八年级上数学整式乘法题
- 格式:docx
- 大小:21.56 KB
- 文档页数:3
人教版八年级上册数学第14章第1节整式的乘法习题1.1. 同底数幂的乘法1、计算:(1)x10· x=(2)10×102×104 =(3)x5·x ·x3=(4)y4·y3·y2·y =2、下面的计算对不对?如果不对,怎样改正?(1)b5· b5= 2b5()(2)b5 + b5 = b10()(3)x5·x5 = x25()(4)y5· y5 = 2y10()(5)c · c3 = c3()(6)m + m3 = m4()3、填空:(1)x5·()= x8(2)a ·()= a6(3)x · x3()= x7(4)x m·()=x3m4、计算:(1) x n · x n+1 (2) (x+y)3· (x+y)45、填空:(1) 8 = 2x,则 x = ;(2)8 × 4 = 2x,则 x = ;(3)3×27×9 = 3x,则 x = 。
6、计算(1)35(—3)3(—3)2 ( 2)—a(—a)4(—a)3(3 ) x p (—x)2p (—x)2p+1 (p 为正整数) (4)32×(—2)(n 为正整数)7、计算 (1)(2)(x —y)2(y —x)58、填空(1)3n+1=81若a =________(2)=________ (3)若,则n=_____(4)3100. (-3)101 =_________ 9.计算:(1)(2)(3)(4)2(2)n -3421(2)(2)(2)m n a b a b a b -++++)(11a a n n ----•28233n =•a a a a x x 4213--+•)(341x x x n n -••+-)()()(432m n m n n m ---•)(344y y y n n -••+-1.2. 幂的乘方一、选择题1.计算(x 3)2的结果是( )A.x 5B.x 6C.x 8D.x 92.计算(-3a 2)2的结果是( )A.3a 4B.-3a 4C.9a 4D.-9a 43.122)(--n x 等于( )A.14-n xB.14--n xC.24-n xD.24--n x 4.21)(--n a 等于( )A.22-n aB.22--n aC.12-n aD.22--n a5.13+n y 可写成( )A.13)(+n yB.13)(+n yC.n y y 3⋅D.1)(+n n y6.2)()(m m m a a ⋅不等于( )A.m m a )(2+B.m m a a )(2⋅C.22m m a+ D.m m m a a )()(13-⋅ 7.计算13(2014)n +等于( ) A.32014n + B.312014n + C.42014n + D.332014n + 8.若2139273m m ⨯⨯=,则m 的值为( )A.3B.4C.5D.6二、填空题1.-(a 3)4=_____.2.若x 3m =2,则x 9m =_____.3. n ·=______.4.,__________])2[(32=-___________)2(32=-;5.______________)()(3224=-⋅a a ,____________)()(323=-⋅-a a ;6.___________)()(4554=-+-x x ,_______________)()(1231=⋅-++m m a a ;7.___________________)()()()(322254222x x x x ⋅-⋅;8.若 3=n x , 则=n x 3________;9.若2,7x y a a ==,则2x y a +=________;10.如果23n x =,则34()n x =________.三、解答题1.计算:(-2x 2y 3)+8(x 2)2·(-x )2·(-y )32.已知273×94=3x ,求x 的值.3.已知a m =5,a n =3,求a 2m+3n 的值.4.若2x+5y-3=0,求432x y 的值5.试比较35555,44444,53333三个数的大小.14.1.2幂的乘方答案一、选择题:BC DA CCDB二、填空题:1、12a -;2、8;3、5n x -;4、64,-64;5、149,a a --6、0,55m a +-;7、12143x x -;8、9;9、28;10、729三、解答题1、解法一: 2= 2=(-x 9y 6n )2=(-x 9)2·(y 6n )2=x 18y 12n .解法二: 2=(-1)2·(x 3y 2n )6=(x 3)6·(y 2n )6=x 18y 12n .2、解:因为273×94=(33)3×(32)4=39×38=39+8=317,即3x =317,所以x=17.3、解:因为a m =5,a n =3,所以a 2m+3n =a 2m ·a 3n =(a m )2·(a n )3=52×33=25×27=675.4、解:253x y +=2525343222228x y x y x y +∴====5、解:因为35555=35×1111=(35)1111=2431111.44444=44×1111=(44)1111=2561111.53333=53×1111=(53)1111=1251111,又因为125<243<256,所以1251111<2431111<2561111,即53333<35555<44444.1.3. 积的乘方一、选择题1.下列计算错误的是( )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a2.计算(x 2y )3的结果是( )A .x 5yB .x 6yC .x 2y 3D .x 6y 33.计算(-3a 2)2的结果是( )A .3a 4B .-3a 4C .9a 4D .-9a 44.计算(-0.25)2010×42010的结果是( )A .-1B .1C .0.25D .440205.计算()2323xy y x -⋅⋅的结果是( )A .y x 105⋅B .y x 85⋅C .y x 85⋅-D .y x 126⋅6.若3915(2)8m m n a b a b +=成立,则( ) A .m=3,n=2 B .m=n=3 C .m=6,n=2 D .m=3,n=57.32220142323(2)(1)()2x y x y ----的结果等于( ) A .y x 10103 B .y x 10103- C .y x 10109 D .y x 10109-8.12[(1)]n n p +-等于( ) A .2n p B .2n p - C .2n p +- D .无法确定二、填空题1.计算:(2a )3=______.2.若a 2n =3,则(2a 3n )2=__ __.3.6927a b -=( )3.4.20132013(0.125)(8)-=_______.5.已知351515()x a b =-,则x=_______.6.(-0.125)2=_________.7.若232,3n n x y ==,则6()n xy =_______. 8.2013201220142() 1.5(1)3⨯⨯-=_______. 9.化简21223()(2)m n aa a +-所得的结果为_______. 10.若53,45n n ==,则20n 的值是_______.三、解答题1.计算:x 2·x 3+(x 3)22.计算:()100×(1)100×()2013×420143.已知x+3322336x x +-=,求x 的值.2312144.若877,8ab ==,用含,a b 的式子表示5656.5.已知n 是正整数,且32n x=,求3223(3)(2)n n x x +-的值.14.1.3积的乘方一、选择题:CDCB BACA二、填空题:1、38a;2、108;3、233a b-;4、-1;5、-ab;6、164;7、72;8、23;9、4288m na++-;10、15.三、解答题1、解:x2·x3+(x3)2=x2+3+x3×2=x5+x6.2、解:()100×(1)100×()2009×42010=××4=(×)100×(×4)2009×4=1×1×4=4.3、解:332 2336x x x++-=32232(2) (23)(6) 6632(2)7x xx xx xx+-+-∴⨯=∴=∴+=-∴=4、解:5656 56(78)=⨯565687787878(7)(8)a b=⨯=⨯=5、解:3223(3)(2)n nx x+-3232 9(3)(8)() 94844n nx x=⨯+-⨯=⨯-⨯=2312142332141.4. 整式的乘法1.4.1. 单项式与单项式、多项式相乘1、填空:(每小题7分,共28分)(1) (2一3+1)=_________; (2)3b(2b -b+1) =_____________;(3)(b +3b 一)(b)=_______;(4)(一2)(-x 一1) =_____. 2.选择题:(每小题6分,共18分)(1)下列各式中,计算正确的是 ( )A .(-3b+1)(一6)= -6+18b+6B .C .6mn(2m+3n -1) =12m 2n+18mn 2-6mnD .-b(一-b) =-b-b-b(2)计算(+1) -(-2-1)的结果为 ( )A .一一B .2++1C .3+D .3- (3)一个长方体的长、宽、高分别是2x 一3、3x 和x ,则它的体积等于 ( )A .2—3B .6x -3C .6-9xD .6x 3-93.计算(每小题6分,共30分)(1); (2);(3) (4)(2x 一3+4x -1)(一3x);(5). a a 2a a a 2a 34a 2a 23b 12a 2x 2x 12a a a 2a a ()232191313x y xy x y ⎛⎫--+=+ ⎪⎝⎭a a 2a a 3a 2a 2a 2a a a 2a a 2a a 2a a 2a a 2a 2x 2x 2x 2x 323(23)x y xy xy ⋅-222(3)x x xy y ⋅-+222(1)(4)4a b ab a b --+⋅-32x ()22213632xy y x xy ⎛⎫-+-- ⎪⎝⎭4.先化简,再求值.(每小题8分,共24分)(1) ;其中(2)m (m+3)+2m(m —3)一3m(m +m -1),其中m ;⑶4b(b -b +b)一2b (2—3b+2),其中=3,b=2. 22(1)2(1)3(25)x x x x x x -++--12x =-22252=a a 2a 2a a 2a 2a a a1.4.2.多项式与多项式相乘一、填空题(每小题3分,共24分)1.若=,则=______________.2.=__________,=__________.3.如果,则.4.计算: .5.有一个长mm ,宽mm ,高mm 的长方体水箱,这个水箱的容积是______________.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.7.若,则的值为 .8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2,3AB-=__________. 二、选择题(每小题3分,共24分) 9.下列运算正确的是( ).A .B .C .D .10.如果一个单项式与的积为,则这个单项式为( ). A . B . C . D . 11.计算的正确结果是( ).a b c x x x x 2008x c b a ++(2)(2)a b ab --2332()()a a --2423)(a a a x =⋅______=x (12)(21)a a ---=9104⨯3105.2⨯3610⨯2mm 3230123)x a a x a x a x =+++220213()()a a a a +-+AC 21236x x x =2242x x x +=22(2)4x x -=-358(3)(5)15a a a --=3ab -234a bc -14ac 214a c 294a c 94ac 233[()]()a b a b ++A .B .C .D .12.长方形的长为(a -2),宽为(3a +1) ,那么它的面积是多少?( ).A .B .C .D .13.下列关于的计算结果正确的是( ).A .B .C .D .14.下列各式中,计算结果是的是( ).A .B .C .D .15.下列各式,能够表示图中阴影部分的面积的是( ).① ② ③ ④A .只有①B .①和②C .①、②和③D .①、②、③、④16.已知:有理数满足,则的值为( ). A.1 B.-1 C. ±1 D. ±2三、解答题(共52分)17.计算:8()a b +9()a b +10()a b +11()a b +cm cm 2(352)a a cm --2(352)a a cm -+2(352)a a cm +-2(32)a a cm +-301300)2(2-+3003013003016012(2)(2)(2)(2)+-=-+-=-1301300301300222)2(2-=-=-+300300300301300301300222222)2(2-=⨯-=-=-+601301300301300222)2(2=+=-+2718x x +-(1)(18)x x -+(2)(9)x x -+(3)(6)x x -+(2)(9)x x ++()at b t t +-2at bt t +-()()ab a t b t ---2()()a t t b t t t -+-+0|4|)4(22=-++n n m 33m n(1) (2)18.解方程:19.先化简,再求值:(1),其中=-2.(2),其中=-3.20.一个长方形的长为2xcm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm ,长方形比原来增大的面积是多少?拓广探索21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空: ; ;3243-ab c 2⎛⎫ ⎪⎝⎭()2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭2(10)(8)100x x x +-=-()()()2221414122x x x x x x ----+-x ()()()()5.0232143++--+a a a a a ()()=++21x x ()()=-+13x x(2)归纳、猜想后填空:(3)运用(2)猜想的结论,直接写出计算结果: .22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题. 例 若=123456789×123456786, =123456788×123456787,试比较、的大小.解:设123456788=a ,那么,,∵=-2,∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:若=,=,试比较、的大小.()()()()++=++x x b x a x 2()()=++m x x 2x y x y ()()2122x a a a a =+=---()21y a a a a ==--()()222x y a a a a =-----x 20072007200720112007200820072010⨯-⨯y 20072008200720122007200920072011⨯-⨯x y 用这种方法不仅可比大小,也能解计算题哟!参考答案一、填空题1.2007 2.、 3.18 4.5. 6. 7.1 8.二、选择题9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B三、解答题(共56分)17.(1) (2) 18.,,∴.19.(1),8 (2),020.-=-==答:增大的面积是.21.(1)、 (2)、 (3) 拓广探索22.设20072007=,===-3, ===-3,∴=.2242a b ab -+12a -214a -16610⨯()ab a b a a 2222+=+32231638a b a b --3612278a b c -3324510323x y x y xy -++2281080100x x x x -+-=-220x =-10x =-324864x x x +--26a --(23)(21)x x +-2(24)x x -2(4623)x x x +--2(48)x x -2244348x x x x +--+123x -(123)x cm -232x x ++223x x +-a b +ab 2(2)2x m x m +++a x (4)(1)(3)a a a a +-++224(43)a a a a +-++y (1)(5)(2)(4)a a a a ++-++2265(68)a a a a ++-++x y。
八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b) D.x2﹣16+3x=(x+4)(x﹣4)+3x 2.计算a3•(﹣a2)结果正确的是()A.﹣a5B.a5C.﹣a6D.a63.下列计算中,结果正确的是()A.2a﹣a=2 B.t2+t3=t5C.(﹣x2)3=﹣x6D.x6÷x3=x2 4.若3x=15,3y=5,则3x-y等于( ).A.5 B.3 C.15 D.105.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.已知x2﹣8x+a(a为常数)可以写成一个完全平方式,则a的值为()A.16 B.﹣16 C.64 D.﹣648.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2 B.﹣7、2 C.﹣7、﹣2 D.7、﹣29.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5 B.﹣10 C.﹣5 D.1010.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k 个完全平方数的和,那么k的最小值为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知若a+b=﹣3,ab=2,则(a﹣b)2═.12.因式分解:m2﹣n2﹣2m+1=.13.多项式y2+2y+m因式分解后有一个因式(y﹣1),则m=.14.9992﹣998×1002=.15.因式分解:x3-2x2y+xy2=________.16.已知3a=5,9b=10,则3a+2b的值为________.17.已知A=2x+y,B=2x-y,计算A2-B2=________.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为.三.解答题(共46分,19题6分,20 ---24题8分)19.计算:(1)计算:12﹣38+|3﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).20.分解因式:(1)m3n-9mn; (2)(x2+4)2-16x2; (3)x2-4y2-x+2y;(4)4x3y+4x2y2+xy3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2, 对于方案一,小明是这样验证的: a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2请你根据方案二、方案三,写出公式的验证过程. 方案二: 方案三:23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积S 1的差(即S ﹣S 1)是一个常数,求出这个常数.24.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2+3x﹣9)(x2+3x+1)+25进行因式分解的过程.解:设x2+3x=y原式=(y﹣9)(y+1)+25(第一步)=y2﹣8y+16(第二步)=(y﹣4)2(第三步)=(x2+3x﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4进行因式分解.参考答案一、题号 1 2 3 4 5 6 7 8 9 10 答案 C A C B B B A B C D二、11.解:∵a+b=﹣3,ab=2,∴(a﹣b)2═(a+b)2﹣4ab=(﹣3)2﹣4×2=9﹣8=1.故答案为:1.12.解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).13.解:∵多项式y2+2y+m因式分解后有一个因式为(y﹣1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=﹣3.故答案为:﹣3.14.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.15.x(x-y)216.5017.8xy18.解:依题意得剩余部分为(2m+3)2﹣(m+3)2=4m2+12m+9﹣m2﹣6m﹣9=3m2+6m,而拼成的矩形一边长为m,∴另一边长是(3m2+6m)÷m=3m+6.故答案为:3m+6. 三、19. 解:(1)原式=23﹣2+2﹣3=3;(2)原式=a 2﹣2a+3a ﹣6﹣a 2+a =2a ﹣6.20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:由题意可得,方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2, 方案三:.23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 > S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.解:(1)>.理由:S1=(m+1)(m+7)=m2+8m+7,S=(m+2)(m+4)=m2+6m+8,2∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.24.解:(1)由y2﹣8y+16=(y﹣4)2可知,小涵运用了因式分解的完全平方公式法故选:C;(2)(x2+3x﹣9)(x2+3x+1)+25,解:设x2+3x=y原式=(y﹣9)(y+1)+25=y2﹣8y+16=(y﹣4)2=(x2+3x﹣4)2=(x﹣1)2(x+4)2;故答案为:(x﹣1)2(x+4)2;(3)(9x2﹣6x+3)(9x2﹣6x﹣1)+4设9x2﹣6x=y,原式=(y+3)(y﹣1)+4,=y2+2y+1,=(y+1)2,=(9x2﹣6x+1)2,=(3x﹣1)4.。
人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.(2021广东深圳中考)下列运算中,正确的是()A.2a2·a=2a3B.(a2)3=a5C.a2+a3=a5D.a6÷a2=a32.(2021山东泰安中考)下列运算正确的是()A.2x2+3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x23.(2019湖南株洲中考)下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)24.若a+b=3,x+y=1,则a2+2ab+b2-x-y+2 015的值为()A.2 023B.2 021C.2 020D.2 0195.(2021江苏南通如皋期末)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为64,小正方形的面积为9,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x+y=8B.x-y=3C.4xy+9=64D.x2+y2=256.若3x2-5x+1=0,则5x(3x-2)-(3x+1)(3x-1)=()A.-1B.0C.1D.-27.已知多项式ax+b与2x2+2x+3的乘积展开式中不含x的一次项,且常数项为9,则a b的值为()A.18B.-18C.-8D.-68.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪开拼成一个长方形(不重叠,无缝隙),则长方形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.(2019四川资阳中考)4张长为a、宽为b(a>b)的长方形纸片按如图所示的方式拼成一个边长为a+b的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5bB.2a=3bC.a=3bD.a=2b10.如图,长方形ABCD的周长是10 cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和正方形ADGH的面积之和为17 cm2,则长方形ABCD的面积是()A.3 cm2B.4 cm2C.5 cm2D.6 cm2二、填空题(每小题3分,共24分)11.(2021山东临沂中考)分解因式:2a3-8a=.12.(2022四川宜宾期末)化简:(8x3y3-4x2y2)÷2xy2=.13.(2019四川乐山中考)若3m=9n=2,则3m+2n=.14.(2022独家原创)如图,小明制作了一块长方形滑板模具,其长为2a,宽为a,中间开出两个边长为b的正方形孔.当a=15.7,b=4.3时,阴影部分的面积为.15.已知a2-6a+9与|b-1|互为相反数,则a3b3+2a2b2+ab的值是.16.(2022云南昆明三中期末)若(a+b)2=17,(a-b)2=11,则a2+b2=.17.李老师做了个长方形教具,其中一边长为2a+b,其邻边长为a-b,则该长方形的面积为.18.若(x2-2x-3)(x3+5x2-6x+7)=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a0+a1+a2+a3+a4+a5=.三、解答题(共46分)19.(2021江苏苏州中学期末)(6分)计算:(1)-2x3y2·(x2y3)2;(2)3x·x5+(-2x3)2-x12÷x6.20.(6分)计算:(1)(3x-2)(2x+3)-(x-1)2;(2)(x+2y)(x-2y)-2y(x-2y)+2xy. 21.(8分)先化简,再求值: (1)(2+x)(2-x)+(x-1)(x+5),其中x=32; (2)(2a-b)2-(4a+b)(a-b)-2b 2,其中a=12,b=-13.22.(2021北京一零一中学期末)(8分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn+2n 2-6n+9=0,求m 和n 的值. 解:∵m 2+2mn+2n 2-6n+9=0, ∴(m 2+2mn+n 2)+(n 2-6n+9)=0, ∴(m+n)2+(n-3)2=0,∴m+n=0,n-3=0,∴m=-3,n=3. 问题:(1)若x 2+2y 2-2xy+6y+9=0,求x 2的值;(2)已知△ABC 的三边长a,b,c 都是正整数,且满足a 2+b 2-6a-4b+13+|3-c|=0,请问△ABC 是什么形状的三角形?23.(2022河南郑州实验学校期末)(8分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.b2+ab=b(a+b)C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2-4y2=12,x+2y=4,求x的值;②计算:(1−122)(1−132)(1−142)·…·(1−12 0202)(1−12 0212).24.(10分) 许多恒等式可以借助图形的面积关系直观表达,如图①,根据图中面积关系可以得到(2m+n)(m+n)=2m2+3mn+n2.(1)如图②,根据图中面积关系写出一个关于m、n的等式:;,则(a+b)2=;(2)利用(1)中的等式求解:若a-b=2,ab=54(3)小明用8个全等的长方形(宽为a,长为b)拼图,拼出了如图甲、乙所示的两种图案,图案甲是一个大的正方形,中间的阴影部分是边长为3的小正方形;图案乙是一个大的长方形,求a,b的值.答案全解全析1.A2a2·a=2a3,原计算正确,(a2)3=a6,原计算错误,a2与a3不是同类项,不能合并,a6÷a2=a4,原计算错误,故选A.2.D A选项,2x2与3x3不是同类项,不能合并,故该选项计算错误;B选项,(-2x)3=-8x3,故该选项计算错误;C选项,(x+y)2=x2+2xy+y2,故该选项计算错误;D选项,(3x+2)(2-3x)=22-(3x)2=4-9x2,故该选项计算正确,故选D.3.D A.x2-1=(x+1)(x-1),故此选项错误;B.a3-2a2+a=a(a2-2a+1)=a(a-1)2,故此选项错误;C.-2y2+4y=-2y(y-2),故此选项错误;D.m2n-2mn+n=n(m2-2m+1)=n(m-1)2,故此选项正确.故选D.4.A a2+2ab+b2-x-y+2 015=(a+b)2-(x+y)+2 015,当a+b=3,x+y=1时,原式=32-1+2 015=8+2 015=2 023.故选A.5.D如图,∵图案的面积为64,小正方形的面积为9,∴大正方形的边长为8,小正方形的边长为3,∴x+y=AQ+DQ=AD=8,因此选项A不符合题意;x-y=HP-EP=HE=3,因此选项B不符合题意;∵一个小长方形的面积为xy,∴4xy+9=64,因此选项C不符合题意;∵x+y=8,x-y=3,∴(x+y)2=64,(x-y)2=9,即x2+2xy+y2=64,x2-2xy+y2=9,∴x2+y2=73,2因此选项D符合题意.故选D.6.A∵3x2-5x+1=0,∴3x2-5x=-1,∴5x(3x-2)-(3x+1)(3x-1)=15x 2-10x-9x 2+1=6x 2-10x+1=2(3x 2-5x)+1=2×(-1)+1=-1.故选A. 7.C (ax+b)(2x 2+2x+3) =2ax 3+2ax 2+3ax+2bx 2+2bx+3b =2ax 3+(2a+2b)x 2+(3a+2b)x+3b,∵乘积展开式中不含x 的一次项,且常数项为9, ∴3a+2b=0且3b=9,∴a=-2,b=3, ∴a b =(-2)3=-8,故选C.8.D 长方形的面积为(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5)=(6a+15)cm 2.故选D. 9.D 由题图可知S 1=12b(a+b)×2+12ab×2+(a-b)2=a 2+2b 2,S 2=(a+b)2-S 1=(a+b)2-(a 2+2b 2) =2ab-b 2,∵S 1=2S 2,∴a 2+2b 2=2(2ab-b 2),整理得(a-2b)2=0,∴a-2b=0,∴a=2b.故选D. 10.B 设AB=x cm,AD=y cm,∵正方形ABEF 和正方形ADGH 的面积之和为17 cm 2,∴x 2+y 2=17, ∵长方形ABCD 的周长是10 cm, ∴2(x+y)=10,∴x+y=5,∵(x+y)2=x 2+2xy+y 2,∴25=17+2xy,∴xy=4, ∴长方形ABCD 的面积为4 cm 2,故选B. 11.2a(a+2)(a-2)解析 原式=2a(a 2-4)=2a(a+2)(a-2). 12.4x 2y-2x解析 原式=8x 3y 3÷2xy 2-4x 2y 2÷2xy 2=4x 2y-2x. 13.4解析 ∵3m =9n =2,∴3m+2n =3m ·32n =3m ·(32)n =3m ·9n =2×2=4. 14.456解析 阴影部分的面积=2a·a-2b 2=2(a 2-b 2)=2(a+b)(a-b), 当a=15.7,b=4.3时,阴影部分的面积=2(a+b)(a-b)=2×(15.7+4.3)×(15.7-4.3)=2×20×11.4=456.15.48解析 依题意得a 2-6a+9+|b-1|=0,即(a-3)2+|b-1|=0,则a-3=0,b-1=0,解得a=3,b=1,所以a 3b 3+2a 2b 2+ab=ab(a 2b 2+2ab+1)=ab(ab+1)2=3×(3+1)2=3×16=48. 16.14解析 (a+b)2=a 2+b 2+2ab=17①, (a-b)2=a 2+b 2-2ab=11②,①+②得2(a 2+b 2)=28,∴a 2+b 2=14. 17.2a 2-ab-b 2解析 该长方形的面积为(2a+b)(a-b)=2a 2-2ab+ab-b 2=2a 2-ab-b 2. 18.-28解析 ∵(x 2-2x-3)(x 3+5x 2-6x+7)=x 5+5x 4-6x 3+7x 2-2x 4-10x 3+12x 2-14x-3x 3-15x 2+18x-21=x 5+3x 4-19x 3+4x 2+4x-21=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0, ∴a 0=-21,a 1=4,a 2=4,a 3=-19,a 4=3,a 5=1, ∴a 0+a 1+a 2+a 3+a 4+a 5=-21+4+4-19+3+1=-28. 19.解析 (1)-2x 3y 2·(x 2y 3)2=-2x 3y 2·x 4y 6=-2x 7y 8. (2)3x·x 5+(-2x 3)2-x 12÷x 6=3x 6+4x 6-x 6=6x 6.20.解析 (1)原式=6x 2+9x-4x-6-x 2+2x-1=5x 2+7x-7. (2)原式=x 2-4y 2-2xy+4y 2+2xy=x 2. 21.解析 (1)(2+x)(2-x)+(x-1)(x+5) =4-x 2+x 2+5x-x-5=4x-1, 当x=32时,原式=4×32-1=5. (2)(2a-b)2-(4a+b)(a-b)-2b 2 =4a 2-4ab+b 2-(4a 2-3ab-b 2)-2b 2=-ab, 当a=12,b=-13时,原式=-12×(-13)=16. 22.解析 (1)∵x 2+2y 2-2xy+6y+9=0, ∴x 2-2xy+y 2+y 2+6y+9=0, ∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,解得x=-3,y=-3,∴x 2=9. (2)∵a 2+b 2-6a-4b+13+|3-c|=0, ∴a 2-6a+9+b 2-4b+4+|3-c|=0, ∴(a-3)2+(b-2)2+|3-c|=0, ∴a-3=0,b-2=0,3-c=0, 解得a=3,b=2,c=3,∴a=c≠b, ∴△ABC 是等腰三角形.23.解析 (1)题图1中阴影部分的面积是a 2-b 2, 题图2的面积是(a+b)(a-b), 则a 2-b 2=(a+b)(a-b).故选C.(2)①∵x 2-4y 2=(x+2y)(x-2y)=12,x+2y=4, ∴12=4(x-2y),∴x-2y=3,联立{x +2y =4,x-2y =3,两方程相加得2x=7,解得x=72.②(1−122)(1−132)(1−142) (1)12 0202)(1−12 0212)=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)·…·(1−12 020)(1+12 020)(1−12 021)(1+12 021) =12×32×23×43×34×54×…×1 9992 020×2 0212 020×2 0202 021×2 0222 021=12×2 0222 021=1 0112 021. 24.解析 (1)由题图②中大正方形的面积等于各个小长方形和小正方形的面积之和,可得等式(m+n)2=4mn+(m-n)2.(2)由(1)中等式可得(a+b)2=(a-b)2+4ab. ∵a-b=2,ab=54,∴(a+b)2=22+4×54=9.(3)由题意得{b-2a =3,2b =3a +b,整理得{b-2a =3①,b-3a =0②,①-②,得a=3,把a=3代入②,得b-3×3=0,∴b=9,故a=3,b=9.第 11 页共 11。
《第14章整式的乘法与因式分解》一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.3.如果(a3)2•a x=a24,则x=.4.计算:(1﹣2a)(2a﹣1)=.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:.7.已知(﹣x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2﹣(a1+a3)2的值.8.已知:A=﹣2ab,B=3ab(a+2b),C=2a2b﹣2ab2,则3AB﹣AC=.9.用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.10.我国北宋时期数学家贾宪的著作《开方作法本源》中的“开方作法本源图”如图所示,通过观察你认为图中的a=.二、选择题11.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=﹣4x2D.(﹣3a3)•(﹣5a5)=15a812.如果一个单项式与﹣3ab的积为﹣a2bc,则这个单项式为()A.a2c B.ac C.a2c D.ac13.计算[(a+b)2]3•(a+b)3的正确结果是()A.(a+b)8 B.(a+b)9C.(a+b)10D.(a+b)1114.若x2﹣y2=20,且x+y=﹣5,则x﹣y的值是()A.5 B.4 C.﹣4 D.以上都不对15.若25x2+30xy+k是一个完全平方式,则k是()A.36y2B.9y2C.6y2D.y216.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.617.计算(5x+2)(2x﹣1)的结果是()A.10x2﹣2 B.10x2﹣x﹣2 C.10x2+4x﹣2 D.10x2﹣5x﹣218.下列计算正确的是()A.(x+7)(x﹣8)=x2+x﹣56 B.(x+2)2=x2+4C.(7﹣2x)(8+x)=56﹣2x2D.(3x+4y)(3x﹣4y)=9x2﹣16y2三、解答题(共46分)19.利用乘法公式公式计算(1)(3a+b)(3a﹣b);(2)10012.20.计算:(x+1)2﹣(x﹣1)2.21.化简求值:(2a﹣3b)2﹣(2a+3b)(2a﹣3b)+(2a+3b)2,其中a=﹣2,b=.22.解方程:2(x﹣2)+x2=(x+1)(x﹣1)+x.23.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?《第14章整式的乘法与因式分解》参考答案与试题解析一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法:底数不变指数相加,可得答案.【解答】解:x•x a•x b•x c=x1+a+b+c=x2000,1+a+b+c=2000,a+b+c=1999,故答案为:1999.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加得出1+a+b+c=2000是解题关键.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.【考点】单项式乘多项式;单项式乘单项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:﹣2ab(a﹣b)=﹣2ab•a+2ab•b=﹣2a2b+2ab2,(﹣a2)3(﹣a32)=﹣a6•(﹣a32)=a38.故答案为:﹣2a2b+2ab2,a38.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.如果(a3)2•a x=a24,则x=.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据幂的乘方进行计算,再根据同底数幂的乘法得出方程6+x=24,求出即可.【解答】解:∵(a3)2•a x=a24,∴a6•a x=a24,∴6+x=24,∴x=18,故答案为:18.【点评】本题考查了幂的乘方,同底数幂的乘法的应用,解此题的关键是得出方程6+x=24.4.计算:(1﹣2a)(2a﹣1)=.【考点】完全平方公式.【分析】先提取“﹣"号,再根据完全平方公式进行计算即可.【解答】解:(1﹣2a)(2a﹣1)=﹣(1﹣2a)2=﹣(1﹣4a+4a2)=﹣1+4a﹣4a2,故答案为:﹣1+4a﹣4a2.【点评】本题考查了完全平方公式的应用,能熟练地运用公式进行计算是解此题的关键.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:∵长4×109mm,宽2。
人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。
整式乘法练习题及答案整式乘法是数学中的一项基础技能,它在代数运算中起着重要的作用。
通过练习整式乘法题目,我们可以加深对整式乘法的理解,并提高解题的能力。
下面,我将为大家提供一些整式乘法的练习题及答案,希望能对大家的学习有所帮助。
1. 计算下列整式的乘积:(2x + 3)(x - 4)解答:(2x + 3)(x - 4) = 2x * x + 2x * (-4) + 3 * x + 3 * (-4) = 2x^2 - 8x + 3x - 12 =2x^2 - 5x - 122. 计算下列整式的乘积:(3a - 2b)(4a + 5b)解答:(3a - 2b)(4a + 5b) = 3a * 4a + 3a * 5b - 2b * 4a - 2b * 5b = 12a^2 + 15ab - 8ab - 10b^2 = 12a^2 + 7ab - 10b^23. 计算下列整式的乘积:(5x^2 + 2xy)(3x - y)解答:(5x^2 + 2xy)(3x - y) = 5x^2 * 3x + 5x^2 * (-y) + 2xy * 3x + 2xy * (-y) = 15x^3 -5x^2y + 6x^2y - 2xy^2 = 15x^3 + x^2y - 2xy^24. 计算下列整式的乘积:(2x^2 - 3xy + 4y^2)(x - 2y)解答:(2x^2 - 3xy + 4y^2)(x - 2y) = 2x^2 * x - 2x^2 * 2y - 3xy * x + 3xy * 2y + 4y^2 *x - 4y^2 * 2y = 2x^3 - 4x^2y - 3x^2y + 6xy^2 + 4xy - 8y^3 = 2x^3 - 7x^2y +6xy^2 + 4xy - 8y^3通过以上的练习题,我们可以看到整式乘法的计算过程。
在计算时,我们需要将每一项都与另一个整式的每一项进行相乘,并根据指数和系数的规则进行合并和整理。
第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
2022-2023学年八年级上数学:整式的乘法
一.选择题(共5小题)
1.下列计算正确的是()
A.(2a2)3=8a5B.(﹣a2b)2=﹣a4b2
C.(﹣a3)2=﹣a5D.22a2﹣3a2=a2
2.下列运算中正确的是()
A.a2⋅a3=a6B.(a3b)2=a6b2
C.2(a﹣1)=2a﹣1D.a6÷a2=a3
3.下列各式运算正确的是()
A.a2+2a3=3a5B.a2•a3=a6C.(﹣a2)4=﹣a8D.a8÷a2=a6
4.下列运算正确的是()
A.a3•a5=a8B.a5+a5=a10C.(﹣a3)2=﹣a9D.(ab)2=ab2 5.下列运算正确的是()
A.a•a2=a3B.(a2)3=a5
C.(﹣2a)2=2a2D.(12a2﹣3a)÷3a=4a
二.填空题(共5小题)
6.计算a2•a3的结果是.
7.若a m=8,a n=2,则a m﹣3n的值是.
8.计算﹣12a3b2c÷3a2b的结果是.
9.已知x﹣y=2,则2x÷2y=.
10.已知3m=16,9n=2,则3m﹣2n=.
三.解答题(共5小题)
11.(1);
(2)(54x2y﹣108xy2﹣36xy)÷(﹣18xy).
12.计算:x2y(x+y3)﹣(3xy2)2.
13.我们知道,根据几何图形的面积关系可以说明一些等式的成立.
例如:(x+a)(x+b)=x2+(a+b)x+ab可以用图1的面积关系来说明.
(1)根据图2写出一个等式.
(2)请你再举一个例子,写出等式并在图3空白处画出一个相应的几何图形加以说明(注:
第1页(共9页)。
一、选择题(每小题2分,共20分)1.1.化简2)2()2(a a a −−⋅−的结果是( )A .0B .22aC .26a −D .24a −2.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =−56D .222)(b a ab =−3.若)5)((−+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或54.下列各式中,从左到右的变形是因式分解的是( )A .a a a a +=+2)1(B .b a b a b a b a b a −+−+=−+−))((22B .)4)(4(422y x y x y x −+=− D .))((222a bc a bc c b a −+=+−5.如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边行.依照图中标注的数据,计算图中空白部分的面积为(A .2c ac ab bc ++−B .2c ac bc ab +−−C .ac bc ab a −++2D .ab a bc b −+−22 6.三个连续奇数,中间一个是k ,则这三个数之积是( A .k k 43− B .k k 883− C .k k −34 D .k k 283−7.如果7)(2=+b a ,3)(2=−b a ,那么ab 的值是( )A .2B .-8C .1D .-18.如果多项式224y kxy x ++能写成两数和的平方,那么k 的值为( )A .2B .±2C .4D .±49.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.多项式251244522+++−x y xy x 的最小值为( )A .4B .5C .16D .25二、填空题(每小题2分,共20分)11.已知23−=a ,则6a = .12.计算:3222)()3(xy y x −⋅−= .13.计算:)1312)(3(22+−−y x y xy = . 14.计算:)32)(23(+−x x = .15.计算:22)2()2(+−x x = .16.+24x ( 2)32(9)−=+x .17.分解因式:23123xy x −= .18.分解因式:22242y xy x −+−= .19.已知3=−b a ,1=ab ,则2)(b a += .20.设322)2()1(dx cx bx a x x +++=−+,则d b += .三、解答题(本大题共60分)21.计算:(每小题3分,共12分)(1))311(3)()2(2x xy y x −⋅+−⋅−;(2))12(4)392(32−−+−a a a a a ;(3))42)(2(22b ab a b a ++−;(4)))(())(())((a x c x c x b x b x a x −−+−−+−−.22.先化简,再求值:(第小题4分,共8分)(1))1)(2(2)3(3)2)(1(−+++−−−x x x x x x ,其中31=x .(2)2222)5()5()3()3(b a b a b a b a −++−++−,其中8−=a ,6−=b .23.分解因式(每小题4分,共16分):(1))()(22a b b b a a −+−; (2))44(22+−−y y x .(3)xy y x 4)(2+−; (4))1(4)(2−+−+y x y x ;(5)1)3)(1(+−−x x ; (6)22222222x b y a y b x a −+−.24.(本题4分)已知41=−b a ,25−=ab ,求代数式32232ab b a b a +−的值.25.(本题5分)解方程:)2)(13()2(2)1)(1(2+−=++−+x x x x x .26.(本题5分)已知a 、b 、c 满足5=+b a ,92−+=b ab c ,求c 的值.27.(本题5分)某公园计划砌一个形状如图1所示的喷水池.①有人建议改为图2的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需要的材料多(即比较哪个周长更长)?②若将三个小圆改成n 个小圆,结论是否还成立?请说明.28.(本题5分)这是一个著名定理的一种说理过程:将四个如图1所示的直角三角形经过平移、旋转、对称等变换运动,拼成如图2所示的中空的四边形ABCD .(1)请说明:四边形ABCD 和EFGH 都是正方形;(2)结合图形说明等式222c b a =+成立,并用适当的文字叙述这个定理的结论.四、附加题(每小题10分,共20分)29.已知n 是正整数,且1001624+−n n 是质数,求n 的值.a ab b b G H F图1 图230.已知522++x x 是b ax x ++24的一个因式,求b a +的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.B 6.A 7.C 8.D 9.A 10.C二、填空题11.4 12.879b a − 13.xy y x xy 36233−+− 14.6562−+x x 15.16824+−x x16.x 12− 17.)2)(2(3y x y x x −+ 18.2)(2y x −− 19.13 20.2三、解答题21.(1)xy y x 32+ (2)a a a 1335623+− (3)338b a −(4)ca bc ab x c b a x +++++−)(2222.(1)210−−x ,315− (2)22102010b ab a +−,40 23.(1))()(2b a b a +− (2))2)(2(+−−+y x y x (3)2)(y x +(4)2)2(−+y x (5)2)2(−x (6)))()((22b a b a y x −++24.原式=3254125)(22−=⎪⎭⎫ ⎝⎛⨯−=−b a ab 25.3−=x26.由5=+b a ,得b a −=5,把b a −=5代入92−+=b ab c ,得∴222)3(969)5(−−=−−=−+−=b b b b b b c .∵2)3(−b ≥0, ∴22)3(−−=b c ≤0.又2c ≥0,所以,2c =0,故c =0.27. ①设大圆的直径为d ,周长为l ,图2中三个小圆的直径分别为1d 、2d 、3d ,周长分别为1l 、2l 、3l ,由321321321)(l l l d d d d d d d l ++=++=++==πππππ. 可见图2大圆周长与三个小圆周长之和相等,即两种方案所用材料一样多.②结论:材料一样多,同样成立.设大圆的直径为d ,周长为l ,n 个小圆的直径分别为1d ,2d ,3d ,…,n d ,周长为1l ,2l ,3l ,…,n l ,由+++==321(d d d d l ππ…)n d ++++=321d d d πππ…n d π++++=321l l l …n l +.所以大圆周长与n 个小圆周长和相等,所以两种方案所需材料一样多.28.(1)在四边形ABCD 中,因为AB =BC =CD =DA =b a +, 所以四边形ABCD 是菱形. 又因为∠A 是直角, 所以四边形ABCD 是正方形.在四边形EFGH 中, 因为EF =FG =GH =HE =c , 所以四边形EFGH 是菱形. 因为∠AFE +∠AEF =90°,∠AFE =∠HED ,所以∠HED +∠AEF =90°,即∠FEH =90°,所以四边形EFGH 是正方形.(2)因为S 正方形ABCD =4S △AEF +S 正方形EFGH , 所以,22214)(c ab b a +⨯=+, 整理,得222c b a =+.这个定理是:直角三角形两条直角边的平方和等于斜边的平方.四、附加题29.)106)(106(100162224+−++=+−n n n n n n ,∵n 是正整数,∴1062++n n 与1062+−n n 的值均为正整数,且1062++n n >1.∵1001624+−n n 是质数,∴必有1062+−n n =1,解得3=n .30.设))(52(2224n mx x x x b ax x ++++=++,展开,得a ab b b G Hn x m n x m n x m x b ax x 5)52()52()2(23424++++++++=++. 比较比较边的系数,得⎪⎪⎩⎪⎪⎨⎧==++=+=+.5,52,052,02b n a m n m n m 解得2−=m ,5=n ,6=a ,25=b . 所以,31256=+=+b a .。
第十四章整式乘法运算训练(必考)考点1 幂的运算1.根据题意,完成下列问题.(1)若2m=8,2n=32,求22m﹣n的值;(2)已知2x+3y﹣3=0,求4x•8y的值;(3)已知2x+2•5x+2=103x﹣3,求x的值.2.先化简,再求值:(1)已知a m=2,a n=3,求a m+n的值.(2)已知:x+2y+1=3,求3x×9y×3的值.3.(1)若x m=2,x n=3.求x m+2n的值.(2)若2×8x×16x=222,求x的值.4.已知(a m)n=a2,22m÷22n=26.(1)求mn和m﹣n的值;(2)求m2+n2﹣mn的值.5.计算:(1)(﹣3)2+(π﹣3)0﹣|﹣5|+(1﹣2)2021;(2)(﹣2xy)2+(x2y)3÷(﹣x4y).(3)(﹣2x3y)2•(﹣x2y2)(4)a10÷a4﹣(﹣2a2)3﹣3a2•2a4.6.(1)已知3×9m×27m=311,求m的值.(2)已知2a=3,4b=5,8c=5,求8a+c﹣2b的值.考点2 整式的乘法运算1.计算:(1)﹣3x2(2x﹣4y)+2x(x2﹣xy)(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).2.计算:(x+2)(2x﹣3)+(10x3﹣12x)÷(﹣2x).3.计算:(8x2y3﹣6x3y2z)÷2x2y2.4.若(x2+3mx﹣)(x2﹣3x+n)的积中不含有x与x3项.(1)求m2﹣mn+n2的值;(2)求代数式(﹣18m2n)2+(9mn)2+(3m)2014n2016的值.5.若(x﹣3)(x2+px)的结果不含x2项,求p的值.5.若的积中不含x项与x2项.(1)求p、q的值;(2)求代数式p2019q2020的值.6.在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.7.马同学与虎同学两人共同计算一道题:(x+m)(2x+n).由于马同学抄错了m 的符号,得到的结果是2x2﹣7x+3,虎同学漏抄第二个多项式中x的系数,得到的结果是x2+2x﹣3.请你求出m、n的值.8.芳芳计算一道整式乘法的题:(2x+m)(5x﹣4),由于芳芳抄错了第一个多项式中m前面的符号,把“+”写成“﹣”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)计算这道整式乘法的正确结果.。
八年级数学(整式的乘法)
一.选择题(共11小题每题3分)
1.下列计算结果正确的是()
A.(3x4)2=6x8 B.(﹣x4)3=﹣x12
C.(﹣4a3)2=4a6 D.〔(﹣a)4〕5=﹣a20
2.下列计算正确的是()
A.a2+a3=a5B.(2a)2=4a C.a2a3=a5 D.(a2)3=a5
3.如果□×3a=﹣3a2b,则“□”内应填的代数式是()
A.﹣ab B.﹣3ab C.a D.﹣3a
4.计算[(﹣a)2]3(a3)2所得结果为()
A.a10 B.﹣a10 C.a12 D.﹣a12
5.已知单项式9a m+1b n+1与﹣2a2m﹣1b2n﹣1的积与5a3b6是同类项,求m n的值()A.4 B.3 C.2 D.1
6.355、444、533的大小关系是()
A.355<444<533B.444<355<533C.533<444<355D.533<355<444 7.若m,n均为正整数且2m2n=32,(2m)n=64,则mn+m+n的值为()A.10 B.11 C.12 D.13
8.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()
A.a>b>c B.a>c>b C.a<b<c D.b>c>a
9.下列计算正确的是()
A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4C.a2a3=a6 D.(ab2)2=a2b4
10.下列运算正确的是()
A.3m﹣2m=1 B.(m3)2=m6C.(﹣2m)3=﹣2m3D.m2+m2=m4 11.已知4×8m×16m=29,则m的值是()
A.1 B.4 C.3 D.2
二.填空题(共3小题每题3分)
12.若|a﹣2|+(b+)2=0,则a11b11= .
13.(1)a4a2a= ;
(2)(﹣2x2y)3= ;
(3)(a3)2+a6= .
14.若2m=5,2n=6,则2m+2n=
若4a=2a+5,求(a﹣4)2005= .
三.解答题(共10小题)
15.计算:(12分)
(1)34×36(2)a2×(﹣a)2(3)(3ab7)2(4)(x﹣y)3(x﹣y)2(5)(x2)5×(﹣x)5
(6)(m4)2+m5m3+(﹣m)4m4.
16.计算:(9分)
(1)(﹣x)x2(﹣x)6(2)(y4)2+(y2)3y2
(3)a5(﹣a)3+(﹣2a2)4.
17.计算:(12分)
(1)34×36= (2)xx7=
(3)a2a4+(a3)2= (4)(﹣2ab3c2)4=
(5)(﹣3xy3)3= (6)(﹣)2015×82016= .
18.计算:(﹣2x2y)33(xy2)2.(4分)
19.(8分)已知10a=4,10b=3,求
(1)102a+103b的值;
(2)102a+3b的值.
20.(6分)(1)若2x+5y﹣3=0,求4x32y的值.
(2)若26=a2=4b,求a+b值.
21.(6分)计算:
(x4)2+(x2)4﹣x(x2)2x3﹣(﹣x)3(﹣x2)2(﹣x)
22.(4分)计算:(-2m2n2)33m3n3.
23.(8分)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:
(3,27)= ,(4,1)= (2,)= ;
(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.
24.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.
(1)如图1,填空∠B= °,∠C= °;
(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;
②试写出线段BN、CE、CD之间的数量关系,并加以证明.。