时间分辨荧光免疫分析.pptx
- 格式:pptx
- 大小:2.34 MB
- 文档页数:37
时间分辨荧光免疫层析技术原理
时间分辨荧光免疫层析技术(TRFIA)是一种非同位素免疫分析技术,利用
镧系元素标记抗原或抗体,通过时间分辨技术测量荧光。
具体来说,当含有待测抗原(抗体)的样品滴在加样区时,待测样品中的抗原(抗体)与结合垫中的荧光纳米微球标记的抗体(抗原)结合并通过毛细作用向前层析。
当达到检测区后,与检测线上固定的抗体(抗原)结合,形成微粒-抗体-抗原-抗体夹心复合物并被固定在检测线上,而多余的荧光微
球标记物继续向前层析,与固定在质控线上的二抗结合。
反应结束后,用紫外光源(340nm)对检测区扫描检测,检测线和质控线
上荧光纳米微球发出高强度的荧光(615nm),且衰变时间也较长。
通过
测量延缓时间,待样品基质中自然发生的短寿命荧光(1-10ns)全部衰变后,再测量稀土元素的特异性荧光,这样就可以排除非特异本底荧光的干扰。
通过检测线和质控线荧光强度的强弱及其比值,即可分析出样品中待测物的浓度。
这种技术具有高灵敏度、高特异性和可定量分析等特点。
以上内容仅供参考,如需更多信息,建议查阅时间分辨荧光免疫层析相关文献或咨询该领域专家。
时间分辨荧光免疫分析法产前筛查原理与操作规程一、产前筛查定义及其原理产前筛查(Prenatal Screening)是指通过经济、简便和较少创伤的检测方法,从孕妇群体中发现怀有某些先天缺陷胎儿的高危孕妇,以便进而进行诊断,以最大限度地减少异常儿的出生。
血清学标志物产前筛查已成为非侵入性产前诊断的重要方法。
目前产前筛查的两种主要疾病是唐氏综合征(Down’s Sydrome,DS;又称21三体综合征)和胎儿神经管缺陷(Neural Tube Defects,NTDs),也包括一部分18三体综合征。
产前筛查可以在妊娠早期(7~13周)或中期(14~21周)进行。
目前用于产前筛查的血清学标志物有:甲胎蛋白(AFP)、游离β-)、妊娠相关血浆蛋白(PAPP-A)、绒毛膜促性腺激素(F-β-hCG)、游离雌三醇(uE3抑制素A(inhibin A)等。
产前筛查实验测量通用评价指标为中位值倍数(MOM),正常妊娠特定的MOM=标本检测浓度/相应孕周中位值浓度。
产前筛查系统由体外诊断试剂、检测仪器和筛查分析软件组成。
检测仪器配合体外诊断试剂检测出孕妇血清中标记物(AFP、F-β-hCG、PAPP-A等)的浓度,将检测数据及孕妇相关因素输入筛查分析软件中,即可得出唐氏综合征(DS)和神经管缺陷(NTD)筛查的结果。
由于目前的技术水平的限制,产前筛查技术都不能做到筛查100%正确。
假阴性病例因此会误诊,假阳性病例一般在产前诊断实验时被纠正。
二、唐氏综合征的产前筛查唐氏综合征是人类最常见的一种染色体病,发病率约1/800~1/600,男性多于女性。
1866年英国医生Langdom Down 首次对此病进行临床描述,因此命名称为Down,s Syndrome,简称DS。
1959年Lejeune首先发现本病的病因是多了一条21号染色体,故又将其命名为21三体综合征。
唐氏综合征的主要临床表现:严重智力低下、愚型面容,约50%伴有先天性心脏病、小头畸形等发育异常。
时间分辨免疫荧光法
时间分辨免疫荧光法(Time-resolved Fluorescence Immunoassay,简称TRFIA),是一种利用荧光信号来检测和
定量分析物质浓度的方法。
TRFIA的原理是基于化学发光现象,通过在分析物上标记荧
光分子作为探针,当样品中的分析物与标记的荧光分子结合时,荧光信号会被激发并发出发光。
与传统的荧光免疫分析方法不同的是,TRFIA利用特殊的化学发光体系,使得荧光信号的
发光时间延长,减少背景干扰信号的影响,从而提高了信号的检测灵敏度和准确性。
TRFIA的优点包括高灵敏度、高选择性、较低背景信号和较
大测量范围等。
它通常被广泛应用于生物医学研究、临床诊断和药物监测等领域。
常见的应用包括检测肿瘤标志物、药物残留物、免疫球蛋白等。
总结起来,时间分辨免疫荧光法是一种利用荧光信号进行分析和定量测量的方法,其特点是通过延长荧光信号发光时间,提高信号的检测灵敏度和准确性。
时间分辨荧光免疫分析时间分辨荧光免疫分析(time-resolvedfluoroimmunoassay,TRFIA)是80年代初问世的一种超灵敏度的标记免疫检测技术。
其主要特点是以镧系元素铕(Eu3+)等标记抗体或抗原为示踪剂,利用增强液的荧光放大作用和时间分辨荧光法排除样品或试剂中非特异性荧光物质的干扰,最大限度地提高了检测方法的灵敏度和特异性,还具有量程宽,操作简便,标记物容易制备,稳定性好,保存期长等诸多优点。
一、基本原理与放免分析相似,总体上分为竞争法和非竞争法两类,前者多用于小分子半抗原,后者用于大分子化合物。
镧系元素铕(Eu)、钐(Sm)、铽(Tb)和钕(Nd)通过双功能螯合剂,在水溶液中很容易与抗原或抗体分子以共价双键结合。
经抗原、抗体间特异性的免疫结合反应,测定免疫复合物的荧光强度,就可推算待测物质的浓度。
镧系离子的荧光信号极弱,需要在酸性条件下,解离出镧系离子,然后与荧光增强液中的β-二酮体生成新的螯合物,经紫外光激发可产生强而持久的荧光信号,其增强效力可达100万倍,故又称解离增强镧系荧光免疫分析(dissociation-enhanced-lanthanidefluoroimmunoassay,DELFIA)。
镧系元素的发光时间延长,如Eu3+和Sm3+的荧光衰变时间分别达到4.3×105ns和4.1×104ns,而样品和试剂中的自然本底荧光的衰变时间仅为4—10ns,通过延迟测量时间,使信号不受本底荧光影响。
此外,镧系元素螯合物的激发光波长范围宽,发射光波长范围窄,stokes位移大,有利于排除非特异性散射光的干扰,进一步提高荧光信号的特异性。
二、试剂组成(一)Eu3+标记物:可分为标记抗体、标记抗原,要求有较高的纯度、比活性和免疫活性。
密封后4℃或-20℃保存,但应避免反复冻融。
若发现蛋白质聚合,非特异性结合升高,则应停止使用。
(二)固相抗体或抗原:固相载体多用聚苯乙烯微孔条,要求透明度高,吸附性能好,材质均匀,孔间差异小,不同品牌甚至不同批号的微孔条间都会有明显的性能差异,应引起注意。
时间分辨荧光免疫测定
以常用荧光素作为标记物的荧光免疫测定往往受血清成分、试管、
仪器组件等的本底荧光干扰,以及激发光源的杂射光的影响,使灵敏
度受到很大限制。
时间分辨荧光免疫测定(timeresolvedfluorescenc eimmunoassay,TR-FIA)是针对这缺点加以改进的一种新型检测技术。
其基本原理是以镧系元素铕(Eu)螯合物作荧光标记物,利用这类荧
光物质有长荧光寿命的特点,延长荧光测量时间,待短寿命的自然本
底荧光完全衰退后再行测定,所得信号完全为长寿命镧系螯合物的荧光,从而有效地消除非特异性本底荧光的干扰。
TR-FIA的测定原理见
图17-4。
以双抗体夹心法为例的测定反应程序见图17-5。
其中增强液
的作用是使荧光信号增强。
因为免疫反应完成后,生成的抗原-抗体
-铕标记物复合物在弱碱性溶液中,经激发后所产生的荧光信号甚弱。
在增强液中可至pH2~3,铕离子很容易解离出来,并与增强液中的β-
二酮体生成带有强烈荧光的新的铕螯合物,大大有利于荧光测量。
图17-4 TR-FIA测定原理示意图
图17-5 双抗体夹心法TR-FIA反应程序示意图
所用检测仪器为时间分辨荧光计,与一般的荧光分光光度计不同,采用脉冲光源(每秒闪烁1000次的氙灯),照射样品后即短暂熄灭,
以电子设备控制延缓时间,待非特异本底荧光衰退后,再测定样品发
出的长镧系荧光。
检测灵敏度可达0.2~1ng/ml。