苏州工业园区2016~2017学年初二下数学期末调研试题及答案
- 格式:doc
- 大小:1.73 MB
- 文档页数:10
2016-2017学年江苏省苏州市工业园区八年级(下)期中数学模拟试卷一、选择题(本大题共10小题,每小题2分,共20分)1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形2.某市有5500名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②5500名考生是总体;③样本容量是1000.其中正确的说法有()A.0种B.1种C.2种D.3种3.下列各式:、、、3x+、、中,分式有()A.1个B.2个C.3个D.4个4.下列计算正确的是()A.B.C. D.5.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和46.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2 B.4 C.12 D.167.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°8.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.9.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0 B.x<﹣1或0<x<1 C.x≤﹣1或0<x≤1 D.﹣1<x<0或x≥110.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.11二.填空题(本大题共8小题,每小题2分,共16分)11.若代数式的值为零,则x= .12.若a+3b=0,则= .13.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.15.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.16.若关于x的分式方程﹣1=无解,则m的值.17.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k= .18.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.三、解答题(共10题64分,解答需写出必要的文字说明或演算步骤)19.计算:(1)÷(2)÷.20.先化简代数式,然后选取一个使原式有意义的a 值代入求值.21.“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图所示统计图,请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有人;(2)本次抽样调查的样本容量为;(3)被调查中,希望建立吸烟室的人数有;(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有万人.22.在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.23.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?24.如图,以△ABC的三边AB、BC、CA分别为边,在BC的同侧作等边三角形ABD,BCE,CAF,求证:四边形ADEF是平行四边形.25.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC 的最小值.26.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.27.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN ⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.2016-2017学年江苏省苏州市工业园区八年级(下)期中数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.2.某市有5500名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②5500名考生是总体;③样本容量是1000.其中正确的说法有()A.0种B.1种C.2种D.3种【考点】V3:总体、个体、样本、样本容量.【分析】根据①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量分别进行分析即可.【解答】解:抽取的1000名学生的成绩是一个样本,故①错误;5500名考生的考试成绩是总体,故②错误;因为从中抽取1000名学生的成绩,所以样本容量是1000,故③正确.故选:B.3.下列各式:、、、3x+、、中,分式有()A.1个B.2个C.3个D.4个【考点】61:分式的定义.【分析】根据分式的定义,可得答案.【解答】解:,是分式,有2个,故选B.4.下列计算正确的是()A.B.C. D.【考点】6B:分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:A、=,故A错误;B、=0,故B正确;C、,故C错误;D、=,故D错误.故选B.5.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和4【考点】L5:平行四边形的性质.【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2.故选B.6.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2 B.4 C.12 D.16【考点】X4:概率公式.【分析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得: =,解得:x=4.∴黄球的个数为4.故选B.7.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°【考点】PB:翻折变换(折叠问题).【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,则∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=×90°=30°,∴∠DAG=60°.故选:C.8.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.9.如图,反比例函数y 1=和正比例函数y 2=nx 的图象交于A (﹣1,﹣3)、B两点,则﹣nx ≥0的解集是( )A .﹣1<x <0B .x <﹣1或0<x <1C .x ≤﹣1或0<x ≤1D .﹣1<x <0或x ≥1【考点】G8:反比例函数与一次函数的交点问题.【分析】求出≥nx ,求出B 的坐标,根据A 、B 的坐标结合图象得出即可.【解答】解:∵﹣nx ≥0,∴≥nx ,∵反比例函数y 1=和正比例函数y 2=nx 的图象交于A (﹣1,﹣3)、B 两点, ∴B 点的坐标是(1,3),∴﹣nx ≥0的解集是x ≤﹣1或0<x ≤1,故选C .10.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE=3,则四边形AECF 的周长为( )A.22 B.18 C.14 D.11【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.【解答】解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选:A.二.填空题(本大题共8小题,每小题2分,共16分)11.若代数式的值为零,则x= 2 .【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得(x﹣2)(x﹣3)=0且2x﹣6≠0,解得x=2,故答案为:2.12.若a+3b=0,则= .【考点】6D:分式的化简求值.【分析】现将括号内的部分通分,再分解因式,然后将除法化为乘法后再约分,将a=﹣3b代入化简后的解析式即可正确计算.【解答】解:原式=•=•=∵a+3b=0,∴a=﹣3b,∴原式===.13.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】X4:概率公式;R5:中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度.【考点】LB:矩形的性质.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.15.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是8 .【考点】LA:菱形的判定与性质;LB:矩形的性质.【分析】先证明四边形CODE是平行四边形,再根据矩形的性质得出OC=OD,然后证明四边形CODE是菱形,即可求出周长.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CEOC=OD=2,∴四边形CODE的周长=2×4=8;故答案为:8.16.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】B2:分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.17.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k= 4 .【考点】G5:反比例函数系数k的几何意义.【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE,和三角形OBC的面积相等,通过面积转化,可求出k的值.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为6.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=6k=4.故答案为:4.18.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有 3 次.【考点】L7:平行四边形的判定与性质.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.三、解答题(共10题64分,解答需写出必要的文字说明或演算步骤)19.计算:(1)÷(2)÷.【考点】6A:分式的乘除法.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式=÷=×=(2)原式=×=﹣=﹣20.先化简代数式,然后选取一个使原式有意义的a 值代入求值.【考点】6D:分式的化简求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.21.“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图所示统计图,请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有82 人;(2)本次抽样调查的样本容量为200 ;(3)被调查中,希望建立吸烟室的人数有56人;(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有15.9 万人.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)找出被调查者中,不吸烟者中赞成“彻底禁烟”的人数即可;(2)由彻底禁烟的人数除以占的百分比确定出样本容量即可;(3)由建立吸烟室的百分比除以总人数,计算即可;(4)由彻底吸烟的百分比乘以30即可得到结果.【解答】解:(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有82人;(2)本次抽样调查的样本容量为(82+24)÷53%=200;(3)被调查中,希望建立吸烟室的人数有200×28%=56人;(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有30×53%=15.9万人,故答案为:(1)82;(2)200;(3)56人;(4)15.922.在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.【考点】X6:列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)树状图如下列表如下∴乙能取胜的概率为.23.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?【考点】B7:分式方程的应用.【分析】应求出甲乙工程队的工效.时间明显,应根据工作总量来列等量关系.关键描述语是:甲、乙两队合作完成工程需要20天.等量关系为:甲20天的工作量+乙20天的工作量=1,然后分情况分析后比较所需费用.【解答】解:设甲队单独完成需x天,则乙队单独完成需要2x天,根据题意得,解得x=30经检验,x=30是原方程的解,且x=30,2x=60都符合题意.∴应付甲队30×1000=30000(元).应付乙队30×2×550=33000(元).∵30000<33000,所以公司应选择甲工程队.答:公司应选择甲工程队,应付工程总费用30000元.24.如图,以△ABC的三边AB、BC、CA分别为边,在BC的同侧作等边三角形ABD,BCE,CAF,求证:四边形ADEF是平行四边形.【考点】L6:平行四边形的判定;KK:等边三角形的性质.【分析】由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF是平行四边形.【解答】证明:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中,,∴△DBE≌△ABC(SAS).∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF是平行四边形.25.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC 的最小值.【考点】L7:平行四边形的判定与性质;KF:角平分线的性质.【分析】(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.【解答】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.26.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.【考点】G8:反比例函数与一次函数的交点问题;PA:轴对称﹣最短路线问题.【分析】(1)把A(1,4)代入y=即可求出结果;(2)先把B(4,n)代入y=得到B(4,1),把A(1,4),B(4,1)代入y=kx+b求得一次函数的解析式为;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.【解答】解:(1)把A(1,4)代入y=得:m=4,∴反比例函数的解析式为:y=;(2)把B(4,n)代入y=得:n=1,∴B(4,1),把A(1,4),B(4,1)代入y=kx+b得,∴,∴一次函数的解析式为:y=﹣x+5;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),∴直线AB′的解析式为:y=﹣x+,当y=0时,x=,∴P(,0).27.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN ⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标N(2+a,a)(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.【考点】LO:四边形综合题.【分析】(1)如图1中,作NE⊥OB于E,只要证明△DMO△MNE即可解决问题.(2)如图2中,在OD上取OH=OM,连接HM,只要证明△DHM≌△MBN即可.(3)结论:MN平分∠FMB成立.如图3中,在BO延长线上取OA=CF,过M作MP⊥DN于P,因为∠NMB+∠CDF=45°,所以只要证明∠FMN+∠CDF=45°即可解决问题.【解答】(1)解:如图1中,作NE⊥OB于E,∵∠DMN=90°,∴∠DMO+∠NME=90°,∠NME+∠MNE=90°,∴∠DMO=∠MNE,在△DMO和△MNE中,,∴△DMO△MNE,∴ME=DO=2,NE=OM=a,∴OE=OM+ME=2+a,∴点N坐标(2+a,a),故答案为N(2+a,a).(2)证明:如图2中,在OD上取OH=OM,连接HM,∵OD=OB,OH=OM,∴HD=MB,∠OHM=∠OMH,∴∠DHM=180°﹣45°=135°,∵NB平分∠CBE,∴∠NBE=45°,∴∠NBM=180°﹣45°=135°,∴∠DHM=∠NBM,∵∠DMN=90°,∴∠DMO+∠NMB=90°,∵∠HDM+∠DMO=90°,∴∠HDM=∠NMB,在△DHM和△MBN中,,∴△DHM≌△MBN(ASA),∴DM=MN.(3)结论:MN平分∠FMB成立.证明:如图3中,在BO延长线上取OA=CF,在△AOD和△FCD中,,∴△DOA≌△DCF,∴AD=DF,∠ADO=∠CDF,∵∠MDN=45°,∴∠CDF+∠ODM=45°,∴∠ADO+∠ODM=45°,∴∠ADM=∠FDM,在△DMA和△DMF中,,∴△DMA≌△DMF,∴∠DFM=∠DAM=∠DFC,过M作MP⊥DN于P,则∠FMP=∠CDF,由(2)可知∠NMF+∠FMP=∠PMN=45°,∴∠NMB=∠MDH,∠MDO+∠CDF=45°,∴∠NMB=∠NMF,即MN平分∠FMB.2017年5月25日31。
绝密★启用前江苏省苏州市工业园区2016-2017学年八年级下期中数学模拟试卷含答案解析题号一二三得分注意事项:1.本试卷共XX页,三个大题,满分100分,考试时间为1分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共40分)评卷人得分1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是( )(4分)A. 正三角形B. 正方形C. 等腰直角三角形D. 平行四边形2.某市有5500名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②5500名考生是总体;③样本容量是1000.其中正确的说法有( )(4分)A. 0种B. 1种试卷第2页,总13页C. 2种D. 3种3.下列各式:、、、3x+、、中,分式有( )(4分) A. 1个 B. 2个 C. 3个 D. 4个4.下列计算正确的是( )(4分) A. B. C. D.5.如图,在▱ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点(4分) A. 2和3 B. 3和2 C. 4和1 D. 1和4E. 则线段BE 、EC 的长度分别为( )6.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )(4分) A. 2 B. 4 C. 12 D. 167.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG 的大小为( )(4分)A. 30°B. 45°C. 60°D. 75°8.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )(4分)A.B.C.D.9.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是( )(4分)A. ﹣1<x<0B. x<﹣1或0<x<1C. x≤﹣1或0<x≤1D. ﹣1<x<0或x≥110.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )试卷第4页,总13页(4分)A. 22B. 18C. 14D. 11二、填空题(共12分)评卷人 得分11.若代数式的值为零,则x= _________ .(4分) 12.若a+3b=0,则= ___________.(4分)13.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是__________ .(4分)三、解答题(共48分)评卷人 得分14.计算: (1)÷ (2)÷.(6分)15.先化简代数式,然后选取一个使原式有意义的a 值代入求值.(6分) 16.“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图所示统计图,请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有 ________ 人;(2)本次抽样调查的样本容量为_________ ;(3)被调查中,希望建立吸烟室的人数有__________ ;(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有_________ 万人.(6分)17.在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.(6分)18.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?(6分)19.如图,以△ABC的三边AB、BC、CA分别为边,在BC的同侧作等边三角形ABD,BCE,CAF,求证:四边形ADEF是平行四边形.(6分)20.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.(6分)21.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;。
2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
苏州市姑苏区2016-2017学年度第二学期期末考试试卷初二数学一、选择题1. 若代数式在实数范围内有意义,则实数的取值范围是().A. B. C. D.【答案】B【解析】由题意可知:x+3≠0,∴x≠−3故选B.2. 下列各点中,在双曲线上的点是().A. B. C. D.【答案】D【解析】∵四个选项中,只有(−3)×(−4)=12,∴D中点(−3,−4)在在双曲线y=上。
故选D.3. 化简的结果是().A. B. C. D.【答案】A【解析】原式=|−5|=5.故选A.4. 菱形对角线不具有的性质是().A. 对角线互相垂直B. 对角线所在直线是对称轴C. 对角线相等D. 对角线互相平分【答案】C【解析】菱形的对角线互相垂直平分,菱形是轴对称图形,每一条对角线所在的直线就是菱形的一条对称轴,故选C.5. 苏州市月中旬每天平均空气质量指数(AOI)分别为:84,89,83,99,69,73,78,81,89为了描述这十天空气质量的变化情况,最适用的统计图是().A. 折线统计图B. 频数分布直方图C. 条形统计图D. 扇形统计图【答案】A【解析】∵折线统计图能清楚地显示数据变化趋势,∴描述这十天空气质量的变化情况,最适合用的统计图是折线统计图,故选:A.6. 如图,在下列比例式中,不能成立的是().A. B. C. D.【答案】B【解析】根据题意,可得△ADE∽△ABC,根据相似三角形对应边成比例,可知B不正确,因为AE与EC 不是对应边,所以B不成立.故选B.7. 有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形又是中心对称图形的概率是().A. B. C. D.【答案】C【解析】试题分析:∵①线段②正三角形③平行四边形④菱形⑤圆中是轴对称图形又是中心对称图形的是:①线段④菱形⑤圆,共三个,∴从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是;故选C.考点:1.概率公式;2轴对称图形;3.中心对称图形.8. 如图,在正方形中,为对角线,点在边上,于点,连接,AF=3,△EFC的周长为12,则的长为()A. B. C. D.【答案】C【解析】∵四边形ABCD是正方形,AC为对角线,∴∠EAF=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12−3−EC=9−EC,在Rt△EFC中,EC²=EF²+FC²,∴EC²=9+(9−EC) ²,解得EC=5.故选C.学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...9. 如图,路灯灯柱OP的长为米,身高米的小明从距离灯的底部(点O)米的点处,沿所在的直线行走14米到达点B处,人影的长度().A. 变长了1.5米B. 变短了2.5米C. 变长了3.5米D. 变短了3.5米【答案】D【解析】试题分析:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5;,∴y=1.5,∴x﹣y=3.5,故变短了3.5米.故选D.考点:中心投影.10. 如图所示,在RT△AO中,,,点在反比例函数的图像上,若点在反比例函数的图像上,则的值为().A. B. C. D.【答案】D【解析】过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴,∵2OB=3OA,∴BD=m,OD=n,因为点A在反比例函数y=的图象上,则mn=2,∵点B在反比例函数y=kx的图象上,B点的坐标是(−n , m),∴k=−n⋅m=−mn=−.故选D.二、填空题11. 计算:__________.【答案】【解析】原式=12. 一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出个小球,则事件“所摸3个球中必含有红球”是__________.(填“必然事件”、“随机事件”或“不可能事件”).【答案】必然事件【解析】试题分析:∵盒子中装有3个红球,2个黄球,∴从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是随机事件,故答案为:随机事件.考点:随机事件.13. 某建筑物的窗户为黄金矩形,已知它较长的一边长为1米,则较短的一边长为__________.(结果保留根号或者3位小数)【答案】米【解析】设较短的一边长为x米,根据题意有,解得x=≈0.618,答:较短的一边长为0.618米.故答案为:0.618.14. 如图,在四边形中,AC平分∠BCD,要使,还需加一个条件,你添加的条件是__________.(只需写一个条件,不添加辅助线和字母)【答案】【解析】可添加∠B=∠CAD,∵AC平分∠BCD, ∴∠ACD=∠ACB∵∠B=∠CAD,∴△ABC∽△DAC.故答案为: .15. 如图,是矩形的对角线的交点,点在边上,且,若,则__________.【答案】57.5°【解析】∵四边形ABCD是矩形,∴∠ADC=90°,∵∠ADF=25°,∴∠CDF=∠ADC−∠ADF=90°−25°=65°,∵DF=DC,∴∠ECD=180°−∠CDF2=57.5°.故答案为:57.5°.16. 关于的方程有增根,则的值为__________.【答案】2【解析】方程两边都乘(x−2),得x+x−2=a,即a=2x−2.分式方程的增根是x=2,∵原方程增根为x=2,∴把x=2代入整式方程,得a=2,故答案为:2.点睛:本题考查了分式方程的增根,增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.17. 如图,在中,,,,点从点出发,沿以的速度向点移动,点从点出发,沿以的速度向点移动,若点、分别从点、同时出发,设运间为,当__________时,.【答案】4.8s【解析】因为AB∥PQ时,△CPQ∽△CBA,所以,,即,解得t=4.8.故答案为:4.8s.18. 如图,直线与反比例函数的图像交于点,点是线段的中点,点在反比例函数的图像上,点在轴上,若,则点的横坐标为__________.【答案】【解析】∵直线y=2x与反比例函数y=的图象交于点A(3,m),∴m=2×3=6,∴点A(3,6),∴6=,得k=18,∵点B是线段OA的中点,点E(n,4)在反比例函数的图象上,∴点B(1.5,3),4=,得n=4.5,∴点E(4.5,4),∴AB=,AE=,OB=,∵∠EAB=∠EBF=∠AOF,∠ABE+∠EAB+∠AEB=180°,∠ABE+∠EBF+∠OBF=180°,∴∠AEB=∠OBF,∵∠EAB=∠BOF,∴△ABE∽△OFB,∴,即,解得,OF=,即点F的横坐标是,故答案为:.点睛:本题考查了反比例函数与一次函数的交点问题,根据点A在直线y=2x上可以求得点A的坐标,从而可以求得点B的坐标和k的值,进而求得点E的坐标,然后根据三角形相似即可求得OF的长度,本题得以解决.三、解答题19. 已知(且)()化简.()若点在反比例函数的图像上,求的值.【答案】(1)见解析;(2) .本题解析:().()∵点在反比例函数的图象上,∴,∴.20. 为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为分)进行统计,已知组的频数比组的频数小,绘制统计频数分别直方图(未完成)和扇形统计图如下,请解答下列问题:()样本容量为:__________,为__________.()为__________,组所占比例为__________.()补全频数分布直方图.()若成绩在分以上记作优秀,全校共有名学生,估计成绩优秀学生有__________名.【答案】(),;()126,12; ()直方图见解析;()940人.【解析】分析:(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.本题解析:()调查的总人数为,∴,,()部分所对的圆心角,即,组所占比例为:,()组的频数为,组的频数为,补全频数分布直方图为:(),∴估计成绩优秀的学生有人.点睛:本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,要认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了用样本估计总体.21. 请你阅读小红同学的解题过程,并回答所提出的问题.计算:小红的解法:算式①②③④()问:小红在第__________步开始出错(写出序号即可).()请你给出正确解答过程.【答案】()②()见解析【解析】分析:根据分式的加减运算法则计算即可.本题解析:(1) ②;(),,,.22. 如图所示,在的正方形方格中,和的顶点都在边长为的小正方形的顶点上.()填空:__________,__________.()判断与是否相似,并证明你的结论.【答案】(),;(),证明见解析.【解析】分析:(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.本题解析:(1),,(2),证明:∵在的正方形方格中,,,∴,∵,,,,∴,.∴.23. 已知()求的值.()求的平方根.【答案】()17;().【解析】试题分析:(1)根据被开方数是非负数,即可求得a的值;(2)根据(1)的结果即可求得b的值,然后利用平方根的定义求解.试题解析:根据题意得:,解得:a=17;∵∴b = -8(2)∵a = 17,b = -8∴=225∴的平方根是±15.24. 已知,,与成正比例,与成反比例,并且当时,,当时,.()求关于的函数关系式.()当时,求的值.【答案】();(),.【解析】分析:(1)首先根据与x成正比例,与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出和与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令y=0,即可求出x的值.本题解析:()设,,则,∵当时,,当时,,∴解得,,∴关于的函数关系式为.()把代入得,,解得:,.点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.25. 如图,在中,,是斜边上的中线,是的中点,过点作交的延长线于,连接.()求证:.()判断四边形的形状,并证明你的结论.【答案】()证明见解析;()是菱形,证明见解析.【解析】分析:(1)根据AAS证△AFE≌△DBE,即可得出结论;(2)利用(1)中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF 是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论本题解析:()证明:∵,∴,∵是的中点,是边上的中线,∴,,在和中,,∴≌,∴.()四边形是菱形,由()知,,∵,∴.∵,∴四边形是平行四边形,∵,是的中点,是的中点,∴,∴四边形是菱形.26. 如图,反比例函数的图像与一次函数的图像在第一象限类相交于点,且点的横坐标为.()求点的坐标及一次函数的解析式.()若直线与反比例函数和一次函数的图像分别交于点、,求的面积.【答案】();()3.【解析】分析:(1)由已知先求出m,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式.(2)把x=2代入y=和y=x-3,得出点B和点C的纵坐标,即可求出线段BC的长,进而求出的面积.本题解析:()∵点的横坐标为,即,将代入,得:,∴点的坐标为,将代入,得,解得:,∴一次函数的解析式为.()将分别代入和,得:,,∴点,的坐标分别为,,则,的面积.点睛:本题考查了反比例函数的综合应用,解决本题的关键是利用反比例函数求得点A 的坐标,然后利用待定系数法即可求得函数的解析式.27. 如图,在平行四边形中,是的中点,延长到点,使,连接,.()求证:.()若,,,求的长.【答案】()证明见解析;() .【解析】分析:(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF 是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.本题解析:证明:()∵四边形是平行四边形,∴,,∵是的中点,且,∴,又∵,∴四边形是平行四边形,∴.()过点作交于点,∵且,∴,,则,∴,∵,∴,.28. 如图,在平面直角坐标系中,一次函数的图像分别与轴,轴交于点,,点的坐标为.()点的坐标为__________.()在第二象限内是否存在点,使得以、、为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.【答案】();()存在,理由见解析.【解析】分析:(1)令x=0可得y=6,由此可知B(0,6);(2)如图,以OA、OB为边作矩形OAP3B,连接OP3,作O⊥AB于,作A⊥O于.易证△OAP1,△OA,△OA均与△AOB相似,易知(-8,6).构建一次函数求出交点、的坐标,再由当△OA∽△BOA时,可得,推出O=,由此可得的坐标.本题解析:()()存在.理由:将代入,得:,解得.①过点作交于点,即为所求,设坐标为,∵,即,,∴点的坐标为.②线段的中垂线为,,关于直线对称,∴的坐标为.③点与点关于直线对称,∴点的坐标为.。
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
初二数学:苏州市工业园区第二学期期末教学调研试题初二数学注意事项:1.本试卷分选择题和非选择题两部分,共130分,考试用时120分钟.答题全部做在答题卡上,做在试卷上无效.2.答题前,请务必将自己的姓名、考试号(调研号)用0.5毫米黑色签字笔填写在答题卡上,并用2B铅笔将对应的数字标号涂黑.3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案,答非选择题必须用0.5毫米黑色签字笔写在答题卡的指定位置,在其它位置答题一律无效,作图题,可用2B铅笔作答,并请加黑加粗画出.一、选择题:本大题共10小题:每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填涂在答题卡相应的位置上.1.已知,则的值为A. B. C. D.2.计算的结果是A. B.- C. D.3.下列判断中,正确的是A.相似图形一定是位似图形B.位似图形一定是相似图形C.全等的图形一定是位似图形D.位似图形一定是全等图形4.如图,在□ABCD中,对角线AC,BD相交于点D,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是是平行四边形A.OE=OFB.DE=BFC.ang;ADE=ang;CBFD.ang;ABE=ang;CDF5.如图,若A、B、C、D、E、F、G、H、O都是5×7方格纸中的格点,为使△DME∽△ABC,则点M应是F、G、H、O 四点中的.A.FB.GC.HD.D6.在四边形ABCD中,D是对角线的交点,能判定这个四边形是正方形的条件是A.AC=BD,AB CDB.AD∥BC,ang;A=ang;CC.AO=BO=CO=DO,ACperp;BDD.AO=CO,BO=DO,AB=BC7.在等腰△ABC和等腰△DEF中,ang;A与ang;D是顶角,下列判断正确的是①ang;A=ang;D时,两三角形相似②ang;A=ang;E时,两三角形相似③ 时,两三角形相似④ang;B=ang;E时,两三角形相似A.1个B.2个C.3个D.4个8.在反比例函数的图象的每一条曲线上,y随x的增大而增大,则k值可以是A.-1B.1C.2D.39.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影长度A.变短3.5米B.变长1.5米C.变长3.5米D.变短1.5米10.如图,直线l过正方形ABCD的顶点A和BC边的中点E,点B到直线l的距离1,则D到l的距离是_______.A.1.5B.2C.2.5D.3二、填空题:本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上.11.若反比例函数的图象经过点(-3,-4),则m= ▲ .12.当m= ▲ 时,分式的值为零.13.地图上某地的面积为100cm2,比例尺是l:500,则某地的实际面积是▲ m2.14.“对顶角相等”的逆命题是▲ .15.有5根细木棒,它们的长度分别是1cm、3cm、5cm、7cm、9cm,从中任取3根恰好能搭成一个三角形的概率是▲ .16.如图,□ABCD中,对角线AC和BD相交于点O,如果AC=12,AB=10,BD=m,那么m的取值范围是▲ .点这里下载word版:苏州市工业园区第二学期期末教学调研试题word版.doc。
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.试题2:下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量试题3:若正方形的面积是12cm2,则边长a满足()A.2cm<a<3cm B.3cm<a<4cm C.4cm<a<5cm D.5cm<a<6cm试题4:下列运算正确的是()A.﹣= B.÷=4 C.=﹣2 D.(﹣)2=2试题5:已知▱ABCD中,AC、BD交于点O.下列结论中,不一定成立的是()A.▱ABCD关于点O对称 B.OA=OCC.AC=BD D.∠B=∠D试题6:一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是红球 B.至少有1个球是白球C.至少有2个球是红球 D.至少有2个球是白球试题7:若点P、Q都在函数y=的图象上,则下列结论中正确的是()A.a>b B.a=bC.a<b D.a、b的大小关系无法确定试题8:如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点A B.点B C.点C D.点D试题9:将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A.(4,2) B.(2,4) C.(,3) D.(3,)试题10:如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()A.4cm B.2cm C.cm D.1cm试题11:若3a=2b,则a:b= .试题12:计算:(+1)2= .试题13:若式子在实数范围内有意义,则x的取值范围是.试题14:若点P是线段AB的黄金分割点(PA>PB),且AB=10cm,则PA≈cm.(精确到0.01cm)试题15:如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.试题16:如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE= m.试题17:如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为.试题18:已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF= cm.试题19:计算:(+×)×.试题20:解方程:+=1.试题21:求代数式÷(1+)的值,其中x=+1.试题22:某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:(1)a= ,n= ;(2)补全频数分布直方图;(3)该校共有2 000名学生.若成绩在80分以上的为优秀,请你估计该校成绩优秀的学生人数.试题23:一个不透明的袋子中装有2个白球,1个红球,1个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到白球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到白球的概率.(用树状图或列表法求解).试题24:如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出∠ABC的平分线BE,BE交CD的延长线于点E,交AD于点F;(保留作图痕迹,不写作法)(2)若AB=2cm,BC=3cm,BE=5cm,求BF的长.试题25:在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.试题26:如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.试题27:如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AD与BC满足条件时,四边形EFHI是菱形.试题28:如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m= ;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.试题29:如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D 的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.(1)当A1、D两点重合时,AC= cm;(2)当A1、D两点不重合时,①连接A1D,求证:A1D∥BC;②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.试题1答案:A【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.试题2答案:C【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:一批手机电池的使用寿命适合抽样调查;中国公民保护环境的意识适合抽样调查;你所在学校的男、女同学的人数适合普查;端午节期间苏州市场上粽子的质量适合抽样调查,故选:C.试题3答案:B【考点】估算无理数的大小.【分析】设正方形的边长为acm,根据正方形的面积公式求出a的值即可.【解答】解:设正方形的边长为acm,(a>0),∵正方形的面积是12cm2,∴a2=12,A.2<a<3,所以4<a2<9,故A错,B.3<a<4,所以9<a2<16,故B正确,C.4<a<5,所以16<a2<25,故C错,D.5<a<6,所以25<a2<36,故D错,故选:B试题4答案:D【考点】二次根式的混合运算.【分析】根据二次根式的化简、二次根式的除法进行计算即可.【解答】解:A、﹣=,故本选项错误;B、÷=2,故本选项错误;C、=2,故本选项错误;D、(﹣)2=2,故本选项正确;故选D.试题5答案:C【考点】平行四边形的性质.【分析】根据平行四边形的性质:平行四边形的对边相等,对角线互相平分即可作出判断.【解答】解:A、▱ABCD关于点O对称,正确,不合题意;B、根据平行四边形的对角线互相平分可得AO=CO,正确,不合题意;C、平行四边形的对角线不一定相等,则AC=BD错误,符合题意;D、根据平行四边形的对角相等可得∠B=∠D,正确,不合题意.故选:C.试题6答案:B【考点】随机事件.【分析】必然事件就是一定发生的事件,根据定义即可判断.【解答】解:A、至少有1个球是红球是随机事件,选项错误;B、至少有1个球是白球是必然事件,选项正确;C、至少有2个球是红球是随机事件,选项错误;D、至少有2个球是白球是随机事件,选项错误.故选B.试题7答案:A【考点】反比例函数图象上点的坐标特征.【分析】分别把各点代入反比例函数y=,求出a、b的值,再比较大小即可.【解答】解:∵点P、Q都在函数y=的图象上,∴a=,b=,∴a>b.故选A.试题8答案:A【考点】位似变换.【分析】利用对应点的连线都经过同一点进行判断.【解答】解:如图,位似中心为点A.故选A.试题9答案:D【考点】矩形的性质;坐标与图形性质.【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出CM=,MO=3,进而得出答案.【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中,∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(﹣1,2),点B的纵坐标是,∴BN=,∴CM=,∴MO=3,∴点C的坐标是:(3,).故选:D.试题10答案:B【考点】轨迹;翻折变换(折叠问题).【分析】如图,取AB、CD中点K、G,连接KG、BD交于点O,根据点Q运动的路线就是线段OG即可解决问题.【解答】解:如图,取AB、CD中点K、G,连接KG、BD交于点O.由题意可知点Q运动的路线就是线段OG,∵DO=OB,DG=GC,∴OG=BC=×4=2.∴点Q移动路线长度的最大值是2.故选B.试题11答案:2:3 .【考点】比例的性质.【分析】利用比例的性质内项之积等于外项之积求解.【解答】解:∵3a=2b,∴a:b=2:3.故答案为2:3.试题12答案:3+2.【考点】二次根式的混合运算.【分析】利用完全平方公式计算.【解答】解:原式=2+2+1=3+2.故答案为3+2.试题13答案:x≥﹣1且x≠0 .【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥﹣1且x≠0,故答案为:x≥﹣1且x≠0试题14答案:6.18【考点】黄金分割.【分析】根据黄金分割点的定义,知AP是较长线段,那么AP=AB≈0.618AB,代入计算即可.【解答】解:∵点P是线段AB的黄金分割点(PA>PB),且AB=10cm,∴AP=AB≈0.618×10≈6.18(cm).故答案为6.18.试题15答案:0.600 .【考点】利用频率估计概率.【分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【解答】解:依题意得击中靶心频率逐渐稳定在0.600附近,估计这名射手射击一次,击中靶心的概率约为0.600.故答案为:0.600.试题16答案:2 m.【考点】相似三角形的应用;中心投影.【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得=,然后代入数值进行计算即可.【解答】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴=,∵AB=1.5m,CD=6m,BD=6m,∴=,解得:EB=2,故答案为:2.试题17答案:2 .【考点】反比例函数系数k的几何意义.【分析】由AB∥x轴,设点A(,m),B(,m),根据三角形的面积公式即可得出结论.【解答】解:设点A(,m),B(,m),∴S△ABC=•(﹣)•m=2.故答案为:2.试题18答案:或cm.【考点】正方形的性质;菱形的性质.【分析】作出图形,根据菱形的对角线互相垂直平分求出AO、BO,然后分正方形在A、C的两边两种情况延长CA(或AC)交EF于点M(或点N),根据勾股定理求出AF的长度即可得出结论.【解答】解:以BD为边作正方形BDEF分两种情况:①如图1,正方形BDEF在点A一侧时,延长CA交EF于点M.∵四边形ABCD为菱形,AC=6cm,BD=4cm,∴OB=2cm,OA=3cm.∵四边形BDEF为正方形,∴FM=BO=2cm,AM=DE﹣OA=1cm,∴AF==cm;②如图2,正方形BDEF在点C一侧时,延长AC交EF于点N,∵四边形ABCD为菱形,AC=6cm,BD=4cm,∴OB=2cm,OA=3cm.∵四边形BDEF为正方形,∴FN=BO=2cm,AN=DE+OA=7cm,∴AF==cm.故答案为:或.试题19答案:【考点】二次根式的混合运算.【分析】直接利用二次根式的性质化简求出答案.【解答】解:原式=3+=3+15=18.试题20答案:【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣1=x﹣2,解得:x=3,经检验x=3是分式方程的解.试题21答案:【考点】二次根式的化简求值;分式的化简求值.【分析】先算括号里面的,再把分式的分母因式分解,再约分即可.【解答】解:原式=÷=•=,当x=+1时,原式==.试题22答案:【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据A组的人数是30人,所占的百分比是10%,据此即可求得抽取的总人数,然后利用百分比的计算方法求得B组的人数,进而求得a和E组的人数,利用360乘以E组对应的比例求得n的值;(2)利用(1)的结果可以补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)抽取的总人数是30÷10%=300(人),则B组的人数是300×20%=60(人),a=300×25%=75,E组的人数是300﹣30﹣60﹣75﹣90=45(人)n=360×=54.故答案是:75,54;(2);(3)估计该校成绩优秀的学生人数是:2000×=900(人).答:估计该校成绩优秀的学生人数是900人.试题23答案:【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中白球的个数,即可确定出从中任意摸出1个球,恰好摸到白球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到白球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个白球,则任意摸出1个球,恰好摸到白球的概率,故答案为:;(2)列表如下:白白红黑白﹣﹣﹣(白,白)(白,红)(黑,白)白(白,白)﹣﹣﹣(白,红)(黑,白)红(红,白)(红,白)﹣﹣﹣(黑,红)黑(白,黑)(白,黑)(红,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到白球有2种可能,则P(两次摸到白球)==.试题24答案:【考点】平行四边形的性质;作图—基本作图.【分析】(1)利用尺规作出∠ABC的平分线即可.(2)先证明AB=AF=2,BC=CE=3,再根据AB∥DE,推出=,列出方程即可解决问题.【解答】解:(1)答案如图所示.(2)∵四边形ABCD是平行四边形,∴AB=CD=2,BC=AD=3,AD∥BC,AB∥CD,∵BE平分∠ABC,∴∠ABF=∠CBE,∠CBE=∠AFB,∴∠ABF=∠AFB,∴AB=AF=2,同理BC=CE=3,设BF=x,∵AB∥DE,∴=,∴=,∴x=.试题25答案:【考点】分式方程的应用.【分析】首先把应用题补充完整,可以求甲班的人数;然后设甲班有x人,则乙班有(x﹣5)人,再根据甲班的人均捐款额是乙班的1.2倍列出方程,再解即可.【解答】在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人,求甲班的人数.解:设甲班有x人,则乙班有(x﹣5)人,由题意得:=×1.2,解得:x=50,经检验:x=50是分式方程的解,答:甲班有50人.试题26答案:【考点】旋转的性质;平行线的性质.【分析】先依据平行的性质可求得∠ABB1的度数,然后再由旋转的性质得到△AB1B为等腰三角形,∠B1AC1=50°,再求得∠BAB1的度数,最后依据∠BAC1=∠BAB1﹣∠C1AB1求解即可.【解答】解:∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB1=∠AB1B=50°.∴∠BAB1=80°∴∠BAC1=∠BAB1﹣∠C1AB1=80°﹣50°=30°.试题27答案:【考点】矩形的判定;三角形中位线定理;平行四边形的判定与性质;菱形的判定.【分析】(1)证出EF、HI分别是△ABC、△BCG的中位线,根据三角形中位线定理可得EF∥BC且EF=BC,HI∥BC且PQ=BC,进而可得EF∥HI且EF=HI.根据一组对边平行且相等的四边形是平行四边形可得结论;(2)①由三角形中位线定理得出FH∥AD,再证出EF⊥FH即可;②与三角形重心定理得出AG=AD,证出AG=BC,由三角形中位线定理和添加条件得出FH=EF,即可得出结论.【解答】(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点.,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI.∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件 AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为:AD⊥BC;②当AD与BC满足条件BC=AD时,四边形EFHI是菱形;理由如下:∵△ABC的中线AD、BE、CF相交于点G,∴AG=AD,∵BC=AD,∴AG=BC,∵FH=AG,EF=BC,∴FH=EF,又∵四边形EFHI是平行四边形,∴四边形EFHI是菱形;故答案为:BC=AD.试题28答案:【考点】反比例函数综合题.【分析】(1)有点A的坐标结合反比例函数图象上点的坐标特征,即可得出m的值;(2)由反比例函数的解析式结合反比例函数图象上点的坐标特征即可得出点B的坐标,利用待定系数法即可求出直线AB 的解析式,再领y=0求出x值即可得出点C的坐标;(3)假设存在,设点E的坐标为(n,0),分∠ABE=90°、∠BAE=90°以及∠AEB=90°三种情况考虑:①当∠ABE=90°时,根据等腰三角形的性质,利用勾股定理即可找出关于n的一元二次方程,解方程即可得出结论;②当∠BAE=90°时,根据∠ABE>∠ACD可得出两三角形不可能相似;③当∠AEB=90°时,根据A、B的坐标可得出AB的长度,以AB为直径作圆可知圆与x轴无交点,故该情况不存在.综上即可得出结论.【解答】解:(1)∵点A(1,4)在反比例函数y=(x>0)的图象上,∴m=1×4=4,故答案为:4.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=,2>,∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).试题29答案:【考点】四边形综合题.【分析】(1)当A1、D两点重合时,可以证到四边形ACDB是菱形,从而得到AC=AB=10cm.(2)①过点A1作A1E⊥BC,垂足为E,过点D作DF⊥BC,垂足为F,如图2,可以证到S△DBC=S△ABC=S△A1BC,从而得到DF=A1E,由A1E⊥BC,DF⊥BC可以证到A1E∥DF,从而得到四边形A1DFE是平行四边形,就可得到A1D∥BC.②若以A1、C、B、D为顶点的四边形是矩形,则有三个位置,分别是图3①、图3②、图3③.对于图3①、图3②,过点C作CH⊥AB,垂足为H,运用相似三角形的性质建立方程就可求出AH,然后运用勾股定理就可求出AC的长;对于图3③,直接运用勾股定理就可求出AC的长【解答】解:(1)当A1、D两点重合时,如图1①和图1②,∵CD∥AB,CD=AB,∴四边形ACDB是平行四边形.∵△ABC沿BC折叠得△A1BC,A1、D两点重合,∴AC=A1C=DC.∴平行四边形ACDB是菱形.∴AC=AB=10(cm).故答案为:10.(2)当A1、D两点不重合时,①A1D∥BC.证明:过点A1作A1E⊥BC,垂足为E,过点D作DF⊥BC,垂足为F,如图2,∵CD∥AB,CD=AB,∴四边形ACDB是平行四边形.∴S△ABC=S△DBC.∵△ABC沿BC折叠得△A1BC,∴S△ABC=S△A1BC.∴S△DBC=S△A1BC.∴BC•DF=BC•A1E.∴DF=A1E.∵A1E⊥BC,DF⊥BC,∴∠A1EB=∠DFB=90°.∴A1E∥DF.∴四边形A1DFE是平行四边形.∴A1D∥EF.∴A1D∥BC.②Ⅰ.如图3①,过点C作CH⊥AB,垂足为H,此时AH<BH.∵四边形A1DBC是矩形,∴∠A1CB=90°.∵△ABC沿BC折叠得△A1BC,∴∠ACB=∠A1CB.∴∠ACB=90°.∵CH⊥AB,∴∠AHC=∠CHB=90°.∴∠ACH=90°﹣∠HCB=∠CBH.∴△AHC∽△CHB.∴.∴CH2=AH•BH.∵AB=10,CH=4,∴3=AH•(10﹣AH).解得:AH=2或AH=8.∵AH<BH,∴AH=2.∴AC2=CH2+AH2=16+4=20.∴AC=2.Ⅱ.如图3②,过点C作CH⊥AB,垂足为H,此时AH>BH.同理可得:AH=8.∴AC2=CH2+AH2=16+64=80.∴AC=4.Ⅲ.如图3③,∵四边形A1DCB是矩形,∴∠A1BC=90°.∵△ABC沿BC折叠得△A1BC,∴∠ABC=∠A1BC.∴∠ABC=90°.∴AC2=BC2+AB2=16+100=116.∴AC=2.综上所述;当以A1、C、B、D为顶点的四边形是矩形时,AC的长为2或24或2.。
2016~2017学年第二学期期末调研
初二数学 2017.06
本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:
1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字
笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦
干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;
3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸
上一律无效.
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一
项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果
A. X
B. L
C. C
D. Z 2. 若分式
2
3
x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-
3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是
A.确定事件
B.必然事件
C.不可能事件
D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是
A.2= 3= C.22
(3
=- 3=
6. 若(2)m =
-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<
7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是
A. ①②
B. ③④
C. ②③
D.②④
8. 在反比例函数2k
y x
-=
的图像上有两点11(,)A x y 、22(,)B x y 。
若120x x <<,12y y >,则k 取值范围是
A.2k ≥
B.2k >
C.2k ≤
D.2k <
9. 如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和D 、E 、F 。
若
23AB BC =,则DE
DF 等于 A.23 B.32 C.25 D.35
10. 如图,ABC ∆的面积为9,点P 在ABC ∆的边上运动.作点P 关于原点O 的对称点Q ,
再以PQ 为边作等边PQM ∆.当点P 在ABC ∆的边上运动一周时,点M 随之运动所形成的图形面积为
A. 3 B .9 C. 27 D.
二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.........
11. x 的取值范围是 . 12. 约分:
2
69ab
a b
= . 13. 若
34x y =,则x y y
-= . 14.
“针尖不着地的”的概率的估计值是 .
15. 计算:21)= .
16. 如图,在四边形ABCD 中,对角线AC BD ⊥,E 、F 分别是AB 、CD 的中点.若4AC =cm ,6BD =cm ,则EF = cm.
17. 己知点(0,0)O 、(2,0)A 、(0,1)B 。
点P 在函数2
y x
=
的图像上,过点P 作PQ x ⊥轴,垂足为点Q 。
若以点P 、O 、Q 为顶点的三角形与AOB ∆全等,则满足条件的点P 共有 个.
18. 如图在四边形ABCD 中,BC CD =,90BCD ∠=︒。
若4AB =cm ,3AD =cm ,则
对角线AC 的最大值为 cm.
三、解答题:本大题共11小题,共64分.把解答过程写在答题卡相应.....位置上...
,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.
19. (本题满分4分。
计算:2
⨯.
20. (本题满分4分)解方程:321
x x =-
21. (本题满分4分)先化简22
1211()111
a a a a a a -+-+÷+-+,再选择一个恰当的a 的值代入求值.
22. (本题满分5分) 已知:如图,四边形ABCD 是菱形.以点D 为圆心画弧,该弧分别与边
AD 、CD 相交于点E 、F ,连接BE 、BF .
求证:BE BF =.
23. (本题满分5分)为了弘扬苏州优秀传统文化,某中学举办了苏州文化知识大赛,其规则
是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分.赛后对全体参赛选手的成绩进行统计后,绘制了图中两幅不完整的答题情况的统计图.
根据图中信息,解答下列问题: (1)a = ,b = ; (2)补全频数分布直方图;
(3)若绘制“答题情况的扇形统计图”,求成绩在“90100x ≤<”组对应的扇形圆心角的度数.
24. (本题满分6分)在完全相同的五张卡片上分别写上数字1、2、3、4、5后,装入一只不
透明的袋子中搅匀.
(1)从中任取1张卡片,卡片上数字是奇数的概率是 ;
(2)从中任取1张卡片记下数字后放回,搅匀后再从中任取1张,求两张卡片上数字之
和为5的概率.(用树状图或列表法求解)
25. (本题满分6分)甲、乙两地的铁路里程为650 km ,从甲地乘“G ”字头列车A 和“D ”
字头列车B 都可直达乙地.已知A 车的平均速度为B 车的2倍,且行驶时间比B 车少2.5 h.请你根据以上信息,提出一个用分式方程....解决的问题,并写出解答过程.
26. (本题满分6分)己知:如图,在四边形ABCD 中,3AB CD =,//AB CD ,//CE DA ,
//DF CB .
(1)求证:四边形CDEF 是平行四边形; (2)填空:
①当四边形ABCD 必须满足条件 时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件 时,四边形CDEF 是菱形.
27. (本题满分6分)如图,在ABC ∆中,110BAC ∠=︒.将ABC ∆绕点A 按逆时针方向旋转
后得ADE ∆,DE 、BC 相交于点F ,连接DB .当//DB AE 时,求DFC ∠的度数.
28. (本题满分8分)如图,等腰直角三角形ABC 的直角顶点C 在第一象限,顶点A 、B 分
别在函数8
y x
=
图像的两个分支上,且AB 经过原点O ,BC 与x 轴相交于点D ,连接AD ,已知AD 平分四边形AODC
(1)证明:2BD CD =: (2)求点A 的坐标.
29. (本题满分10分)如图,在矩形ABCD 纸片中,10AB =cm ,12BC =cm 。
点P 在BC
边上,将PAB ∆沿AP 折叠,得PAE ∆,连接CE , DE . (1)当点E 落在AD 边上时,CE = ; (2)当点P 是BC 的中点时,求CE 的长;
(3)当CDE ∆分别满足下列条件时,求相应的PB 的长: ①DE CD =;②DE CE =.。