A1ABB1所成的角为 45°,就是∠ CA1G,则 A1G=CG= ,∴AA1== ,CF=.三棱锥 F﹣AEC的体积:×== .19.(13 分)(2015?湖南)数列 { a n } 的前 n 和 S n,已知 a1=1,a2=2,a n+2=3S n S n+1+3, n∈ N*,(Ⅰ)明 a n+2=3a n;(Ⅱ)求 S n.【剖析】(Ⅰ)当 n≥2 ,通 a n+2=3S n S n+1+3 与 a n+1=3S n﹣1 S n+3 作差,而后当 n=1 命也成立刻可;(Ⅱ)通( I)写出奇数、偶数的通公式,分奇数的和、偶数的和算即可.【解答】(Ⅰ)明:当 n≥2 ,由 a n+2=3S n S n+1+3,可得a n+1=3S n﹣1 S n+3,两式相减,得 a n+2a n+1=3a n a n+1,∴a n+2=3a n,当 n=1 ,有 a3 =3S1 S2+3=3×1( 1+2)+3=3,∴ a3=3a1,命也成立,上所述: a n+2=3a n;(Ⅱ)解:由( I)可得,此中k是随意正整数,∴S2k﹣1=(a1+a2)+(a3+a4)+⋯+(a2k﹣3+a2k﹣2)+a2k﹣1=3+32+⋯+3k﹣1+3k﹣1=+3k﹣1=×3k﹣1,k﹣1k﹣1S2k=S2k﹣1+a2k= × 3+2×3=,,为奇数综上所述,S n=.,为偶数20.(13 分)(2015?湖南)已知抛物线 C1:x2=4y 的焦点 F 也是椭圆 C2:+ =1(a>b>0)的一个焦点, C1与 C2的公共弦的长为 2,过点 F 的直线 l 与 C1订交于 A,B 两点,与 C2订交于 C, D 两点,且与同向.(Ⅰ)求 C2的方程;(Ⅱ)若 | AC| =| BD| ,求直线 l 的斜率.【剖析】(Ⅰ)经过 C1方程可知 a2﹣b2=1,经过 C1与 C2的公共弦的长为 2且C1与 C2的图象都对于 y 轴对称可得,计算即得结论;(Ⅱ)设 A(x1,y1),B( x2,y2),C(x3,y3),D( x4,y4),经过= 可得( x1+x2)2﹣ 4x (+x )2﹣ 4x ,设直线 l 方程为 y=kx+1,分别联立直线与抛物线、1x2=x3 43x4直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由 C1方程可知 F(0,1),22又∵ C1与 C2的公共弦的长为2,C1与C2的图象都对于y轴对称,∴易得 C1与 C2的公共点的坐标为(±,),∴,又∵ a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为 + =1;(Ⅱ)如图,设A( x1,y1),B(x2, y2),C( x3,y3),D(x4,y4),∵与同向,且| AC| =| BD|,∴= ,∴ x1﹣ x2=x3﹣ x4,∴( x1+x2)2﹣ 4x1x2=(x3+x4)2﹣4x3x4,设直线 l 的斜率为 k,则 l 方程: y=kx+1,由,可得 x2﹣ 4kx﹣4=0,由韦达定理可得x1+x2=4k, x1x2=﹣ 4,由,得( 9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵( x1+x2)2﹣4x1x2=( x3+x4)2﹣4x3x4,∴ 16(k2+1)=+,化简得16(k2+1)=,∴( 9+8k2)2=16×9,解得k=±,即直线l 的斜率为±.21.( 13 分)( 2015?湖南)已知 a> 0,函数 f(x)=ae x cosx(x∈[ 0,+∞ ] ),记 x n为 f( x)的从小到大的第 n(n∈N*)个极值点.(Ⅰ)明:数列 { f(x n)} 是等比数列;(Ⅱ)若全部n∈N*,x n≤ | f (x n)| 恒成立,求 a 的取范.【剖析】(Ⅰ)求出函数的数,令数0,求得极点,再由等比数列的定,即可得;(Ⅱ)由 n=1 可得 a 的范,运用数学法8n>4n+3,当 a≥π,得 | f(x n+1)| >x n+1,即可获得 a 的范.【解答】(Ⅰ)明:函数 f(x)=ae x cosx的数 f (′x) =ae x(cosx sinx),a>0,x≥0,e x≥1,由 f ′(x) =0,可得 cosx=sinx,即 tanx=1,解得 x=kπ+ , k=0, 1, 2,⋯,当 k 奇数, f ′(x)在 kπ+ 邻近左右正,当 k 偶数, f ′(x)在 kπ+ 邻近左正右.故x=kπ+ ,k=0, 1,2,⋯,均极点,x n=(n 1)π+ =nπ ,)=a(π ), f(x +1)=a(π ),f(x n cos n n cos n +π当 n 偶数, f(x n+1)= e f(x n),π当 n 奇数, f(x n+1)= e f(x n),即有数列 { f(x n)} 是等比数列;(Ⅱ)解:因为x1≤| f( x1) | ,≤a,解得 a≥π,下边明 8n>4n+3.当 n=1 , 8>7 然成立,假 n=k , 8k> 4k+3,当 n=k+1 , 8k+1=8?8k>8(4k+3)=32k+24=4(k+1)+28k+20>4(k+1)+3,即有 n=k+1 ,不等式成立.上可得 8n>4n+3(n∈N+),π由 e >8,当 a≥π时,πn由(Ⅰ)可得 | f( x n+1) | =| (﹣ e ) | | f(x1)|>8n| f (x1)| =8n f( x1)>( 4n+3)x1>x n+1,n∈N+,综上可得 a≥ π成立.。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5(B )4(C )3(D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r=(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|= (A )3 (B )6 (C )9 (D )12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2) D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1 B.0 C.1 D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.B.5 C.7 D.96.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xoy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2cosθ.(Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A ∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2) D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.4【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1 B.0 C.1 D.2【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,故选:C5.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.B.5 C.7 D.9【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:B.6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.7.(5分)(2015•新课标Ⅱ)过三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.9.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣===36,故R=6,则球O的表面积为4πR2=144π,AOB故选C.11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB 的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为8.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC 的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xoy中,曲线C1:(t 为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2cosθ.(Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.【分析】(Ⅰ)将C2与C3转化为直角坐标方程,解方程组即可求出交点坐标;(Ⅱ)求出A,B的极坐标,利用距离公式进行求解.【解答】解:(Ⅰ)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C1交点的直角坐标为(0,0),(,);(Ⅱ)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.。
绝密★启用前
2015年普通高等学校招生全国统一考试(湖南卷)
数学(文科)
本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分.
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、已知
()21j z -=1+i (i 为虚数单位),则复数z= A 、1i +
B 、1i -
C 、1i -+
D 、1i -- 2、在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图1所示
若将运动员按成绩由好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动人数是
A 、3
B 、4
C 、5
D 、6
3、设x ∈R ,则”x>1”是”3x >1”的
A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
4、若变量x,y 满足约束条件则z=2x-y 的最小值为
A 、-1
B 、0
C 、1
D 、2
5、执行如图2所示的程序框图,如果输入n=3,则输出的S=
A 、
B 、
C 、
D 、
6.若双曲线22
221x y a b
-=的一条渐近线经过点(3,-4),则此双曲线的离心率为
A 、3
B 、54
C 、43
D 、53
7、若实数a,b 满足12a b
+=ab 的最小值为
A 、2 C 、、4
8、设函数()ln(1)ln(1)f x x x =+--,则()f x 是
A.奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数
C 、偶函数,且在(0,1)上是增函数
D 、偶函数,且在(0,1)上是减函数
9、已知点A ,B ,C 在圆221y χ+=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||PA PB PC ++的最大值为
A 、6
B 、7
C 、8
D 、9
10、某工件的三视图如图3所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件的利用率为(材料的利用率= 新工件的体积/原工件的体积)
A、
8
9π
B、
8
27π
C
、
)3
241
π
D
、
)3
81
π
二.填空题:本大题共5小题,每小题5分,共25分
11、已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A⋃(C B
⋃)=________
12、在直角坐标系xOyz中,以坐标原点为极点,x轴的正半轴建立极坐标系,若曲线C的极坐标方程为ρ=3sinθ,则曲线C的直角坐标方程为______
13、若直线3x-4y+5=0与圆x²+y²=r²(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=___________、
14、若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是___________
15、已知w>0,在函数y=2sin mx余y=2 cos wx 的图像的交点,距离最短的两个交点的距离为
则w=________、
三、解答题:本大题共6小题,共75分.接答应写出文字说明、证明过程或演算步骤.
16、(本小题满分12分)
某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从袋有2个红球A1、A2和1个白球B的甲箱与装有2个红球a1 、a2和2个白球b1、b2的乙箱中,各随机摸出1个球,若
摸出的2个球都是红球则中奖,否则不中奖.
(I )用球的标号列出所有可能的摸出结果
(II )有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
17、 (本小题满分12分)
设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=b tanA 、
(Ⅰ)证明:sinB=cosA
(Ⅱ)若sinC —sinAcosB=
4
3,且B 为钝角,求A ,B ,C 、 18、(本小题满分12分)
如图4,直三棱柱ABC —A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点、 (Ⅰ)证明:平面AEF ⊥平面B 1BCC 1
(Ⅱ)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F —AEC 的体积、
19(本小题满分13分)
设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n+2=3S n - S n+1, n 、
(Ⅰ)证明:a n+2=3 a n (Ⅱ)求S n
20、(本小题满分13分)
已知抛物线C1 :X2=4y的焦点F也会椭圆C1:
2
2
y
a+
2
2
X
b
=1(a>b>0)的一个焦点.C1 与C2的公共弦的
长为F的直线l与C1相交于A,B两点,与C1相交于C,D两点,且BD与AC同向. (1)求C2的方程;
(2)若︱AC︱=︱BD︱,求直线l的斜率.
21、(本小题满分13分)
已知a>0,函数f(x)=a (x[0,+)).记x e为f(x)的从小到大的第n(n)个极值点.
(Ⅰ)证明:数列{f(x n)}是等比数列;
(Ⅱ)若对一切n,x n| f(x n)|恒成立,求a的取值范围.
参考答案
一、选择题:
1、 D
2、B
3、C
4、A
5、B
6、D
7、C
8、A
9、B 10、A
二、填空题:
11、 {1,2,3}
12、 2220x y y +-=
13、 2
14、 (0,2)
15、 2
π 三、解答题:
16、
17、
18、
19、
20、
21、
设()(0)e g t t t '=>,则2(1)()e t g t t
'-'=.令()0g t '=得1t =。