低压配电系统的接地方式及特点
- 格式:docx
- 大小:44.55 KB
- 文档页数:13
IT、TT、TN系统简介低压配电接地系统分为IT系统、TT系统、TN系统三种形式,而这三种接地方式非常容易混淆。
现全面、深入总结了IT系统、TT系统、TN系统的原理、特点和适用范围,以期能对从事电气作业人员有所帮助。
首先给出定义。
根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
下面分别对IT系统、TT系统、TN系统进行全面剖析。
一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
IT系统接线图如图1所示。
图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;发生接地故障时,对地电压升高1.73倍;220V负载需配降压变压器,或由系统外电源专供;安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
低压配电系统的接地方式及特点1低压配电系统中的接地类型(1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。
中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。
(2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。
保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。
(3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。
(4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。
此种方式也叫保护接零。
2低压配电系统的供电方式(1)低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。
其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。
接地系统一般由两个字母组成,必要时可加后续字母。
第一个字母:表示电源中性点对地的关系T:直接接地I:不接地,或通过阻抗与大地相连第二个字母:表示电气设备外壳与大地的关系T:独立于电源接地点的直接接地N:表示直接与电源系统接地点或与该点引出的导体相连后续字母:表示中性线与保护线之间的关系C:表示中性线N与保护线PE合二为一S:表示中性线N与保护线PE分开C-S:表示在电源侧为PEN线,从某一点分开为中性线N和保护线PE (2).不同接地系统的组成及特点:■TN系统的组成及特点在TN系统中,所有电气设备的外壳接到保护线上,与配电系统的中性点相连。
保护线应在每个变电所附近接地,配电系统引入建筑物时,保护线在其入口处接地。
为了保证故障时保护线的电位尽量接近地电位,尽可能将保护线与附近的有效接地体相连,如必要,可增加接地点,并使其均匀分布。
低压配电系统的接线方式及特点(1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线.(2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系.以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统.配电系统设计的基本原则(1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作方便安全,配电系统的层次不宜超过二级.(2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电.(3)当用电设备容量大,或负荷性质重要,或在有潮湿、腐蚀性环境的车间、建筑内,宜采用放射式配电.(4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备不宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可适当增加.(5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电.(7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器.(8)单相用电设备的配置应力求三相平衡.(9)当采用220/380V的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.(10)配电系统的设计应便于运行、维修,生产班组或工段比较固定时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关.(11)在用电单位内部的邻近变电所之间宜设置低压联络线.(12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.。
低压配电系统IT、TT和TN接地方式的详细图文详解分析仪表人对仪表接地并不陌生,在本文讲讲低压配电IT系统、TT系统、TN系统的接地方式。
这三种接地方式容易混淆,它们的原理、特点和适用范围各有不同,希望能对广大的仪表人有所帮助。
定义根据现行的国家标准《低压配电设计规范》(GB 50054-2011),低压配电系统有IT系统、TT系统、TN系统三种接地形式。
①IT、TT、TN的第一个字母表示电源端与地的关系T表示电源变压器中性点直接接地;I标志电源变压器中性点不接地,或通过高阻抗接地。
②IT、TT、TN的第二个字母表示电气装置的外露可导电部分与地的关系T标志电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;N表示电气装置的外露可导电部分与电源端接地点有直接电气连接。
低压配电系统IT、TT和TN全面剖析1、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
IT系统特点①IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;②发生接地故障时,对地电压升高1.73倍;③220V负载需配降压变压器,或由系统外电源专供;④安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
⑤IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
⑥运用IT方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。
根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。
其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。
第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
TN系统:电源变压器中性点接地,设备外露部分与中性线相连。
TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。
IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。
1、TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。
下面分别进行介绍。
1.1、TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。
TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
由上可知,TN-C系统存在以下缺陷:(1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。
当三相负载严重不平衡时,触及零线可能导致触电事故。
(2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。
(3)、对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。
低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注册安全工程师考点)根据现行的国家相关标准,低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
分别对IT系统、TT系统、TN系统进行全面剖析。
一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
IT系统接线图如图1所示。
图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V 负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。
只有在供电距离不太长时才比较安全。
低压配电系统的接地安全基础知识范本一、引言低压配电系统的接地安全是电力系统重要组成部分,起着保护人身安全、防止设备损伤的重要作用。
正确的接地设计和维护可以减少地电压、故障电流等对人员与设备的伤害风险。
本文将介绍低压配电系统接地的基础知识,包括接地标准、接地类型、接地电阻、接地装置等相关内容。
二、接地标准根据国家标准和行业规范,低压配电系统的接地应符合以下标准:1. GB 50054-2011《建筑电气设计规范》2. GB 50057-2010《智能建筑电气设计规范》3. GB 50254-2015《建筑电气装置设计规范》4. DL/T 874-2004《电力系统接地设计准则》5. DL/T 746-2009《电力系统接地测试技术导则》三、接地类型低压配电系统的接地类型主要有以下几种:1. TN 系统:即电源的中性点直接接地,用户与电源之间的导体通过低阻抗连接。
TN-C、TN-S、TN-C-S 分别代表了共同中性线接地、单独中性线接地和中性线中有一段共地。
2. TT 系统:用户与电源之间的导体通过绝缘进行连接,用户与地之间的导体通过低阻抗连接。
3. IT 系统:即电源的中性点不接地,用户与电源之间的导体通过绝缘进行连接,用户与地之间的导体不直接连接,而是通过绝缘监护装置进行监护。
四、接地电阻接地电阻是评价接地装置性能的重要指标,它反映了接地系统的可靠性和安全性。
接地电阻的大小直接影响到接地电流和接地电压的大小。
接地电阻的测量方法主要有“其它法”和“电压降法”,其中“电压降法”是应用比较广泛的方法。
在进行接地电阻测量时,需要注意以下几个方面:1. 测量点要选择在接地装置附近,避免测量引线的电阻干扰。
2. 测量点要选择在整个接地系统的有效接地区域,并保证测量点与其它金属物体的距离。
3. 在测量过程中需要关闭其它与被测接地系统相连接的设备,避免电流造成的干扰。
五、接地装置1. 接地棒:接地棒是低压配电系统中常用的接地装置之一,它通过将电气设备与地之间的电流导入地中,减少因电气设备发生故障而导致的电压升高。
低压配电系统保护接地安全运行的不同方式低压配电系统是指电压等级较低的电力配电系统,一般为380V和220V的配电系统。
为了确保低压配电系统的安全运行,必须采取一系列的保护措施,其中包括接地保护。
接地保护是指将电气设备的金属外壳等非电性部分与地地之间连通,以便当设备发生漏流或漏电时,通过接地装置将漏电流迅速导入地下,保护人身安全和设备的正常工作。
根据国家相关标准和规范,低压配电系统保护接地安全运行的方式主要有以下几种:1. 金属防护接地:金属防护接地是指将低压配电系统中的金属设备的金属外壳接地,形成一个安全的接地网。
这种接地方式适用于如电流互感器、电力电缆金属护套等金属设备。
金属防护接地的目的是保证设备的工作安全,防止操作人员电击伤害。
2. 保护零线接地:保护零线接地是指将低压配电系统中的零线接地,以便在系统发生漏电时能够及时引入接地线,使系统短路,起到保护作用。
保护零线接地适用于需要检测和切断漏电故障的低压配电系统。
3. 中性点接地:中性点接地是指将低压配电系统的中性点接地,形成一个接地网。
中性点接地的作用是确保系统中的中性点电位趋于稳定,并能够提供接地故障电流的得到及时的切除,避免对系统其他部分的影响。
中性点接地适用于需要保护系统中的中性点安全运行的低压配电系统。
4. 感应式接地:感应式接地是一种无电极接地方式,通过感应作用将漏电线圈装置与大地之间形成一个感应环。
当系统发生漏电时,感应环感应到漏电,进而产生感应电流,切断漏电线路。
感应式接地适用于需要切断漏电故障的低压配电系统。
5. 电源接地:电源接地是指将低压配电系统的电源进行接地。
电源接地的作用是保护电源设备,防止外界电压的干扰。
同时,电源接地还可以保证电源设备的正常运行,减少故障发生的概率。
以上是低压配电系统保护接地安全运行的主要方式,每种方式都有其适用的范围和具体的保护目的。
在实际应用中,根据不同的电气设备和工作环境,可以选择合适的接地方式,确保低压配电系统的安全运行。
低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下:1、第一个字母表示配电系统的对地关系:T:电源端有一点直接接地;I:电源端所有带电部分与地绝缘,或有一点经阻抗接地。
2、第二个字母表示电气装置的外露导电部分与地的关系:T:外露导电部分对地直接做电气连接,与配电系统的任何接地点无关;N:外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点)在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。
这个接地点通常是配电系统的中性点。
如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。
保护线应在每个变电所附近接地。
配电系统引入建筑物时,保护线在其入口处接地。
为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。
根据中性线N与保护线PE 是否合并的情况,TN系统又分为TN-C、TN-S及TN-C-S。
1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。
当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。
但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。
另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:在1、10区爆炸危险环境中不能采用TN-C系统。
同时由于PEN线在同一建筑物内往往相互有电气连接,当PEN线断线或相线直接与大地短路时,都将呈现相当高的对地故障电压,这时可能扩大事故范围。
2、在TN-S系统中,保护线与中性线分开,具有TN-C系统的优点,但价格较贵。
低压配电系统三种形式根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。
其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。
第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
TN系统:电源变压器中性点接地,设备外露部分与中性线相连。
TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。
IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地。
1、TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。
下面分别进行介绍。
1.1、TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。
TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
由上可知,TN-C系统存在以下缺陷:(1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。
当三相负载严重不平衡时,触及零线可能导致触电事故。
(2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。
低压设备接地方式第一节低压接地方式的概念一、接地方式的提出为了确保低压配电系统及电气设备、用电器具的安全使用,必须采取适当措施,防止使用人员发生电击危险及电气设备、用电器具烧毁。
接地是常用的一种方法,因为大地是可导电的地层,其任何一点的电位通常取零,即零电位(当单相接地时,离接地点20m及以外视为零电位)。
对电气设备、用电器具而言,如果将其金属外壳与大地连接,这时金属外壳就接近零电位。
即使在故障情况下,如发生电气设备因绝缘破坏造成碰壳短路,由于金属外壳已与大地作良好的电气连接,则金属外壳与大地的电位差变低,若人与之接触,通过人体的电流就也小,提高了间接触电的安全性。
对低压配电系统而言,较多将配变中性点接地(称为工作接地)。
从电气安全角度来看,在一定的条件下,可与电气设备的接地共同作用。
当接地故障时,产生的电流可使配电系统中的保护设备在适当时间内动作,切断电源,用以保证安全。
由于电气设备及用电器具的金属外壳可以直接接地,也可以通过导体接到配电系统已接地的中性点上,配电系统可以直接接地或不接地或通过阻抗接地,这几种接地组合即称为低压配电系统接地方式。
二、接地方式的基本组成接地方式的组成部分可分为电气设备和配电系统两部分。
1.电气设备的接地部分(1)接地体:与大地紧密接触并与大地形成电气连接的一个或一组导体。
(2)外露可导电部分:电气设备能触及的可导电部分。
正常时不带电,故障时可能带电,通常为电气设备的金属外壳。
(3)主接地端子板:一个建筑物或部分建筑物内各种接地(如工作接地、保护接地)的端子和等电位连接线的端子的组合。
如成排排列,则称为主接地端子排。
(4)保护线(PE):将上述外露可导电部分,主接地端子板、接地体以及电源接地点(或人工接地点)任何部分作电气连接的导体。
对于连接多个外露可导电部分的导体称为保护干线。
(5)接地线:将主接地端子板或将外露可导电部分直接接到接地体的保护线。
对于连接多个接地端子板的接地线称为接地干线。
低压配电系统保护接地安全运行的不同方式低压配电系统是指额定电压不超过1000V的供电系统,保护接地是低压配电系统安全运行的重要环节。
以下是保护接地的不同方式:方式一:绝缘保护接地绝缘保护接地是指将配电设备的导体与大地隔离,形成绝缘的环境,使人体与设备的接地电流达到极小值,减少触电事故的发生。
绝缘保护接地主要有以下方式:1. 绝缘引入:在电源引入的地线处安装一个绝缘装置,使电源的地线与地之间隔绝,从而实现绝缘保护。
2. 绝缘监控:在配电装置与人接触的位置安装绝缘监控装置,实时监测绝缘状态,并在绝缘状态发生问题时及时报警。
方式二:零序保护接地在低压配电系统中,若出现电流漏地故障或零序电流过大的情况,容易导致设备损坏和人身意外事故。
为了防止这种情况的发生,可以采取零序保护接地措施。
1. 零序差动保护:在主地线周围绕绕差动传感器,监测各相电流的差异,一旦出现零序电流,即可触发保护动作。
2. 零序电流检测:安装零序电流检测设备,监测配电设备的零序电流值,一旦电流超出设定值,即可触发保护装置。
方式三:接地电阻保护接地接地电阻是低压配电系统中非常重要的参数,它决定了接地电流的大小,也直接影响到接地保护的可靠性。
为了保证接地电阻的合理大小,可以采取以下措施:1. 接地电阻测量:定期对接地电阻进行测量,确保其在合理的范围内。
2. 接地电阻改进:通过改变接地电极的材料、排列形式或增加接地电极的数量等方法,降低接地电阻的值,提高接地系统的可靠性。
方式四:人身保护接地为了保护人员的人身安全,低压配电系统中可以采取以下人身保护措施:1. 接地保护装置:在配电系统中安装接地保护开关或保护装置,一旦接地故障发生,及时切断电源,以保护人员的安全。
2. 人员防护装备:提供适当的绝缘手套、绝缘鞋等人员防护装备,降低触电事故的风险。
方式五:监测与检修维护定期监测和检修维护低压配电系统是保护接地安全运行的重要环节。
可以采取以下措施:1. 定期巡检:定期对配电系统进行巡检,发现接地问题及时处理。
低压配电系统的几种接地形式TT、TN、IT在低压配电系统中,正确的接地形式是非常重要的,不同的接地形式适用于不同的场景和需要。
在本文中,我们将介绍低压配电系统中常见的三种接地形式:TT,TN,和IT。
TT形式TT形式接地也被称为非自关式中性点接地,它指的是电源系统中的中性点被接地,但是接地点和设备之间有一定的电阻。
在TT形式接地中,用于接地的导线通常是连通于附加的电阻的,并且机房内的所有电气设备都需要接地。
TT形式接地适用于以下场景:•当设备故障时,不会引起过大的漏电电流;•适用于需要保证人身安全的场所,如医院、实验室等;•电力系统中接地电阻有一定的限制要求。
然而,TT形式接地的缺点在于,因为接地电阻的存在,会造成设备与地之间的干扰电压,对系统的稳定性造成影响。
TN形式TN形式接地指的是电源系统中的中性点和设备外壳都被接地。
TN形式接地又分为以下三种形式:TN-S形式TN-S形式接地是指中性点和设备外壳都接到同一地方,只有一条连接地电缆。
TN-S形式接地适用于以下场景:•如果具备正常的设备,使用TN-S形式接地是安全的;•电阻值可以非常小。
TN-C形式TN-C形式接地指的是电源系统中的中性点被接地,但各个设备外壳是联接在一起的,只有一条连接地电缆。
TN-C形式接地适用于以下场景:•轻型设备、灯具、弱电设备等;•对安全和电磁兼容性的考虑比较重要。
TN-C-S形式TN-C-S形式接地是指在一些较大的设备上使用TN-S,其余设备使用TN-C。
TN-C-S形式接地适用于以下场景:•符合电力公司规定的规范;•对设备的安全特别要求高。
TN形式接地的优点是在制造成本、可靠性和安装成本方面的具体控制。
然而,TN形式的缺点在于,当非中性点短路到地面时,将会引起短路电流打穿地面,导致一些安全隐患。
IT形式IT形式接地是指电源系统中的中性点没有被直接接地,而是被通过一个电阻器地接到地面上。
IT形式接地适用于以下场景:•连续供电和要求稳定性的设备;•对用电负载互相影响的问题有更高要求。
低压配电系统接地方式的分类电源侧的接地称为系统接地(工作接地),负载侧的接地称为保护接地。
国际电工委员会(IEC)标准规定的低压配电系统接地有IT系统、TT系统、TN系统三种方式。
1、IT系统电源端带电部分对地绝缘或经高阻抗接地,用电设备金属外壳直接接地。
IT系统示意图见下图:IT系统适用于环境条件不良、易发生一相接地或火灾爆炸的场所,如煤矿、化工厂、纺织厂等,也可用于农村地区。
但不能装断零保护装置,因正常工作时中性线电位不固定,也不应设置零线重复接地。
2、TT系统TT系统的示意图见下图。
该系统电源中性点直接接地,用电设备金属外壳用保护接地线接至与电源端接地点无关的接地级,简称保护接地或接地制。
当配电系统中有较大量单相220V用电设备,而线路敷设环境易造成一相接地或零线断裂,从而引起零电位升高时,电气设备外壳不宜接零而采用TT系统。
TT系统适用于城镇、农村居住区、工业企业和分散的民用建筑等场所。
当负荷端和线路首端昀装有漏电开关,且干线末端装有断零保护时,则可成为功能完善的系统。
3、TN系统TN系统的电源端中性点直接接地,用电设备金属外壳用保护零线与该中心点连接,这种方式简称保护接零或接零制。
按照中性线(工作零线)与保护线(保护零线)的组合事况TN系统又分以下三种形式:(1)TN-C系统。
在该系统中,工作零线和保护零线共用(简称PEN),此系统习惯称为三相四线制系统。
系统示意图如下:(2)TN-S系统。
在该系统中,工作零线N和保护零线PE从电源端中性点开始完全分开,此系统习惯称为三相五线制系统。
示意图见下图:(3)TN-C-S系统。
在该系统中,工作零线同保护零线是部分共用的,此系统即为局部三相五线制系统。
系统示意图见图5.10-5.设计应注意以下几点:①TN-C系统适用于设有单相220V,携带式、移动式用电设备,而单相220V固定式用电设备也较少,但不必接零的工业企业。
TN-S系统适用于工业企业,高层建筑及大型民用建筑。
低压配电接地系统要求根据具体的供电系统而做出正确的选择,而且对于电线、电缆的选择也有着较高的要求,如果不能符合要求将会造成不可估计的后果。
所以各单位在进行电气工程安装时必须对低压配电中的接地系统工作给予高度的重视。
一、低压供电系统接地方式及其特点低压配电系统的接地形式分为三种:TN系统、TT系统和IT系统。
字母表示的含义是:第一个字母表示电源对地的关系,第二个字母表示电气设施的外露可导电部分对地的关系,第三、四两个字母表示中性线和保护线的组合情况。
TT系统就是将电气设备的金属外壳作接地保护的系统;TN系统就是将电气设备的金属外壳作接零保护的系统。
(1)TT方式供电系统TT 方式供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。
第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
TT系统就是电源中性点直接接地,用电设备外露可导电部分也直接接地的系统。
通常将电源中性点的接地叫做工作接地,而设备外露可导电部分的接地叫做保护接地。
TT系统中,这两个接地必须是相互独立的。
设备接地可以是每一设备都有各自独立的接地装置,也可以若干设备共用一个接地装置。
附图一TT接地系统示意图(2)TN方式供电系统TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。
它的特点如下。
一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT 系统的5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。
TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。
TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。
低压配电系统接地形式工作接地:在电力系统中,为保证电气设备运行的可靠性将电路中的某一点接地。
保护接地:在电源中性点不接地的系统中,为防止电气设备的金属外壳意外带电而造成触电事故,为防止因绝缘破坏而发生触电危险,将与电气设备带电部分相绝缘的金属外壳或架构与接地体之间做良好的连接。
保护接零:在中性点直接接地的低压电网中,通过保护零线将电力设备的金属外壳与电源端的接地中性点连接。
重复接地:在变压器低压侧中性点接地的配电系统中,将零线上一处或多处通过接地装置与大地再次连接。
在低压配电系统中,为了避免人的触电危险和限制事故范围,除了系统侧工作接地外,还要考虑负荷侧的保护接地。
按照国际电工委员会IEC和国家标准的规定,低压配电系统常见的接地形式有:一、TT系统TT系统的电源中性点直接接地,用电设备的金属外壳直接接地,且与电源中性点的接地无关。
第一个“T”表示配电电网接地,第二个大写英文字母“T”表示电气设备金属外壳接地。
TT系统是供电部门规定城市公用低压电网向用户供电的接地系统,广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。
二、IT系统IT系统是中性点不接地,系统中所有设备的外露可导电部分经各自的PE线分别接地。
“I”表示配电网不接地或经高阻抗接地,“T”表示电气设备金属外壳接地。
IT系统适用于环境条件不良,易发生单项接地故障的场所,以及易燃、易爆的场所,如医院、煤矿、化工、纺织等。
IT系统必须装设绝缘监视及接地故障报警或显示装置。
三、TN系统TN系统是三相四线制配电网低压中性点直接接地,电气设备金属外壳采取接零措施的系统。
“T”表示配电网中性点直接接地,“N”表示电气设备在正常情况下不带电的金属部分与配电网中性点之间有金属性的连接,即与配电网保护零线(保护导体)紧密连接。
TN系统按照中性点(N)与保护线(PE)组合的情况,又分为3中形式:TN-C系统是三相四线制,四根导线颜色分为黄L1、绿L2、红L3、黄绿线PEN。
编号:SM-ZD-97536低压配电系统的接地方式及特点Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives编制:____________________审核:____________________时间:____________________本文档下载后可任意修改低压配电系统的接地方式及特点简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
1 低压配电系统中的接地类型(1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。
中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。
(2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。
保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。
(3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。
(4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。
此种方式也叫保护接零。
2 低压配电系统的供电方式(1)低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。
其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。
接地系统一般由两个字母组成,必要时可加后续字母。
第一个字母:表示电源中性点对地的关系T:直接接地I:不接地,或通过阻抗与大地相连第二个字母:表示电气设备外壳与大地的关系T:独立于电源接地点的直接接地N:表示直接与电源系统接地点或与该点引出的导体相连后续字母:表示中性线与保护线之间的关系C:表示中性线N与保护线PE合二为一(PEN线)S:表示中性线N与保护线PE分开C-S:表示在电源侧为PEN线,从某一点分开为中性线N和保护线PE(2).不同接地系统的组成及特点:■TN系统的组成及特点在TN系统中,所有电气设备的外壳接到保护线(PE)上,与配电系统的中性点相连(若无中性点,即变压器二次侧三角形连接或未引出中性点,可将变压器二次侧绕组的一相接地,但该接点不能用作PEN线)。
保护线应在每个变电所附近接地,配电系统引入建筑物时,保护线在其入口处接地。
为了保证故障时保护线的电位尽量接近地电位,尽可能将保护线与附近的有效接地体相连,如必要,可增加接地点,并使其均匀分布。
其特点是故障电流较大,仅与电缆的阻抗大小有关。
出现绝缘故障时,需要短路电流保护装置瞬时断开电路。
国际标准IEC60364规定,根据中性线与保护线是否合并的情况,TN系统分为如下三种:□TN-C□TN-S□TN-C-S注:对电网来说,当铜导线截面积≤10mm2,铝导线截面积≤16mm2时,必须采用TN-S系统,而不允许采用TN -C系统。
下面介绍其组成及特点:2.1TN-C系统:本系统中,保护线与中性线合二为一,称为PEN线。
图一TN-C系统优点:□TN-C方案易于实现,节省了一根导线,且保护电器可节省一极,降低设备的初期投资费用。
□发生接地短路故障时,故障电流大,可采用一过流保护电器瞬时切断电源,保证人员生命和财产安全缺点:□线路中有单相负荷,或三相负荷不平衡,及电网中有谐波电流时,由于PEN中有电流,电气设备的外壳和线路金属套管间有压降,对敏感性电子设备不利□PEN线中的电流在有爆炸危险的环境中会引起爆炸□PEN线断线或相线对地短路时,会呈现相当高的对地故障电压,可能扩大事故范围□不能使用剩余电流保护装置RCD(由于检测不出漏电流,RCD会拒动),因此绝缘故障时,不能有效地对人身和设备进行保护2.2TN-S系统本系统保护线(PE)和中性线(N)分开图二TN-S系统优点:□正常时PE线不通过负荷电流,适用于数据处理和精密电子仪器设备,也可用于爆炸危险场合□民用建筑中,家用电器大都有单独接地触点的插头,采用TN-S系统,既方便,又安全□如果回路阻抗太高或者电源短路容量较小,需采用剩余电流保护装置RCD对人身安全和设备进行保护,防止火灾危险缺点:□由于增加了中性线,初期投资较高□TN-S系统相对地短路时,对地故障电压较高2.3TN-C-S系统在系统某一点起,PEN分为保护线和中性线,分开后,中性线(N)对地绝缘(注:PEN线分开后,不能再合并)图三TN-C-S系统优点:□适用于工矿企业供电,前面TN-C系统可满足固定设备的需要,后端TN-S系统可满足对电位敏感的电子设备的需要□民用建筑中,电源线路采用TN-C,进入建筑物后,采用TN-S系统,可确保TN-S系统的优点2.4TT系统的组成及其特点:TT系统的变压器或发电机的中性点直接接地,电气设备的所有外壳用保护线连在一起,接在与电源中性点独立的接地点。
图四TT系统优点:□电气设备的外壳与电源的接地无电气联系,适用于对电位敏感的数据处理设备和精密电子设备□故障时对地故障电压不会蔓延□接地短路时,由于受电流接地电阻和电气设备接地电阻的限制,短路电流较小,可减小危险缺点:□短路电流小,发生短路时,短路电流保护装置不会动作,易造成电击事故□短路保护装置的过电流保护不能提供绝缘故障保护,需采用剩余电流保护器RCD进行人身和设备安全保护2.5IT系统的组成及特点:IT系统的电源不接地或通过阻抗接地,电气设备的外壳可直接接地或通过保护线接至单独接地体。
图五IT系统优点:□单相接地第一次故障时,故障电流小,可不切断电源,警报设备报警,通过检查线路消除故障,供电连续性较高,适用于大型电厂的厂用电和重要生产线用电□可采用剩余电流保护器(RCD)进行人身和设备安全保护缺点:如果消除第一次故障前,又发生第二次故障,如不同相的接地短路,故障电流很大,非常危险,因此对一次故障探测报警设备的要求较高,以便及时消除和减少出现双重故障的可能性,保证IT系统的可靠性。
2.6接地系统中性线保护以下情况选用4极开关断开中性线:■TT和TN系统的中性线截面积小于相线■终端配电中避免中性线、相线接反中性线必须有保护和能分断:■IT系统中进行第二次故障保护的装置,防止中性线第一次故障后引发二次故障■在TT和TN-S系统中,中性线的截面积小于相线的截面积■所有接地系统中,会产生3次或多次谐波电流的场合(尤其是中性线截面积减少时)在TN-C系统中,中性线也是保护线不能断开,由于负载电流不平衡和绝缘故障电流,会产生危险的中性点电压偏移。
为此,用户必须做好等电位连接和每个区域的接地。
2.7接地系统的选择:选择接地系统应根据电气装置的特性、运行条件和要求以及维护能力的大小,综合用户和设计安装人员的意见因地制宜地选用。
只要符合安装和运行规范要求,三种接地系统是等效的,没有什麽优先级。
选择接地系统的步骤:■首先,为保证最大的安全性和灵活性,三种接地系统可以应用在同一供电电网中。
如下图所示,不同接地系统的串联连接和并联连接:■必须遵守当地标准和法规的规定■弄清楚用户的要求和现有的维护资源:□运行连续性要求□是否有维护服务□是否有火灾危险3.系统选择及应用3.1通常按照如下方式选择:□运行连续性要求较高有维护服务的场合:选择IT系统□运行连续性要求较高无维护服务的场合:无完全满意的选择,可选择TT系统(其跳闸选择性易于实现)或选择TN系统(减少危险)□运行连续性要求不重要并且有维护能力:选择TN-S 系统�易于快速维修和扩展□运行连续性要求较低无维护服务的场合:选择TT系统□有火灾危险的场合:可选择IT系统(有人员维护)或选择TT系统(使用0.5A的剩余电流保护装置)3.2特殊电网和负载的选择:□对于线路长,泄漏电流大的电网:选择TN-S系统□有备用电源的电网:选择TT系统□对大的故障电流比较敏感的负载(电机):选择TT或IT系统□绝缘等级较差(电炉)或有大型高频滤波的设备(大型计算机):选择TN-S系统□控制和监测系统:选择TT(通讯设备间可进行等电位连接)或IT系统(运行连续性高)4 接地装置和接地电阻(1)接地装置:接地装置可使用自然接地体和人工接地体。
在设计时,应首先充分利用自然接地体。
①自然接地:可充分利用建(构)筑物的钢结构和构造钢筋、行车的钢轨等以及敷设于地下且数量不少于2根的电缆的金属外皮等。
在新建的大、中型建筑物中,都利用建筑物的构造钢筋作为自然接地。
它们不但耐用、节省投资,而用电气性能良好。
②人工接地体:人工接地体有两种基本型式:垂直接地体和水平接地体。
垂直接地体多采用截面为50mm×50mm×4mm,长度为2500mm的角钢;水平接地体多采用截面为40mm×4mm 的扁钢。
(2)接地电阻:请参阅《电力设备接地设计技术规程》有关章节的规定,低压中性点直接接地系统中,100kVA以上变压器接地电阻值≤4Ω。
这里填写您的企业名字Name of an enterprise。