第7章现代控制理论简介
- 格式:ppt
- 大小:2.56 MB
- 文档页数:40
《现代控制理论》课程简介课程内容:《现代控制理论》是自动化专业的限选专业课程。
课程的内容包括系统状态空间表达式的建立;状态方程的求解;系统的能控性和能观性;李雅普诺夫判别稳定性方法的原理及用其分析线性系统的稳定性;控制系统的综合,包括极点配置及状态观测器等。
课程的任务是比较全面系统地讲述现代控制系统的基本原理和基本分析设计方法。
通过学习,掌握控制系统的能控性和能观性,以及设计状态观测器、状态反馈控制器的方法,并把重点放在状态观测器、状态反馈控制器设计上,为今后从事控制领域的工作和研究打下必要的基础;能够列写状态空间表达式;能够根据用户要求的性能指标设计状态观测器和状态反馈控制器;培养学生的辨证思维能力,对今后进一步学习更为专业的控制理论技术起到辐射的作用。
Brief IntroductionCourse Description:This course is the limited subject course for the college students.The contents of this course include: system state space expressions, state equation, controllability and observability, Lyapunov stability method, the pole placement , observer and controller.The mission of this course is:1st, to introduce the basic principle and basic method of modern control system ,through the study, master control system controllability and observability;2nd, to design state observer, state feedback controller, state space expression;3rd, to design state observer and state feedback controller according to the user request performance index .《现代控制理论》课程教学大纲一、教学内容第一章控制系统的状态空间表达式1.1 状态变量及状态空间表达式1.2 状态空间表达式的模拟结构图1.3 由微分方程列写状态空间表达式1.4 由传递函数列写状态空间表达式1.5 状态向量的线性变换1.6 传递函数矩阵教学难点:传递函数矩阵。
第六次课小结一、 Lyapunov 意义下的稳定性问题基本概念● 平衡状态的概念● Lyapunov 意义下的稳定性定义(稳定,一致稳定,渐进稳定,一致渐进稳定,大范围渐进稳定等)● 纯量函数的正定性,负定性,正半定性,负半定性,不定性 ● 二次型,复二次型(Hermite 型)二、 Lyapunov 稳定性理论● 第一方法 ● 第二方法三、 线性定常系统的Lyapunov 稳定性分析● 应用Lyapunov 方程Q PA P AH-=+来进行判别稳定性四、 线性定常系统的稳定自由运动的衰减率性能估计● 衰减系数,一旦定出min η,则可定出)(x V 随时间t 衰减上界。
● 计算min η的关系式五、 离散时间系统的状态运动稳定性及其判据● 离散系统的大范围淅近稳定判据,Lyapunov 稳定判据在离散系统中的应用六、 线性多变量系统的综合与设计的基本问题●问题的提法●性能指标的类型●研究的主要内容七、极点配置问题●问题的提出●可配置条件●极点配置算法5.2.5 爱克曼公式(Ackermann ’s Formula) 考虑由式(5.1)给出的系统,重写为Bu Ax x +=假设该被控系统是状态完全能控的,又设期望闭环极点为n s s s μμμ===,,,21 。
利用线性状态反馈控制律Kx u -=将系统状态方程改写为x BK A x )(-=(5.14)定义BK A A -=~则所期望的特征方程为)())((~11121=++++=---=-=+-**--*n n n nn a s a sa s s s s A sI BK A sI μμμ由于凯莱-哈密尔顿定理指出A ~应满足其自身的特征方程,所以0~~~)~(**11*1*=++++=--I a A a A a A A n n n n φ (5.15)我们用式(5.15)来推导爱克曼公式。
为简化推导,考虑n = 3的情况。
需要指出的是,对任意正整数,下面的推导可方便地加以推广。
现代控制理论⾮线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引⼊到系统控制理论中,从⽽标志着现代控制理论研究的开始。
现代控制理论的研究对象是系统的数学模型,它根据⼈们对系统的性能要求,通过对被控对象进⾏模型分析来设计系统的控制律,从⽽保证闭环系统具有期望的性能。
其中,线性系统理论已经形成⼀套完整的理论体系。
过去⼈们常⽤线性系统理论来处理很多⼯程问题,并在⼀定范围内取得了⽐较满意的效果。
然⽽,这种处理⽅法是以忽略系统中的动态⾮线性因素为代价的。
实际中很多物理系统都具有固有的动态⾮线性特性,如库仑摩擦、饱和、死区、滞环等,这些⾮线性动态⾮线性特性的存在常常使系统的控制性能下降,甚⾄变得不稳定。
这就使得利⽤线性系统理论处理⾮线性动态系统⾯临巨⼤的困难。
此外,在控制系统运⾏过程中,环境的变化或者元件的⽼化,以及外界⼲扰等不确定因素也会造成系统实际参数和标称值之间出现较⼤差别。
因此,基于标称数学模型所设计的控制律⼀般很难达到期望的性能指标,甚⾄会使系统不稳定。
综上所述,研究不确定条件下⾮线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。
⾮线性动态系统是指按确定性规律随时间演化的系统,⼜称动⼒学系统,其理论来源于经典⼒学,⼀般由微分⽅程来描述。
美国数学家Birkhoff[1]发展了法国数学家Poincare在天体⼒学和微分⽅程定性理论⽅⾯的研究,奠定了动态系统理论的基础。
在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型⼀般不可能精确得到。
因此,我们只能⽤近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产⽣。
所谓鲁棒性就是指系统预期⾮线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在⽽遭到破坏的特性,鲁棒控制是⾮线性动态系统控制理论研究的⼀个⾮常重要的分⽀。
现代控制理论的发展促进了对动态系统的研究,使它的应⽤从经典⼒学扩⼤到⼀般意义下的系统。
现代控制理论及应用李嗣福教授、博士生导师中国科学技术大学自动化系一、现代控制理论及应用发展简介1. 控制理论及应用发展概况2. 自动控制系统和自动控制理论以单容水槽水位控制和电加热器温度控制为例说明什么是自动控制、控制律(或控制策略)、自动控制系统以及自动控制系统组成结构和自动控制理论所研究的内容。
2.1自动控制:利用自动化仪表实现人的预期控制目标。
2.2自动控制系统及其组成结构自动控制系统:指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。
自动控制系统组成结构:是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式。
控制系统性能指标:定性的有稳(定性)、准(确性)、快(速性)。
控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。
2.3自动控制系统类型主要有:按系统参数输入信号形式分:定值控制系统或调节系统和随动系统。
按系统结构形式分:前馈控制系统(即开环系统)和反馈控制系统以及复合控制系统;按系统中被控对象的控制输入量数目和被控输出量数目分:单变量控制系统和多变量控制系统;按被控对象特性分:线性控制系统和非线性控制系统;按系统中的信号形式分:模拟(或时间连续)控制系统、数字(或时间离散)控制系统以及混合控制系统。
2.4自动控制理论:研究自动控制系统分析与综合设计的理论和方法。
3. 古典(传统)控制理论:采用数学变换方法(即拉普拉斯变换和富里叶变换)按照系统输出量与输入量之间的数学关系(即系统外部特性)研究控制系统分析和综合设计问题。
具体方法有:根轨迹法;频率响应法。
主要特点:理论方法的物理概念清晰,易于理解;设计出控制律一般较简单,易于仪表实现主要缺点:① 设计需要凭经验试凑,设计结果与设计经验关系很大; ② 系统分析和设计只着眼于系统外部特性;③一般只能处理单变量系统分析和设计问题,而不能处理复杂的多变量系统分析和设计。
现代控制理论简介下列几方面为现代控制理论发展的促进因素:1.处理更多的现实模型系统的必要性2.强调向最佳的控制和最佳的系统设计的升级3.数字化计算机技术的持续发展.4.当前技术的不成熟.众所周知的方法在其它知识领域的适用性得到承认.从容易解决的简单近似的模型到更多的现实模型的转变产生了两种效果:首先,模型必须包括很多的变量。
其次,一个十分逼真的模型是尽可能的包括非线性和随时间变化的参数。
早先的忽略了系统的一些方面,例如很有可能的一方面就是在环境中有着反馈的交互作用。
在现代科技高度发达的社会,存在一种非常雄心的目标的趋势,这也意味着要处理有着很多相互关联成分的复杂系统,高精确度与高效率的需要改变了控制系统的执行重点。
在超频百分比,时间设置,频宽等等方面的经典规范,在很多情况下解决了优化标准如最小能量,最小花费,最小时间控制,优化这些标准时很难避免和不开心的非线性打交道。
即使基础系统是线性的和不随时间变化的,优化控制理论显示非线性时间变化控制也被应用到了。
不停发展的计算机技术在控制领域创造了三条最重要的影响。
其中一项是有关数字化的超级计算机,较之这本书首印时期,现在能模拟,分析,控制的问题的大小和种类都要大得惊人。
计算机技术的第二个问题就是必须处理微型计算机在家庭和工作地的扩散与广泛的可靠性。
古典的控制理论是以图画似的方法为主导的. 因为在时间那是唯一的解决确定的问题的途径。
为了系统分析和设计,现在每一个控制设计者很容易有机会接近强大的计算机内部。
老的图画似的方法不但没有消失, 并且还使其自动化了.它们之所以能生存是因为提供了洞察力与直觉,许多不同的技术经常能更适合于计算机。
虽然计算机能被用于执行经典的改变-到转的改变方法,但它通常更多的有效用于直接整合微分方程。
计算机的第三个,也是最重要的方面,就是它们现在已经如此普遍地应用于控制系统,俨然其中的一员。
其价格,型号和稳定性使得能够在许多系统中常规的使用。
现代控制理论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。
互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。
方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。
4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。
5、什么是实现问题什么是最小实现说明实现存在的条件。
现代控制理论摘要最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
关键词:最优控制;控制规律;最优性能指标;线性二次型一绪论1.1背景和意义要求将最优控制问题典型解决方法变分法、极值原理和动态规划及其在时间最短控制问题的应用和线性二次型最优控制问题(包括线性二次型实验及仿真结果)作为主要内容。
其中有关线性二次型的实验要利用MATLAB软件建立数学模型及仿真并作对结果一定的分析。
通过理论与实践操作加深对最优控制这门课程的理解,使之能应用于以后的学习和工作。
1.2主要内容现代控制理论是在经典控制理论基础上逐步发展起来的。
其基本内容包括:线性系统的状态空间理论,最优估计与最优滤波、最优控制理论,系统辨识理论、鲁棒控制、自适应控制。
它以状态空间法为基础,研究多输入多输出、变参数、非线性、高精度、高效能等控制系统的分析与设计问题。