2019届高考物理一轮复习第十章电磁感应课时作业36
- 格式:doc
- 大小:337.00 KB
- 文档页数:6
第十章电磁感应[全国卷5年考情分析]磁通量(Ⅰ)自感、涡流(Ⅰ)以上2个考点未曾独立命题第1节电磁感应现象__楞次定律(1)闭合电路内只要有磁通量,就有感应电流产生。
(×)(2)穿过线圈的磁通量和线圈的匝数无关。
(√)(3)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生。
(√)(4)当导体切割磁感线时,一定产生感应电动势。
(√)(5)由楞次定律知,感应电流的磁场一定与引起感应电流的磁场方向相反。
(×)(6)感应电流的磁场一定阻碍引起感应电流的磁场的磁通量的变化。
(√)◎物理学史判断(1)1831年,英国物理学家法拉第发现了——电磁感应现象。
(√)(2)1834年,俄国物理学家楞次总结了确定感应电流方向的定律——楞次定律。
(√)1.磁通量没有方向,但有正、负之分。
2.感应电流的产生条件表述一、表述二本质相同。
3.右手定则常用于感应电流产生条件表述一对应的问题,楞次定律对表述一、表述二对应的问题都适用。
4.楞次定律的本质是能量守恒。
5.解题中常用到的二级结论:(1)楞次定律的三个推广含义:“增反减同”“增缩减扩”“来拒去留”。
(2)楞次定律的双解:①“加速向左运动”与“减速向右运动”等效。
②“×增加”与“·减少”所产生的感应电流方向一样,反之亦然。
突破点(一) 对电磁感应现象的理解和判断1.判断产生感应电流的两种方法(1)闭合电路的一部分导体切割磁感线,产生“动生电流”。
(2)“感生电流”,即导体回路必须闭合,穿过闭合导体回路的磁通量发生变化,二者缺一不可。
2.常见的产生感应电流的三种情况[题点全练]。
高考物理复习课时跟踪检测(三十六) 电磁感应的综合应用(二)高考常考题型:选择题+计算题1.(2012·东城一模)如图1所示正方形闭合导线框处于磁感应强度恒定的匀强磁场中,C、E、D、F为线框中的四个顶点,图(甲)中的线框绕E点转动,图(乙)中的线框向右平动,磁场足够大。
下列判断正确的是( )图1A.图(甲)线框中有感应电流产生,C点电势比D点低B.图(甲)线框中无感应电流产生,C、D两点电势相等C.图(乙)线框中有感应电流产生,C点电势比D点低D.图(乙)线框中无感应电流产生,C、D两点电势相等2.在竖直方向的匀强磁场中,水平放置一个面积不变的单匝金属圆形线圈,规定线圈中感应电流的正方向如图2甲所示,取线圈中磁场方向向上为正,当磁感应强度B随时间t如图乙变化时,图3中能正确表示线圈中感应电流变化的是( )图2图33.如图4所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动过程中,线圈ab将( )A.静止不动B.逆时针转动图4C.顺时针转动D.发生转动,但因电源的极性不明,无法确定转动的方向4.矩形导线框abcd(如图5甲)放在匀强磁场中,磁感线方向与线框平面垂直,磁感应强度B随时间t变化的图象如图乙所示。
t=0时刻,磁感应强度的方向垂直纸面向里。
若规定导线框中感应电流逆时针方向为正,则在0~4 s时间内,线框中的感应电流I以及线框的ab边所受安培力F随时间变化的图象为(安培力取向上为正方向)( )图5图65. (2012·德州模拟)如图7所示,两固定的竖直光滑金属导轨足够长且电阻不计。
绝缘轻绳一端固定,另一端系于导体棒a的中点,轻绳保持竖直。
将导体棒b由边界水平的匀强磁场上方某一高度处静止释放。
匀强磁场的宽度一定,方向与导轨平面垂直,两导体棒电阻均为R且与导轨始终保持良好接触。
下列说法正确的是( )A.b进入磁场后,a中的电流方向向左图7B.b进入磁场后,轻绳对a的拉力增大C.b进入磁场后,重力做功的瞬时功率可能增大D.b由静止释放到穿出磁场的过程中,a中产生的焦耳热等于b减少的机械能6. (2012·浦东新区质量抽测)如图8所示,倾斜的平行导轨处在匀强磁场中,导轨上、下两边的电阻分别为R1=3 Ω和R2=6 Ω,金属棒ab的电阻R3=4 Ω,其余电阻不计。
第十章电磁感应章末综合测试(十)(时间:60分钟分数:100分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列没有利用涡流的是( )A.金属探测器B.变压器中用互相绝缘的硅钢片叠成铁芯C.用来冶炼合金钢的真空冶炼炉D.磁电式仪表的线圈用铝框做骨架解析:B 金属探测器、冶炼炉都是利用涡流现象工作的,磁电式仪表利用涡流能让指针快速稳定,也是利用涡流现象,变压器中的硅钢片是为了防止涡流产生铁损.2.如图所示电路中,A、B、C为完全相同的三个灯泡,L是一直流电阻不可忽略的电感线圈,a、b为线圈L的左右两端点,原来开关S是闭合的,三个灯泡亮度相同.将开关S断开后,下列说法正确的是( )A.a点电势高于b点,A灯闪亮后缓慢熄灭B.a点电势低于b点,B、C灯闪亮后缓慢熄灭C.a点电势高于b点,B、C灯闪亮后缓慢熄灭D.a点电势低于b点,B、C灯不会闪亮只是缓慢熄灭解析:D 电路稳定时,三个完全相同的灯泡亮度相同,说明流经三个灯泡的电流相等.某时刻将开关S断开,流经电感线圈的磁通量减小,其发生自感现象,相当于电源,产生和原电流方向相同的感应电流,故a点电势低于b点电势,三个灯不会闪亮只是缓慢熄灭,选项D正确.3.如图所示,一导体圆环位于纸面内,O为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM可绕O转动,M端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R.杆OM以匀角速度ω逆时针转动,t=0时恰好在图示位置.规定从a到b流经电阻R 的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t=0开始转动一周的过程中,电流随ωt变化的图象是( )解析:C 杆OM 以匀角速度ω逆时针转动,t =0时恰好进入磁场,故前T 4内有电流流过,B 错误.根据右手定则可以判定,感应电流的方向从M 指出圆心O ,流过电阻的方向是从b 流向a ,与规定的正方向相反,为负值,A 错误.在T 4~T2时间内杆OM 处于磁场之外,没有感应电流产生,C 正确,D 错误.4.如图甲所示,光滑的平行水平金属导轨MN 、PQ 相距L ,在MP 之间接一个阻值为R 的电阻,在两导轨间cdfe 矩形区域内有垂直导轨平面竖直向上、宽为d 的匀强磁场,磁感应强度为B .一质量为m 、电阻为r 、长度也刚好为L 的导体棒ab 垂直搁在导轨上,与磁场左边界相距d 0.现用一个水平向右的力F 拉棒ab ,使它由静止开始运动,棒ab 离开磁场区域前已做匀速直线运动,棒ab 与导轨始终保持良好接触,导轨电阻不计,F 随ab 与初始位置的距离戈变化的情况如图乙所示,F 0已知,下列判断正确的是( )甲 乙A .棒ab 在ac 之间的运动是匀加速直线运动B .棒ab 在ce 之间不可能一直做匀速运动C .棒ab 在ce 之间一定先做加速度减小的运动,再做匀速运动D .棒ab 经过磁场的过程中,通过电阻R 的电荷量为BLd R解析:A 棒ab 在ac 之间运动时,水平方向只受到恒定拉力F 0作用,做匀加速直线运动,A 正确;若棒ab 进入磁场后安培力与水平拉力恰好平衡,则棒ab 在磁场中可能一直做匀速运动,B 错误;棒ab 进入磁场后立即受到安培力的作用,若水平拉力大于安培力,则棒ab 加速运动,但加速度随着速度的增大而减小,直到匀速运动,C 错误;棒ab 经过磁场的过程中,通过电阻R 的电荷量为BLd R +r,D 错误. 5.(2018·河南安阳检测)如图所示,平行金属导轨宽度为d ,一部分轨道水平,左端接电阻R ,倾斜部分与水平面成θ角,且置于垂直斜面向上的匀强磁场中,磁感应强度为B ,现将一质量为m 、长度也为d 的导体棒从导轨顶端由静止释放,直至滑到水平部分(导体棒下滑到水平部分之前已经匀速,滑动过程中与导轨保持良好接触,重力加速度为g ).不计一切摩擦力,导体棒接入回路电阻为r ,则整个下滑过程中( )A .导体棒匀速运动时速度大小为mg R +r sin θB 2d 2B .匀速运动时导体棒两端电压为mg R +r sin θBdC .导体棒下滑距离为s 时,通过R 的总电荷量为Bsd R D .重力和安培力对导体棒所做的功大于导体棒获得的动能解析:A 导体棒下滑过程中受到沿斜面向下重力的分力和沿斜面向上的安培力,当匀速运动时,有mg sin θ=BId ,根据欧姆定律可得I =ER +r ,根据法拉第电磁感应定律可得E =Bdv ,联立解得v =mg R +r B 2d 2sin θ,E =mg R +r Bdsin θ,故导体棒两端的电压为U =Er +R R =mgR Bd sin θ,A 正确,B 错误.根据法拉第电磁感应定律E =ΔΦΔt =B ΔS Δt =Bds Δt ,故q =I Δt =E R +r Δt =Bsd R +r,根据动能定理可得重力和安培力对导体棒所做的功等于导体棒获得的动能,C 、D 错误.6.(2017·广东六校联考)在如图甲所示的电路中,螺线管匝数n =1 500匝,横截面积S =20 cm 2.螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF.在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.则下列说法中正确的是( )A .螺线管中产生的感应电动势为1.2 VB .闭合S ,电路中的电流稳定后电容器上极板带正电C .电路中的电流稳定后,电阻R 1的电功率为5×10-2 WD .S 断开后,流经R 2的电荷量为1.8×10-5 C解析:AD 由法拉第电磁感应定律可得,螺线管内产生的电动势为E =n ΔB ΔtS =1.2 V ,A 正确.根据楞次定律,当穿过螺线管的磁通量增加时,螺线管下部可以看成电源的正极,则电容器下极板带正电,B 错误.电流稳定后,电流I =E R 1+R 2+r=0.12 A ,电阻R 1上消耗的功率P =I 2R 1=5.76×10-2W ,C 错误.开关断开后流经电阻R 2的电荷量Q =CU =CIR 2=1.8×10-5 C ,D 正确.7.如图所示,abcd 为一矩形金属线框,其中ab =cd =L ,ab 边接有定值电阻R, cd 边的质量为m ,其他部分的电阻和质量均不计,整个装置用两根绝缘轻弹簧悬挂起来.线框下方处在磁感应强度大小为B 的匀强磁场中,磁场方向垂直于纸面向里.初始时刻,使两弹簧处于自然长度,且给线框一竖直向下的初速度v 0,当cd 边第一次运动至最下端的过程中,R 产生的电热为Q ,此过程cd 边始终未离开磁场,已知重力加速度大小为g ,下列说法中正确的是( ) A .初始时刻cd 边所受安培力的大小为B 2L 2v 0R-mg B .线框中产生的最大感应电流可能为BLv 0RC .cd 边第一次到达最下端的时刻,两根弹簧具有的弹性势能总量大于12mv 20-Q D .在cd 边反复运动过程中,R 中产生的电热最多为12mv 20 解析:BC 初始时刻cd 边速度为v 0,产生的感应电动势最大为E =BLv 0,最大感应电流I =E R =BLv 0R ,初始时刻cd 边所受安培力的大小F =BIL =B 2L 2v 0R,A 错误,B 正确.由能量守恒定律得12mv 20+mgh =Q +E p ,cd 边第一次到达最下端的时刻,两根弹簧具有的弹性势能总量E p =12mv 20+mgh -Q ,大于12mv 20-Q ,C 正确.在cd 边反复运动地过程中,最后平衡位置弹簧弹力等于线框重力,一定具有弹性势能,R 中产生的电热一定小于12mv 20,D 错误. 8.如图所示,宽为L 的水平光滑金属轨道上放置一根质量为m 的导体棒MN ,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R 的电阻连接,匀强磁场的方向与轨道平面垂直,磁感应强度大小为B ,电容器的电容为C ,金属轨道和导体棒的电阻不计.现将开关拨向“1”,导体棒MN 在水平向右的恒力F 作用下由静止开始运动,经时间t 0后,将开关S 拨向“2”,再经时间t ,导体棒MN 恰好开始匀速向右运动.下列说法正确的是( )A .开关拨向“1”时,金属棒做加速度逐渐减小的加速运动B .t 0时刻电容器所带的电荷量为CBLFt 0m +CB 2L 2C .开关拨向“2”后,导体棒匀速运动的速率为FR B 2L 2D .开关拨向“2”后t 时间内,导体棒通过的位移为FR B 2L 2(t +mt 0m +CB 2L 2-mR B 2L 2) 解析:BCD 开关拨向“1”时,设在极短时间Δt 内流过金属棒的电荷量为ΔQ ,则电路中的瞬时电流I =ΔQ Δt,电容器的电压U =BLv ,电荷量Q =CU ,则ΔQ =C ΔU =CBL Δv ,可得I =CBL Δv Δt=CBLa .对金属棒,由牛顿第二定律得F -BIL =ma ,联立得金属棒的瞬时加速度a =F m +CB 2L 2.由于加速度表达式中的各个物理量都不随时间、位移变化,由此可知金属棒的加速度不变,做匀加速直线运动,A 错误.t 0时刻金属板MN 速度v 0=at 0,电容器所带的电压U =BLv 0=BLat 0,电荷量Q =CU ,解得Q =CBLFt 0m +CB 2L 2,B 正确.由F 安=BIL ,I =ER,E =BLv ,联立解得F 安=B 2L 2v R.开关拨向“2”,t 时间后,导体棒匀速运动时,有F =F 安,解得v =FR B 2L 2,C 正确.开关拨向“2”后t 时间内,根据牛顿第二定律得F -F 安=F -B 2L 2v R=ma =m Δv Δt ,得F Δt -B 2L 2v R Δt =m Δv .两边求和得∑(F Δt -B 2L 2v RΔt )=∑m Δv .而∑v Δt =x ,∑Δv =v -v 0,联立解得位移x =FR B 2L 2(t +mt 0m +CB 2L 2-mRB 2L2),D 正确. 二、非选择题(本大题共4小题,第9、10题各12分,第11、12题各14分,共52分)9.如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R =3 Ω的定值电阻,下端开口,轨道间距L =1 m .整个装置处于磁感应强度B =2 T 的匀强磁场中,磁场方向垂直斜面向上.质量m =1 kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1 Ω,电路中其余电阻不计.金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.(1)求金属棒ab 沿导轨向下运动的最大速度v m ;(2)求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ;(3)若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为1.5 J ,求流过电阻R 的总电荷量q .解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m .由牛顿第二定律得mg sin θ-μmg cos θ-F 安=0(1分)F 安=BIL ,I =BLv m R +r,解得v m =2.0 m/s(3分) (2)金属棒以最大速度v m 匀速运动时,电阻R 上的电功率最大,此时P R =I 2R ,解得P R =3 W(2分)(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x ,由能量守恒定律得 mgx sin θ=μmgx cos θ+Q R +Q r +12mv 2m (1分)根据焦耳定律Q R Q r =Rr,解得x =2.0 m(1分) 根据q =I Δt ,I =ER +r (2分)E =ΔΦΔt =BLx Δt,解得q =1.0 C(2分) 答案:(1)2 m/s (2)3 W (3)1.0 C10.(2018·山东泰安期末)如图所示,ab 和cd 为质量m =0.1 kg 、长度L =0.5 m 、电阻R =0.3 Ω的两相同金属棒,ab 放在半径分别为r 1=0.5 m 和r 2=1 m 的水平同心圆环导轨上,导轨处在磁感应强度B =0.2 T 、方向竖直向上的匀强磁场中;cd 跨放在间距也为L =0.5 m 、倾角θ=30°的光滑平行导轨上,导轨处于磁感应强度也为B =0.2 T 、方向垂直导轨平面向上的匀强磁场中.四条导轨由导线连接并与两导体棒组成闭合电路,除导体棒电阻外其余电阻均不计.ab 在外力作用下沿圆环导轨匀速转动,使cd 在倾斜导轨上保持静止.ab 与两圆环导轨间的动摩擦因数均为0.5,重力加速度g =10 m/s 2.求:(1)从上向下看ab 应沿顺时针还是逆时针方向转动?(2)ab 转动的角速度大小;(3)作用在ab 上的外力的功率.解析:(1)根据cd 静止可知,cd 受到的安培力方向沿斜面向上,由左手定则可知cd 中的电流由d 流向c ,ab 中的电流由b 流向a ,由右手定则可知ab 棒沿顺时针方向转动.① (1分)(2)在Δt 时间内,导体棒ab 扫过的面积ΔS =12ωΔt (r 22-r 21)=12ωΔt (4L 2-L 2)② (1分)根据法拉第电磁感应定律,导体棒上感应电动势的大小为E =B ΔS Δt③ (1分) 由欧姆定律可知,通过导体棒中的感应电流的大小I =E 2R④ (1分) 对cd 由平衡条件知mg sin θ=BIL ⑤ (1分)代入数据解得ω=40 rad/s ⑥ (1分)(3)同心圆环导轨上,在竖直方向,由于棒质量分布均匀,故内、外圈导轨对导体棒的支持力大小相等,设其值为F N ,则mg -2F N =0⑦ (1分)两导轨对运行的导体棒ab 的滑动摩擦力均为F f =μF N ⑧ (1分)导体棒ab 的两端点的速率分别为v 1=ωr 1,v 2=ωr 2⑨ (1分)克服摩擦力做功的功率P 1=F f v 1+F f v 2⑩ (1分)电路消耗的电功率P 2=2I 2R ⑪ (1分)代入数据解得,外力的功率P =P 1+P 2=30 W ⑫ (1分)答案:(1)沿顺时针方向转动 (2)40 rad/s (3)30 W11.为了夜间行驶安全,自行车后轮上常安装一个小型发电机.某同学设计了一种带有闪烁灯的自行车后轮.如图甲所示,自行车牙盘半径r 2=12 cm ,飞轮半径r 3=6 cm.电路示意图如图乙所示,该同学在车轮(车轮内缘为导体)与轮轴之间均匀地连接4根金属条,每根金属条中间都串接一个阻值为R =0.3 Ω的小灯泡,小灯泡的大小可忽略,阻值保持不变,车轮半径r 1=0.4 m ,轮轴半径可以忽略.车架上固定一个强磁铁,可形成圆心角为θ=60°的扇形匀强磁场区域,磁感应强度大小B =2.0 T ,方向垂直纸面向外.π取3.14.(1)若自行车前进时,后轮顺时针转动的角速度恒为ω,且在金属条ab 进入磁场中时,ab 中电流大小为4 A ,求角速度ω的值.(不计其他电阻和车轮厚度)(2)若该同学骑车时每分钟后轮转120圈,自行车和人受到的外界阻力大小恒为100 N ,则该同学骑车30分钟,需要对自行车做多少功?(小数点后保留两位有效数字)解析:(1)当金属条ab 进入磁场中,切割磁感线产生的感应电动势相当于电源,其电动势大小E =BL v =BL ·ωL 2=12BωL 2(2分) 其中L =r 1=0.4 m(1分)电路总电阻R 总=R 3+R =4R 3=0.4 Ω(1分) 通过金属条ab 的电流I =E R 总=4 A(1分) 解得角速度ω=10 rad/s(1分)(2)后轮转速n =2 r/s ,后轮角速度ω0=4π rad/s(1分)车速v =r 1ω0=1.6π m/s(1分)电动势E 0=12Bω0r 21=0.64π V(1分) 总的电功率P 总=E 20R 总=128125π2 W(1分) 4根金属条轮换切割磁感线,车轮转一圈的时间有三分之二时间内产生焦耳热,则30分钟内总的焦耳热Q =P 总×23t =1.21×104 J(1分) 30分钟内克服阻力做功W f =F f s =F f vt =9.04×105J(1分)30分钟内一共需要做功W 总=W f +Q =9.16×105 J(1分)答案:(1)10 rad/s (2)9.16×105 J12.如图所示,质量为M 的导体棒ab ,垂直放在间距为l 的平行光滑金属导轨上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板.R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v .(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x .解析:本题考查物体的平衡、牛顿运动定律和法拉第电磁感应定律的综合应用.(1)导体棒匀速下滑时Mg sin θ=BIl ① (2分)得I =Mg sin θBl② (1分) 设导体棒产生的感应电动势为E 0 E 0=Blv ③ (2分)由闭合电路欧姆定律,得 I =E 0R +R x④ (1分) 联立②③④,得v =2MgR sin θB 2l2⑤ (1分) (2)改变R x ,由②式可知电流不变.设带电微粒在金属板间匀速通过时,板间电压为U ,电场强度大小为EU =IR x ⑥ (2分)E =U d⑦ (2分) mg =qE ⑧ (2分)联立②⑥⑦⑧得R x =mBLd qM sin θ(1分) 答案:(1)E 0R +R x 2MgR sin θB 2l 2 (2)mBLd qM sin θ。
第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。
3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。
(2)v ∥B 时,E =0。
二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。
(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。
②表达式:E =L ΔIΔt。
(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。
2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。
授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。
(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。
2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。
(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。
(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。
第1讲电磁感应现象楞次定律一、单项选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.如下列图,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现假设使矩形框以左边的一条边为轴转到竖直的虚线位置,如此此过程中磁通量的改变量的大小是( C )A.3-12BS B.3+12NBSC.3+12BS D.3-12NBS[解析] sin θ磁通量与匝数无关,Φ=BS中,B与S必须垂直。
初态Φ1=B cos θ·S,末态Φ2=-B cos θ·S,磁通量的变化量大小ΔΦ=|Φ2-Φ1|=|BS(-cos 30°-sin30°)|=3+12BS,所以应选C项。
2.(2020·浙江诸暨模拟)有人设计了一种储能装置:在人的腰部固定一块永久磁铁,N 极向外;在手臂上固定一个金属线圈,线圈连接着充电电容器。
当手不停地前后摆动时,固定在手臂上的线圈能在一个摆动周期内,两次扫过别在腰部的磁铁,从而实现储能。
如下说法正确的答案是( D )A.该装置违反物理规律,不可能实现B.此装置会使手臂受到阻力而导致人走路变慢C.在手摆动的过程中,电容器极板的电性不变D.在手摆动的过程中,手臂受到的安培力方向交替变化[解析] D.在手摆动的过程中,线圈交替的进入或者离开磁场,使穿过线圈的磁通量发生变化,因而会产生感应电流,从而实现储能,该装置符合法拉第电磁感应定律,可能实现,选项A错误;此装置不会影响人走路的速度,选项B错误;在手摆动的过程中,感应电流的方向不断变化,如此电容器极板的电性不断改变。
选项C错误;在手摆动的过程中,感应电流的方向不断变化,手臂受到的安培力方向交替变化。
选项D正确。
3.如下列图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且与线圈相互绝缘。
当MN中电流突然减小时,线圈所受安培力的合力方向( B )A.向左B.向右C.垂直纸面向外D.垂直纸面向里[解析] 解法一:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,线圈abcd中产生的感应电流方向为顺时针方向,由左手定如此可知ab边与cd边所受安培力方向均向右,所以线圈所受安培力的合力方向向右,B正确。
(建议用时:60分钟)一、单项选择题1.下列图中能产生感应电流的是()解析:选B.根据产生感应电流的条件:A中,电路没闭合,无感应电流;B中,电路闭合,且垂直磁感线的平面的面积增大,即闭合电路的磁通量增大,有感应电流;C中,穿过闭合线圈的磁感线相互抵消,磁通量恒为零,无感应电流;D中,闭合回路中的磁通量不发生变化,无感应电流.2.物理课上,老师做了一个奇妙的“跳环实验”.如图所示,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复实验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同解析:选D.无论实验用的是交流电还是直流电,闭合开关S的瞬间,穿过套环的磁通量均增加,只要套环的材料是导体,套环中就能产生感应电流,套环就会跳起.如果套环是用塑料做的,则不能产生感应电流,也就不会受安培力作用而跳起,选项D正确.3.(2018·浙江宁波模拟)如图甲所示,在同一平面内有两个圆环A、B,圆环A将圆环B分为面积相等的两部分,以图甲中A环电流沿顺时针方向为正,当圆环A中的电流如图乙所示变化时,下列说法正确的是()A.B中始终没有感应电流B.B中有顺时针方向的感应电流C .B 中有逆时针方向的感应电流D .B 中的感应电流先沿顺时针方向,后沿逆时针方向解析:选B.由安培定则可知,环A 产生的磁场分布,环内垂直纸面向里,环外垂直纸面向外,由于内部的磁场大于外部的磁场,由矢量的叠加原理可知B 环总磁通量向里;当导线中的电流强度I 逐步减小时,导致环产生感应电流.根据楞次定律,则有感应电流的方向顺时针;同理,当导线中的电流强度I 反向逐渐增大时,导致环产生感应电流.根据楞次定律,则感应电流的方向为顺时针,故B 正确,A 、C 、D 错误.4.如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t的变化关系如图乙所示.在0~T 2时间内,直导线中电流向上,则在T 2~T 时间内,线框中感应电流的方向与所受安培力的合力方向分别是( )A .顺时针,向左B .逆时针,向右C .顺时针,向右D .逆时针,向左解析:选B.在0~T 2时间内,直导线中电流向上,由题图乙知,在T 2~T 时间内,直导线电流方向也向上,根据安培定则知,导线右侧磁场的方向垂直纸面向里,电流逐渐增大,则磁场逐渐增强,根据楞次定律,金属线框中产生逆时针方向的感应电流.根据左手定则,金属线框左边受到的安培力方向向右,右边受到的安培力方向向左,离导线越近,磁场越强,则左边受到的安培力大于右边受到的安培力,所以金属线框所受安培力的合力方向向右,故B 正确,A 、C 、D 错误.5.(2018·山东烟台模拟)如图所示,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且相互绝缘.当矩形线圈突然向右运动时,线圈所受安培力的合力方向( )A .向左B .向右C .垂直纸面向外D .垂直纸面向里解析:选A.根据楞次定律,“来拒去留”,感应电流的效果总是阻碍相对运动,所以线圈向右运动时所受安培力向左.6.(2018·佛山模拟)如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,若要使圆环中产生如箭头所示方向的瞬时感应电流,下列方法可行的是( )A .使匀强磁场的磁感应强度均匀增大B.使圆环绕水平轴ab如图转动30°C.使圆环绕水平轴cd如图转动30°D.保持圆环水平并使其绕过圆心的竖直轴转动解析:选A.根据右手定则,圆环中感应电流产生的磁场竖直向下与原磁场方向相反,根据楞次定律,说明圆环磁通量在增大.磁场增强则磁通量增大,A正确;使圆环绕水平轴ab 或cd转动30°,圆环在中性面上的投影面积减小,磁通量减小,只会产生与图示方向反向的感应电流,B、C错误;保持圆环水平并使其绕过圆心的竖直轴转动,圆环仍与磁场垂直,磁通量不变,不会产生感应电流,D错误.7.如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块()A.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大解析:选C.小磁块在铜管中下落,产生电磁感应现象,根据楞次定律的推论——阻碍相对运动可知,小磁块下落过程中受到向上的电磁阻力,而在塑料管中下落,没有电磁感应现象,小磁块做自由落体运动,故C正确.8.如图所示,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属圆环B,使B的环面水平且与圆盘面平行,其轴线与胶木盘A的轴线OO′重合.现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大解析:选B.使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,ω增大,等效电流增大,产生B增大,则金属环B内磁通量增大,根据楞次定律,金属环B的面积有缩小的趋势,丝线受到的拉力减小,选项B正确.9.(2018·衡水冀州中学月考)如图所示为两组同心闭合线圈的俯视图,若内线圈的电流I1为图中所示的方向,则当I1增大时,外线圈中的感应电流I2的方向及I2受到的安培力F的方向分别为()A.I2沿顺时针方向,F沿半径指向圆心B.I2沿顺时针方向,F沿半径背离圆心C.I2沿逆时针方向,F沿半径指向圆心D.I2沿逆时针方向,F沿半径背离圆心解析:选D.内线圈通有题图所示方向的电流I1,当I1增大时,导致穿过外线圈的磁通量增大,由楞次定律可得,外线圈中的感应电流I2的方向为沿逆时针方向;由于外线圈处于内线圈产生的磁场中,由左手定则可得,I2受到的安培力F的方向沿半径背离圆心,故D正确.10.(2018·郑州一中联考)如图所示,固定于水平面上的金属架abcd处在竖直向下的匀强磁场中,金属棒MN沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN 到达的位置恰好使MbcN构成一个边长为1的正方形.为使MN棒中不产生感应电流,从t =0开始,磁感应强度B随时间t变化的示意图应为()解析:选 C.根据楞次定律,若闭合回路内的磁通量不发生变化,则无感应电流产生.从t =0开始经过时间t则线框面积变化为S=1×(1+v t)=1+v t,则磁通量Φ=BS=B(1+v t)=B0×1,即磁通量等于t=0时的磁通量.代入可得B=B01+v t,随着时间的延长,磁感应强度无限接近于0,但又不会等于0,选项C对,A、B、D错.11.(2018·西安模拟)如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB与OO′平行,且AB、OO′所在平面与线圈平面垂直,如要在线圈中形成方向为abcda的感应电流,可行的做法是()A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.导线AB正对OO′靠近线圈D.线圈绕OO′轴逆时针转动90°(俯视)解析:选D.由于通电直导线AB与OO′平行,且AB、OO′所在平面与线圈平面垂直.AB中电流如何变化,或AB正对OO′靠近线圈或远离线圈,线圈中磁通量均为零,不能在线圈中产生感应电流,选项A、B、C错误;线圈绕OO′轴逆时针转动90°(俯视),由楞次定律可知,在线圈中形成方向为abcda的感应电流,选项D正确.二、多项选择题12.(2018·景德镇模拟)如图所示,一根长导线弯曲成“”形,通以直流电I,正中间用绝缘线悬挂一金属环C,环与导线处于同一竖直平面内.在电流I增大的过程中,下列判断正确的是()A.金属环中无感应电流产生B.金属环中有逆时针方向的感应电流C.悬挂金属环C的竖直线的拉力大于环的重力D.悬挂金属环C的竖直线的拉力小于环的重力解析:选BC.Φ=BS,S不变,I增大,B增大,所以有感应电流产生,A错误.由楞次定律得,感应电流方向沿逆时针,B正确.由圆的上半部分B大于下半部分,所以安培力以上半圆为主,I方向向左,B垂直纸面向里,F安方向向下,所以F拉=mg+F安,拉力大于重力,C正确,D错误.13.如图所示,光滑平行金属导轨PP′和QQ′都处于同一水平面内,P和Q之间连接一电阻R,整个装置处于竖直向下的匀强磁场中.现垂直于导轨放置一根导体棒MN,用一水平向右的力F拉动导体棒MN,以下关于导体棒MN中感应电流方向和它所受安培力方向的说法正确的是()A.感应电流方向是N→MB.感应电流方向是M→NC.安培力水平向左D.安培力水平向右解析:选AC.棒向右平动,根据右手定则可判断,感应电流方向为由N→M,A正确,B错误;再由左手定则可判定棒所受安培力的方向为水平向左,C正确,D错误.14.(2018·泸州质检)如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处在垂直于纸面向外的匀强磁场中,下列说法中正确的是()A.当金属棒ab向右匀速运动时,a点电势高于b点,c点电势高于d点B.当金属棒ab向右匀速运动时,b点电势高于a点,c点与d点等电势C.当金属棒ab向右加速运动时,b点电势高于a点,c点电势高于d点D.当金属棒ab向右加速运动时,b点电势高于a点,d点电势高于c点解析:选BD.当金属棒向右匀速运动而切割磁感线时,金属棒产生恒定感应电动势,由右手定则判断电流方向为a→b.根据电流从电源(ab相当于电源)正极流出沿外电路回到电源负极的特点,可以判断b点电势高于a点.又左线圈中的感应电动势恒定,则感应电流也恒定,所以穿过右线圈的磁通量保持不变,不产生感应电流.当ab向右做加速运动时,由右手定则可推断φb>φa,电流沿逆时针方向.又由E=Bl v可知ab导体两端的E不断增大,那么左边电路中的感应电流也不断增大,由安培定则可判断它在铁芯中的磁感线方向是沿逆时针方向的,并且场强不断增强,所以右边电路线圈中向上的磁通量不断增加.由楞次定律可判断右边电路的感应电流方向应沿逆时针,而在右线圈组成的电路中,感应电动势仅产生在绕在铁芯上的那部分线圈上.把这个线圈看做电源,由于电流是从c沿内电路(即右线圈)流向d,因此d点电势高于c点,综上可得,选项B、D正确.15.如图所示,在两个沿竖直方向的匀强磁场中,分别放入两个完全一样的水平金属圆盘a 和b.它们可以绕竖直轴自由转动,用导线通过电刷把它们相连.当圆盘a转动时,下列说法错误的是()A.圆盘b总是与a沿相同方向转动B.圆盘b总是与a沿相反方向转动C.若B1、B2同向,则a、b转向相同D.若B1、B2反向,则a、b转向相同解析:选ABC.当圆盘a转动时,由于切割磁感线而产生感应电流,该电流流入b盘中,在磁场中由于受安培力b盘会转动.但若不知B1、B2的方向关系,则b盘与a盘的转向关系将无法确定,故A、B错误.设B1、B2同向且向上,a盘逆时针转动,则由右手定则可知a 盘中的感应电流由a→a′,b盘受力将顺时针转动,故C错误.同理可判定D项正确.。
第十章 电磁感应章末过关检测(十) (时间:60分钟 满分:100分)一、单项选择题(本题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一个选项正确)1.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v 0刷卡时,在线圈中产生感应电动势.其E -t 关系如图所示.如果只将刷卡速度改为v 02,线圈中的E -t 关系图可能是( )解析:选D.若将刷卡速度改为v 02,线圈切割磁感线运动时产生的感应电动势大小将会减半,周期将会加倍,故D 项正确,其他选项错误.2.如图所示,一水平放置的矩形闭合线圈abcd ,在细长磁铁的N 极附近竖直下落,保持bc 边在纸外,ad 边在纸内,从图中位置Ⅰ经过位置Ⅱ到达位置Ⅲ,位置Ⅰ和Ⅲ都很靠近Ⅱ.在这个过程中,线圈中感应电流( )A .沿abcd 流动B .沿dcba 流动C .由Ⅰ到Ⅱ是沿abcd 流动,由Ⅱ到Ⅲ是沿dcba 流动D .由Ⅰ到Ⅱ是沿dcba 流动,由Ⅱ到Ⅲ是沿abcd 流动解析:选A.由条形磁铁的磁场分布情况可知,线圈在位置Ⅱ时穿过矩形闭合线圈的磁通量最少.线圈从位置Ⅰ到Ⅱ,穿过abcd自下而上的磁通量减少,感应电流的磁场阻碍其减少,则在线框中产生的感应电流的方向为abcd,线圈从位置Ⅱ到Ⅲ,穿过abcd自上而下的磁通量在增加,感应电流的磁场阻碍其增加,由楞次定律可知感应电流的方向仍然是abcd.故本题答案为A.3.(2018·南昌模拟)如图所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,L1、L2和L3是3个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定以电路稳定时流过L1、L2的电流方向为正方向,分别用I1、I2表示流过L1和L2的电流,则下图中能定性描述电流I随时间t变化关系的是( )解析:选C.L的直流电阻不计,电路稳定后通过L1的电流是通过L2、L3电流的2倍.闭合开关瞬间,L2立即变亮,由于L的阻碍作用,L1逐渐变亮,即I1逐渐变大,在t1时刻断开开关S,之后电流I会在电路稳定时通过L1的电流大小基础上逐渐变小,I1方向不变,I2反向,故选C.4.(2018·长兴中学高三模拟)1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲).它是利用电磁感应原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C、D分别与转动轴和铜盘的边缘良好接触.使铜盘转动,电阻R中就有电流通过.若所加磁场为匀强磁场,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,CRD平面与铜盘平面垂直,下列说法正确的是( )A.电阻R中没有电流流过B.铜片C的电势高于铜片D的电势C.保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生D.保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则CRD回路中有电流产生解析:选C.根据右手定则可知,电流从D点流出,流向C点,因此在圆盘中电流方向为从C 向D ,由于圆盘在切割磁感线时相当于电源,所以D 处的电势比C 处高,A 、B 错误;保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则穿过铜盘的磁通量发生变化,故铜盘中有感应电流产生,但是此时不再切割磁感线,所以CD 不能当成电源,故CRD 回路中没有电流产生,C 正确,D 错误.5.如图所示,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd ,ab 边的边长为l 1,bc 边的边长为l 2,线框的质量为m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为M .斜面上ef 线(ef 平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是( )A .线框进入磁场前运动的加速度为Mg -mg sin θmB .线框进入磁场时匀速运动的速度为(Mg -mg sin θ)RBl 1C .线框做匀速运动的总时间为B 2l 21Mg -mgR sin θD .该匀速运动过程中产生的焦耳热为(Mg -mg sin θ)l 2解析:选D.由牛顿第二定律得,Mg -mg sin θ=(M +m )a ,解得线框进入磁场前运动的加速度为Mg -mg sin θM +m ,A 错误;由平衡条件,Mg -mg sin θ-F 安=0,F 安=BIl 1,I =ER,E =Bl 1v ,联立解得线框进入磁场时匀速运动的速度为v =(Mg -mg sin θ)RB 2l 21,B 错误;线框做匀速运动的总时间为t =l 2v =B 2l 21l 2(Mg -mg sin θ)R,C 错误;由能量守恒定律,该匀速运动过程中产生的焦耳热等于系统重力势能的减小量,为(Mg -mg sin θ)l 2,D 正确.6.两根足够长的光滑导轨竖直放置,间距为L ,顶端接阻值为R 的电阻.质量为m 、电阻为r 的金属棒在距磁场上边界某处由静止释放,金属棒和导轨接触良好,导轨所在平面与磁感应强度大小为B ,方向垂直纸面向里的匀强磁场垂直,如图所示,不计导轨的电阻,重力加速度为g ,则下列说法错误的是( )A .金属棒在磁场中运动时,流过电阻R 的电流方向为b →aB .金属棒的速度为v 时,金属棒所受的安培力大小为B 2L 2vR +rC .金属棒的最大速度为mg (R +r )BLD .金属棒以稳定的速度下滑时,电阻R 的热功率为⎝ ⎛⎭⎪⎫mg BL 2R 解析:选C.金属棒在磁场中向下运动时,由楞次定律知,流过电阻R 的电流方向为b →a ,选项A 正确;金属棒的速度为v 时,金属棒中感应电动势E =BLv ,感应电流I =ER +r,所受的安培力大小为F =BIL =B 2L 2v R +r,选项B 正确;当安培力F =mg 时,金属棒下滑速度最大,金属棒的最大速度为v =mg (R +r )B 2L 2,选项C 错误;金属棒以稳定的速度下滑时,电阻R 和r 的总热功率为P =mgv =⎝ ⎛⎭⎪⎫mg BL 2(R +r ),电阻R 的热功率为⎝ ⎛⎭⎪⎫mg BL 2R ,选项D 正确. 二、多项选择题(本题共4小题,每小题6分,共24分.在每小题给出的四个选项中,有多个选项符合题目要求,全选对的得6分,选对但不全的得3分,有错选或不答的得0分)7.(2018·吉林实验中学模拟)转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及的物理知识的叙述正确的是( )A .笔杆上的点离O 点越近的,做圆周运动的向心加速度越小B .笔杆上的各点做圆周运动的向心力是由万有引力提供的C .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动被甩走D .若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差解析:选AC.笔杆上各点的角速度相同,根据a =ω2r 可知,笔杆上的点离O 点越近的,做圆周运动的向心加速度越小,选项A 正确;笔杆上的各点做圆周运动的向心力是由笔杆对该点的作用力提供的,选项B 错误;若该同学使用中性笔,且转动过快,则笔尖上的小钢珠有可能因快速的转动做离心运动被甩走,选项C 正确;若考虑地磁场的影响,由于笔杆转动时可能要切割磁感线而使金属笔杆两端形成电势差,选项D 错误.8.如图所示,水平放置的粗糙U 形框架上接一个阻值为R 0的电阻,放在垂直纸面向里、磁感应强度大小为B 的匀强磁场中,一个半径为L 、质量为m 的半圆形硬导体AC 在水平向右的恒定拉力F 作用下,由静止开始运动距离d 后速度达到v ,半圆形硬导体AC 的电阻为r ,其余电阻不计.下列说法正确的是( )A .此时AC 两端电压为U AC =2BLvB .此时AC 两端电压为U AC =2BLvR 0R 0+rC .此过程中电路产生的电热为Q =Fd -12mv 2D .此过程中通过电阻R 0的电荷量为q =2BLdR 0+r解析:选BD.AC 的感应电动势为E =2BLv ,两端电压为U AC =ER 0R 0+r=2BLvR 0R 0+r,A 错误,B 正确;由功能关系得Fd =12mv 2+Q +Q f ,C 错误;此过程中平均感应电流为I -=2BLd (R 0+r )Δt ,通过电阻R 0的电荷量为q =I -Δt =2BLd R 0+r,D 正确.9.如图,在水平桌面上放置两条相距l 的平行光滑导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连.质量为m 、电阻不计的导体棒垂直于导轨放置并可沿导轨自由滑动.整个装置放于匀强磁场中,磁场的方向竖直向上(图中未画出),磁感应强度的大小为B .导体棒的中点系一个不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态.现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则 ( )A .电阻R 中的感应电流方向由a 到cB .物块下落的最大加速度为gC .若h 足够大,物块下落的最大速度为mgR B 2l 2D .通过电阻R 的电荷量为Blh R解析:选CD.题中导体棒向右运动切割磁感线,由右手定则可得回路中产生顺时针方向的感应电流,则电阻R 中的电流方向由c 到a ,A 错误;对导体棒应用牛顿第二定律有F T -F安=ma ,又F 安=B Blv R l ,再对物块应用牛顿第二定律有mg -F T =ma ,则联立可得:a =g 2-B 2l 2v2mR,则物块下落的最大加速度a m =g 2,B 错误;当a =0时,速度最大为v m =mgRB 2l 2,C 正确;下落h的过程,回路中的面积变化量ΔS =lh ,则通过电阻R 的电荷量q =ΔΦR =B ΔS R =BlhR,D 正确.10.在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,如图所示.一个质量为m 、电阻为R 、边长也为L 的正方形线框在t =0时刻以速度v 0进入磁场,恰好做匀速直线运动,若经过时间t 0,线框ab 边到达gg ′与ff ′中间位置时,线框又恰好做匀速运动,则下列说法正确的是( )A .当ab 边刚越过ff ′时,线框加速度的大小为g sin θB .t 0时刻线框匀速运动的速度为v 04C .t 0时间内线框中产生的焦耳热为32mgL sin θ+1532mv 2D .离开磁场的过程中线框将做匀速直线运动解析:选BC.当ab 边进入磁场时,有E =BLv 0,I =E R ,mg sin θ=BIL ,有B 2L 2v 0R=mg sin θ.当ab 边刚越过ff ′时,线框的感应电动势和电流均加倍,则线框做减速运动,有4B 2L 2v 0R=4mg sin θ,加速度方向沿斜面向上且大小为3g sin θ,A 错误;t 0时刻线框匀速运动的速度为v ,则有4B 2L 2v R =mg sin θ,解得v =v 04,B 正确;线框从进入磁场到再次做匀速运动的过程,沿斜面向下运动距离为32L ,则由功能关系得线框中产生的焦耳热为Q =3mgL sin θ2+⎝ ⎛⎭⎪⎫mv 202-mv 22=3mgL sin θ2+15mv 2032,C 正确;线框离开磁场时做加速运动,D 错误.三、非选择题(本题共3小题,共40分.按题目要求作答,计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位)11.(12分)(2015·高考浙江卷)小明同学设计了一个“电磁天平”,如图甲所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10 m/s 2)(1)为使电磁天平的量程达到0.5 kg ,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10 Ω.不接外电流,两臂平衡.如图乙所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt.解析:(1)线圈受到安培力F =N 1B 0IL 天平平衡mg =N 1B 0IL 代入数据得N 1=25匝. (2)由电磁感应定律得E =N 2ΔΦΔt即E =N 2ΔBΔt Ld由欧姆定律得I ′=E R线圈受到的安培力F ′=N 2B 0I ′L 天平平衡m ′g =N 22B 0ΔB Δt ·dL2R代入数据可得 ΔBΔt=0.1 T/s. 答案:(1)25 匝 (2)0.1 T/s 12.(14分)如图所示,将质量m 1=0.1 kg 、电阻R 1=0.3 Ω、长度l =0.4 m 的导体棒ab 横放在U 形金属框架上,框架质量m 2=0.2 kg ,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4 m 的MM ′、NN ′相互平行,电阻不计且足够长.电阻R 2=0.1 Ω的MN 垂直于MM ′.整个装置处于竖直向上的匀强磁场中,磁感应强度B =0.5 T .垂直于ab 施加F =2 N 的水平恒力,使ab 从静止开始无摩擦地运动,且始终与MM ′、NN ′保持良好接触,当ab 运动到某处时,框架开始运动.设框架与水平面间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.(1)求框架开始运动时ab 速度v 的大小;(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q =0.1 J ,求该过程中ab 位移x 的大小.解析:(1)ab 对框架的压力F 1=m 1g 框架受水平面的支持力F N =m 2g +F 1依题意,最大静摩擦力等于滑动摩擦力,则框架受到的最大静摩擦力F 2=μF Nab 中的感应电动势E =Blv MN 中的电流I =E R 1+R 2MN 受到的安培力F 安=IlB框架开始运动时F 安=F 2由上述各式代入数据解得v =6 m/s. (2)闭合回路中产生的总热量Q 总=R 1+R 2R 2Q由能量守恒定律,得Fx =12m 1v 2+Q 总代入数据解得x =1.1 m. 答案:(1)6 m/s (2)1.1 m13.(14分)如图所示,半径为L 1=2 m 的金属圆环内上、下半圆各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B 1=10π T .长度也为L 1、电阻为R 的金属杆ab ,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a 端沿逆时针方向匀速转动,角速度为ω=π10rad/s.通过导线将金属杆的a 端和金属环连接到图示的电路中(连接a 端的导线与圆环不接触,图中的定值电阻R 1=R ,滑片P 位于R 2的正中央,R 2的总阻值为4R ),图中的平行板长度为L 2=2 m ,宽度为d =2 m .图示位置为计时起点,在平行板左边缘中央处刚好有一带电粒子以初速度v 0=0.5 m/s 向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B 2,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射的影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力)求:(1)在0~4 s 内,平行板间的电势差U MN ; (2)带电粒子飞出电场时的速度;(3)在上述前提下若粒子离开磁场后不会第二次进入电场,则磁感应强度B 2应满足的条件.解析:(1)金属杆产生的感应电动势恒为E =12B 1L 21ω=2 V由电路的连接特点知:E =I ·4RU 0=I ·2R =E2=1 VT 1=2πω=20 s 由右手定则知:在0~4 s 时间内,金属杆ab 中的电流方向为b →a ,则φa >φb 则在0~4 s 时间内,φM <φN ,U MN =-1 V.(2)粒子在平行板电容器内做类平抛运动,在0~T 12时间内水平方向L 2=v 0·t 1t 1=L 2v 0=4 s<T 12竖直方向d 2=12at 21a =Eq m ,E =Ud,v y =at 1得q m=0.25 C/kg ,v y =0.5 m/s 则粒子飞出电场时的速度v =v 20+v 2y =22m/s tan θ=v y v 0=1,所以该速度与水平方向的夹角θ=45°.(3)粒子在匀强磁场中做匀速圆周运动,由B 2qv =m v 2r 得r =mvB 2q由几何关系及粒子在磁场中运动的对称性可知,2r >d 时离开磁场后不会第二次进入电场,即B 2<2mvdq=2 T.答案:(1)-1 V (2)22m/s 与水平方向成45°夹角 (3)B 2<2 T。
课后分级演练(三十)电磁感应定律的综合应用【A级一一基础练】1.英国物理学家麦克斯韦认为,磁场变化时会在空I'可激发感生电场.如图所示,一个半径为/的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场〃,环上套一带电荷量为+ g的小球.已知磁感应强度〃随时间均匀增加,其变化率为乩若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是()1 9A.0B.尹酬C. 2 兀rqkD. n rqk解析:D变化的磁场产生的感生电动势为E=¥*=k"小球在环上运动一周感生电场对其所做的功*= qE= qk只*, D项正确,A、B、C项错误.2.(2017 ?河南名校联考)如图所示,两条足够长的平行金属导轨水平放置,导轨的一端接有电阻和开关,导轨光滑且电阻不计,匀强磁场的方向与导轨平面垂直,金属杆M置于导轨上.当开关S断开时,在杆"上作用一水平向右的恒力F,使杆“向右运动进入磁场,一段时间后闭合开关并开始计时,金属杆在运动过程中始终与导轨垂直且接触良好,y、A F、曰分别表示金属杆在运动过程中的速度、感应电流、安培力、加速度.下列图象中一定错误的是()解析:C当开关闭合时,整个回路有感应电流,金属杆臼方将受到安培力的作用,若恒力尸等于安培力,则金属杆臼方做匀速运动,产生的感应电流不变,B正确;若恒力尸大于安培力,则金属杆必先做加速度减小的加速运动,最后做匀速运动,加速度为零,D正确; 若恒力尸小于安培力,则金属杆"先做加速度减小的减速运动,最后做匀速运动,A正确; 金属杆必在运动过程中受到的安培力尸=BiL=l^L=^L.由以上分析可知C错误.3.如图所示,线圈匝数为刀,横截面积为$线圈电阻为八处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k(k>0),磁场方向水平向右且与线圈平面垂直.上、下两极板水平放置的电容器,极板间距为也电容为C在电容器两极板之间有一质量为刃的带电微粒P处于静止状态,两个电阻的阻值分别为于和21;则下列说法正确的是()A.戶帯负电,电荷量曦B."带正电,电荷量为鬻C.P带负电,电荷量为燈D.P带正电,电荷量为鵲解析:C闭合线圈与阻值为厂的电阻形成闭合回路,线圈相当于电源,电容器两极板间的电压等于路端电压;线圈产生的感应电动势为厂=/7冷|=刃必,路端电压字, 对带电微粒有占飓,即?=需根据楞次定律可知,电容器上极板带正电,所以微粒P 带负电.选项C正确.4.如图所示,一直角三角形金属框,向左匀速地穿过一个方 .、、、、匀速、、向垂直于纸面向里的匀强磁场区域,磁场仅限于虚线边界所围的抄JL'乞〉区域,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一直线上,若取顺时针方向为电流的止方向,则金属框穿过磁场的过程屮感应电流/随时间t变化的图象是()解析:C在金属框进入磁场过程中,感应电流的方向为逆时针,金属框切割磁感线的有效长度线性增大,排除A、B;在金属框出磁场的过程中,感应电流的方向为顺时针方向, 金属框切割磁感线的有效长度线性减小,排除D,故C正确.5.(多选)如图甲所示,光滑绝缘水平面,虚线的右侧存在方向竖直向下、磁感应强度大小为B=2 T的匀强磁场,恵V的左侧有一质量为/77=O. 1 kg的矩形线圈bcde,方c边长厶= 0.2m,电阻斤=2 Q. t=0时,用一恒定拉力F拉线圈,使其由静止开始向右做匀加速运动,经过Is,线圈的比边到达磁场边界就V;此时立即将拉力尸改为变力,又经过Is,线圈恰好完全进入磁场,在整个运动过程中,线圈中感应电流,随时间方变化的图彖如图乙所示,则()解析:C 设经过吋间&则W 点距。
【备考2022】高考物理一轮复习学案10.3 电磁感应定律的综合运用(2)右手定则的研究对象为闭合回路的一部分导体,适用于一段导线在磁场中做切割磁感线运动。
2.对电源的理解(1)在电磁感应现象中,产生感应电动势的那部分导体相当于电源,如切割磁感线的导体棒、有磁通量变化的线圈等,这种电源将其他形式的能转化为电能。
(2)判断感应电流和感应电动势的方向,都是把相当于电源的部分根据右手定则或楞次定律判定的。
实际问题中应注意外电路电流由高电势处流向低电势处,而内电路则相反。
3.导体棒在匀强磁场运动过程中的变与不变(1)外电阻的变与不变若外电路由无阻导线和定值电阻构成,导体棒运动过程中外电阻不变;若外电路由考虑电阻的导线组成,导体棒运动过程中外电阻改变。
(2)内电阻与电动势的变与不变切割磁感线的有效长度不变,则内电阻与电动势均不变。
反之,发生变化。
处理电磁感应区别安培定则、左手定则、右手定则的关键是抓住因果关系(1)因电而生磁(I→B)→安培定则(判断电流周围磁感线的方向)。
(2)因动而生电(v、B→I感)→右手定则(闭合回路的部分导体切割磁感线产生感应电流)。
(3)因电而受力(I、B→F安)→左手定则(磁场对电流有作用力)。
核心素养二对电路的理解(1)内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。
(2)在闭合电路中,相当于“电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势。
核心素养三图像问题2.解决图像问题的一般步骤(1)明确图像的种类,即是Bt图像还是Φt图像,或者Et图像、It图像等。
(2)分析电磁感应的具体过程。
(3)用右手定则或楞次定律确定方向对应关系。
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式。
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。
课时作业36
如图所示为交流发电机示意图,线圈的AB边连在金属滑环
分别压在两个滑环上,线圈在转动时可以通过滑环和电刷保持与外电路的连接.关于其工作原理,下列分析正确的是( )
.当线圈平面转到中性面时,穿过线圈的磁通量最大
.当线圈平面转到中性面时,线圈中的感应电流最大
.当线圈平面转到跟中性面垂直时,穿过线圈的磁通量最小
的正方形单匝线框绕垂直于匀强磁场的固定轴转动,
的变化情况如图所示.已知匀强磁场的磁感应强度为
BL2
表示四种情况下线框中电流的有效值,则(
I d
对正弦交流电而言,最大值E m=NBSω,而有效值E=
E
得线框中电流的有效值:I=NBSω
.
如图所示,虚线上方是有界匀强磁场,扇形导线框绕垂直于框面的轴
线框中感应电流方向以逆时针方向为正,
动一周过程中感应电流随时间变化的图象是( )
当线框进入磁场时,通过线框的磁通量的变化率不变,即感应电动势及感应电流大小不变,由右手定则可知,电流方向为逆时针方向,为正值,当线框全部进入磁场后,通过线框的磁通量不变,线框中无感应电流,故A正确,B、C、D错误.
相等的矩形交变电流和正弦式交变电流,则这两个电热器的电功率之比
A.2 :1 B .2 :1 C .4 :1 D .1 :1
解析:矩形交变电流的有效值I 1=I m ,正弦式交变电流的有效值I 2=I m
2
,根据电功率
公式P =I 2
R ,得P 甲 :P 乙=I 2
1 :I 2
2=I 2
m :⎝
⎛⎭
⎪⎫I m 22
=2 :1,故选项B 正确. 答案:B
7.如图OO ′为两个固定的同轴的金属圆盘的圆心,ab 金属棒紧贴圆盘边缘在磁感应强度B =2 T 的匀强磁场中匀速转动,方向与棒垂直.棒长50 cm ,盘半径20 cm ,OO ′与“6 V 0.5 A”的电珠相连(其他电阻不计),当电珠正常发光时,则棒的转速为( )
A.1522πrad/s
B.152πrad/s
C.
1524πrad/s D.15
π
rad/s 解析:当棒运动速度与匀强磁场B 的方向垂直时棒两端产生的感应电动势的值达峰值.则E m =Blv =Bl ·2πnr .
交流电电压的有效值为E =
E m
2
=2πnBlr .
要使电珠正常发光,必须满足E =6 V ,代入数据后得n =152
π
rad/s.故选项B 正确.
答案:B
8.如图甲所示,将电阻R 1、R 2并联后再与R 3串联,并通过开关S 与交流电源连接成闭合回路.已知R 1=R 3=20 Ω,R 2=10 Ω,合上开关S 后,通过电阻R 2的正弦交变电流i 随时间t 变化的情况如图乙所示.则( )
A .通过R 1的电流的有效值是0.6 A
B .通过R 2的电流的有效值是0.6 A
C .R 1两端的电压有效值是6 2 V
D .R 3两端的电压有效值是6 2 V
解析:根据通过电阻R 2的正弦交变电流i 随时间t 的变化关系图线可得通过R 2的电流
的有效值为I 2=I m 2=0.62
2 A =0.6 A ,所以选项B 正确;R 2两端电压的有效值为U 2=I 2R 2
=0.6×10 V=6 V ,因R 1与R 2并联,所以R 1两端的电压有效值和R 2两端电压的有效值相同,即U 1=U 2=6 V ,所以选项C 错误;通过R 1的电流的有效值是I 1=U 1R 1
=0.3 A ,所以选项A 错误;R 3电压的有效值U 3=I 3R 3=(I 1+I 2)R 3=0.9×20 V=18 V ,所以选项D 错误.
答案:B
[能力提升练]
9.(多选)如图甲所示,将阻值为R =5 Ω的电阻接到内阻不计的正弦交变电源上,电流随时间变化的规律如图乙所示,电流表串联在电路中测量电流的大小.对此,下列说法正确的是( )
A .电阻R 两端电压变化规律的函数表达式为u =2.5sin(200πt ) V
B .电阻R 消耗的电功率为1.25 W
C .如图丙所示,若此交变电流由一矩形线框在匀强磁场中匀速转动产生,当线圈的转速提升一倍时,电流表的示数为1 A
D .这一交变电流与图丁所示电流比较,其有效值之比为1
2
解析:题图乙所示电流的最大值为I m =0.5 A ,周期为T =0.01 s ,其角速度为ω=
2π
T
=200π rad/s ,由欧姆定律得U m =I m R =2.5 V .所以R 两端电压的表达式为u =2.5 sin(200πt )V ,选项A 正确.该电流的有效值为I =
I m
2
,电阻R 消耗的电功率为P =I 2
R ,
解得P =0.625 W ,B 选项错误.的示数为有效值,该交变电流由题图丙所示矩形线圈在匀强磁场中匀速转动产生,当转速提升一倍时,电动势的最大值E m =nBS ω为原来的2倍.电
路中电流的有效值也是原来的2倍,为2×0.5
2
A≠1 A,选项C 错误.题图乙中的正弦交变
电流的有效值为0.5
2
A .图丁所示的交变电流虽然方向发生变化,但大小恒为0.5 A ,可知
选项D 正确.
答案:AD
10.如图所示,在同一水平面内有两根足够长的光滑水平金属导轨,间距为l ,电阻不计,其左端连接一阻值为R 的定值电阻.两导轨之间存在着磁感应强度大小为B 的磁场,磁场边界由多个半周期正弦曲线衔接而成,磁场方向如图所示.当置于两金属导轨上的导体棒在水平外力F (图中未画出)作用下以速度v (较大)匀速向右运动,导体棒与两金属导轨垂直且始终接触良好,电压表和电流表均为理想交流电表,导体棒电阻不计,则( )
A .由于磁场方向周期性变化,电流表示数也周期性变化
B .电压表的示数在导体棒位于图中ab 位置时最大
C .当导体棒运动到图中虚线cd 位置时,水平外力F =0
(2018·苏州市高三调研测试)如图所示电路中,电源电压W”的电暖宝、“220 V 220 W”的抽油烟机、)
10 r/s
.线圈两端电压的有效值为6 2 V
.交流电压的表达式为U =12sin 5πt (V)
.该交变电流可以直接加在击穿电压为9 V 的电容器上
该交变电流的周期为T =0.4 s ,故磁铁的转速为n =1T =1
0.4 r/s U 12
答案:BC。