高分子溶液与憎液溶胶的区别
- 格式:pdf
- 大小:190.37 KB
- 文档页数:10
胶体化学研究胶体体系的科学。
是重要的化学学科分支之一。
表面活性剂使表面张力在稀溶液范围内随浓度的增加而急剧下降,表面张力降至一定程度后(此时溶液浓度仍很稀)便下降很慢,或基本不再下降,这种物质被称为表面活性剂。
3固体表面吸附是固体表面对其他物质的捕获,任何表面都有自发降低表面能的倾向,由于固体表面难于收缩,所以只能靠降低界面张力的办法来降低表面能,这就是固体表面产生吸附作用的根本原因。
润湿是用一种流体取代固体表面上存在的另一种流体的过程。
固体表面改性通过物理或化学的方法,使固体表面性质发生改变的过程。
吸附剂能够通过物理的或化学的作用,吸附其它物质的物质。
乳状液的变型乳状液的变型也叫反相,是指O/W型(W/O型)乳状液变成W/O型(O/W型)乳状液的现象。
触变作用凝胶振动时,网状结构受到破坏,线状粒子互相离散,系统出现流动性;静置时,线状粒子又重新交联形成网状结构。
净吸力在气液界面,液体表面分子受到体相分子的拉力大,受到气相分子的拉力小,所以表面分子受到一个垂直于液体表面、指向液体内部的合吸力,称为"净吸力"。
Krafft 点离子型表面活性剂在水中的溶解度随着温度的变化而变化。
当温度升高至某一点时,表面活性剂的溶解度急剧升高,该温度称为krafft点。
浊点加热非离子型表面活性剂的透明水溶液,其在水溶液中的溶解度随温度上升而降低,在升至一定温度值时出现浑浊,这个温度被称之为该表面活性剂的浊点。
表面张力表面张力是为增加单位面积所消耗的功。
临界胶束浓度:在表面活性剂溶液中,开始大量形成胶束的表面活性剂浓度。
起泡剂在气液分散体系中,使泡沫稳定的表面活性剂,称为起泡剂。
凝胶一定浓度的溶胶体系,在一定的条件下失去流动性而形成的半固体物质。
高分子溶液分散相是高分子物质的分散体系。
比表面积对于粉末或多孔性物质,1g固体所占有的总表面积为该物质的比表面。
增溶作用指难溶和不溶有机物在表面活性剂胶束水溶液中溶解度增大的现象离浆作用水凝胶在基本上不改变原来形状的情况下,分离出所包含的一部分液体,使构成凝胶网络的颗粒相互收缩靠近,排列得更加有序。
第十二章胶体化学贾晓辉1.下列性质中既不属于溶胶动力学性质又不属于电动现象的是A.电导B.电泳C. Brown运动D. 沉降平衡2.在Tyndall效应中,关于散射光强度的描述,下列说法中不正确的是A 随入射光波长的增大而增大B 随入射光波长的减小而增大C 随入射光强度的增大而增大D 随粒子浓度的增大而增大3.对As2S3水溶胶,当以H2S为稳定剂时,下列电解质中聚沉能力最强的是A. KCl B. NaCl C. CaCl2 D. AlCl34.用等体积的0.05mol·m-3AgNO3溶液和0.1mol·dm-3KI溶液混合制备的AgI 溶胶,在电泳仪中胶粒向A.正极移动B.负极移动C.不移动D.不能确定5.对一胶粒带正电的溶胶,使用下列电解质聚沉时,聚沉值最小的是A. KClB. KNO3C. K2C2O4D. K3[Fe(CN)6]6.电动电势ζ是指A. 固体表面与滑移面的电势差B. 固体表面与溶液本体的电势差C. 滑移面与溶液本体的电势差D. 紧密层与扩散层分界处与溶液本体的电势差7.外加电解质可以使溶胶聚沉,直接原因是A. 降低了胶粒表面的热力学电势0B. 降低了胶粒的电动电势ζC. 同时降低了0和ζD. 降低了|0 |和|ζ|的差值蒋军辉胶体化学一.填空题1.溶胶系统所具有的三个基本特点是; ;。
2.在超显微镜下看到的光点是 ,比实际胶体的体积大数倍之多,能真正观测胶体颗粒的大小与形状的是_。
3.溶胶的动力性质包括。
4.用和反应制备溶胶当过量时胶团结构式为。
当过量时,胶团结构式为,在电泳实验中该溶胶的颗粒向移动。
5.关于胶体稳定性的D LVO理论认为,胶团之间的吸引力势能产生于;而排斥力势能产生于。
6.当用等体积的溶液制备Ag Br溶胶,其胶体结构为,请标出胶核,胶粒,胶团,上述溶胶在中,聚沉值最大的是。
7.在外加电场作用下,胶粒在分散介质中的移动称为。
8.胶体系统的光学性质表现为 ,电学性质表现为。
简述高分子溶液与溶胶剂区别1 高分子溶液与溶胶剂的基本概念高分子溶液和溶胶剂都是化学中常用的概念,尤其是在高分子材料研究中更为重要。
高分子溶液是指高分子在溶剂中形成的溶液体系。
在这种体系中,高分子链与溶剂分子间发生相互作用,形成一种稳定的溶液体系。
而溶胶剂则是指一种介于晶体和溶液形态之间的体系。
在这种状态下,溶剂和溶质分子都非常稳定地存在于一定的体积内,但是它们并没有完全溶解和混合在一起。
2 高分子溶液和溶胶剂的性质与特点高分子溶液和溶胶剂都具有一些独特的性质和特点。
1. 高分子溶液的分子量较大,通常在几万到几百万之间;而溶胶剂中的溶质分子较小,通常在几百到几千之间。
2. 高分子溶液的物理性质与其分子量密切相关,比如黏度、溶解度、热力学性质等,而溶胶剂的物理性质则比较复杂,包括了介于晶体和溶液状态的一系列特征。
3. 高分子溶液的结构和性质受到其分子量、容积、分布、溶剂特性、浓度等多种因素的影响;而溶胶剂的结构和性质则主要受到其组成和制备条件的影响。
3 高分子溶液和溶胶剂的制备方法及应用高分子溶液的制备方法有溶液聚合法、浸润法、溶液共混法等多种。
这些方法都是通过溶剂与高分子链的相互作用来制备高分子溶液。
高分子溶液的应用广泛,包括在医药、食品、化工、环保、材料等领域。
而溶胶剂则主要通过溶胶凝胶法、溶胶膜法、微乳液法等方法制备。
通常溶胶剂的应用更多地涉及到材料科学和技术领域,比如用于制备纳米材料、催化剂、传感器等。
4 结语高分子溶液和溶胶剂在化学研究和工业应用中都有着非常重要的地位。
虽然它们具有不同的性质、制备方法和应用范围,但是它们的本质都是基于溶质和溶剂之间的相互作用来实现的。
随着科学技术的不断发展,高分子溶液和溶胶剂的研究和应用也将越来越重要。
溶液和胶体第⼆章溶液和胶体溶液和胶体是物质的不同存在形式,在⾃然界中普遍存在,与⼯农业⽣产以及⼈类⽣命活动过程有着密切的联系。
⼴⼤的江河湖海就是最⼤的⽔溶液,⽣物体和⼟壤中的液态部分⼤都为溶液或胶体。
溶液和胶体是物质在不同条件下所形成的两种不同状态。
例如NaCl溶于⽔就成为溶液,把它溶于酒精则成为胶体。
那么,溶液和胶体有什么不同呢?它们各⾃⼜有什么样的特点呢?要了解上述问题,需要了解有关分散系的概念。
2.1分散系及其分类2.1.1 分散系的概念⼀种或⼏种物质分散在另⼀种物质⾥所形成的系统称为分散系统,简称分散系。
例如粘⼟分散在⽔中成为泥浆,⽔滴分散在空⽓中成为云雾,奶油、蛋⽩质和乳糖分散在⽔中成为⽜奶等都是分散系。
在分散系中,被分散的物质叫做分散质(或分散相),⽽容纳分散质的物质称为分散剂(或分散介质)。
在上述例⼦中,粘⼟、⽔滴、奶油、蛋⽩质、乳糖等是分散质,⽔、空⽓就是分散剂。
分散质和分散剂的聚集状态不同,分散质粒⼦⼤⼩不同,分散系的性质也不同。
我们可以按照物质的聚集状态或分散质颗粒的⼤⼩将分散系进⾏分类。
2.1.2分散系的分类物质⼀般有⽓态、液态、固态三种聚集状态,若按分散质和分散剂的聚集状态进⾏分类,可以把分散系分为九类,见表2-1。
表2-1 分散系分类(⼀)若按分散质粒⼦直径⼤⼩进⾏分类,则可以将分散系分为三类,见表2-2。
表2-2 分散系分类(⼆)分⼦与离⼦分散系统中,分散质粒⼦直径<1nm,它们是⼀般的分⼦或离⼦,与分散剂的亲和⼒极强,均匀、⽆界⾯,是⾼度分散、⾼度稳定的单相系统。
这种分散系统即通常所说的溶液,如蔗糖溶液、⾷盐溶液。
胶体分散系中,分散质粒⼦直径为1~100nm,它包括溶胶和⾼分⼦化合物溶液两种类型。
⼀类是溶胶,其分散质粒⼦是由许多⼀般的分⼦组成的聚集体,这类难溶于分散剂的固体分散质⾼度分散在液体分散剂中,所形成的胶体分散系称为溶胶。
例如氢氧化铁溶胶、硫化砷溶胶、碘化银溶胶、⾦溶胶等。
第一章1.胶体体系的重要特点之一是具有很大的表面积。
通常规定胶体颗粒的大小为1-100nm (直径)2.胶体是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。
胶体化学研究对象是溶胶(也称憎液溶胶)和高分子溶液(也称亲液溶胶)。
气溶胶:云雾,青烟、高空灰尘液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金第二章一.溶胶的制备与净化1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在2.胶体的制备方法:(1)凝聚法(2)分散法二.溶胶的运动性质1.扩散:过程为自发过程d d d d m c DA t x =-,此为Fick 第一扩散定律,式中dm/dt 表示单位时间通过截面A 扩散的物质数量,D 为扩散系数,单位为m2/s ,D 越大,质点的扩散能力越大 扩散系数D 与质点在介质中运动时阻力系数f 之间的关系为:A RT D N f =(A N 为阿伏加德罗常数;R 为气体常数)若颗粒为球形,阻力系数f =6r πη(式中,η为介质的黏度,r 为质点的半径) 故16RT D NA r πη=⨯,此式即为Einstein 第一扩散公式浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。
2.布朗运动:本质是分子的热运动现象:分子处于不停的无规则运动中由于布朗运动是无规则的,因此就单个粒子而言,它们向各方向运动的几率是相等的。
在浓度高的区域,单位体积的粒子较周围多,造成该区域“出多进少”,使浓度降低,这就表现为扩散。
扩散是布朗运动的宏观表现,而布朗运动是扩散的微观基础Einstein 认为,粒子的平均位移x 与粒子半径r 、介质黏度η、温度T 和位移时间t 之间的关系:123A RT t x N r πη⎛⎫= ⎪⎝⎭,此式常称为Einstein-Brown 位移方程。
式中x 是在观察时间t 内粒子沿x 轴方向的平均位移;r 为胶粒的半径;η为介质的粘度;AN为阿伏加德罗常数。