(完整版)ANSYS钢筋混凝土分离式建模
- 格式:docx
- 大小:20.90 KB
- 文档页数:4
钢筋混凝土建模步骤在土木工程结构中,最为常用的一种结构形式就是钢筋混凝土结构,在各类房屋、水坝、桥梁、道路中都有广泛应用。
ANSYS软件提供了专门的钢筋混凝土单元和材料模型。
本算例将介绍ANSYS软件分析混凝土一些基本应用。
(1) 首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->ElementType->Add/Edit/Delete,选择添加Solid 65号混凝土单元。
(2) 点击Element types窗口中的Options,设定Stress relax after cracking 为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。
(3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。
进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。
(4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。
(5) 下面输入混凝土的材料属性。
混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。
下面分别介绍如下。
(6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2(7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。
用约束方程法模拟钢筋混凝土梁结构问题描述建立钢筋线对钢筋线划分网格后形成钢筋单元bhP 位移载荷建立混凝土单元对钢筋线节点以及混凝土节点之间建立约束方程后施加约束以及位移载荷进入求解器进行求解;钢筋单元的受力云图混凝土的应力云图混凝土开裂fini/clear,nostart/config,nres,5000/filname,yue su fang cheng 5 jia mi hun nin tu /prep7/title,rc-beamb=150h=300a=30l=2000displacement=5!定义单元类型et,1,solid65et,2,beam188et,3,plane42!定义截面类型sectype,1,beam,csolid,,0secoffset,centsecdata,8,0,0,0,0,0,0,0,0,0sectype,2,beam,csolid,,0secoffset,centsecdata,4,0,0,0,0,0,0,0,0,0!定义材料属性,混凝土材料属性mp,ex,1,24000mp,prxy,1,0.2tb,conc,1,1,9tbdata,,0.4,1,3,-1!纵向受拉钢筋mp,ex,2,2e5mp,prxy,2,0.3tb,bkin,2,1,2,1tbdata,,350!横向箍筋,受压钢筋材料属性mp,ex,3,2e5mp,prxy,3,0.25tb,bkin,3,1,2,1tbdata,,200!生成钢筋线k,,k,,bkgen,2,1,2,,,hk,,a,ak,,b-a,akgen,2,5,6,,,h-2*akgen,21,5,8,,,,-100 *do,i,5,84,1l,i,i+4*enddo*do,i,5,85,4l,i,i+1l,i,i+2*enddo*do,i,8,88,4l,i,i-1l,i,i-2*enddo!受拉钢筋lsel,s,loc,y,alsel,r,loc,x,alsel,a,loc,x,b-a lsel,r,loc,y,acm,longitudinal,line type,2mat,2secnum,1 lesize,all,50lmesh,allallscmsel,u,longitudinalcm,hooping reinforcement,line!箍筋,受压钢筋type,2mat,2secnum,2lesize,all,50lmesh,all/eshape,1!将钢筋节点建为一个集合cm,steel,node!生成面单元,以便拉伸成体单元a,1,2,4,3lsel,s,loc,y,0lsel,a,loc,y,hlesize,all,,,10lsel,alllsel,s,loc,x,0lsel,a,loc,x,blesize,all,,,20type,3amesh,all!拉伸成混凝土单元type,1real,3mat,1extopt,esize,30extopt,aclear,1vext,all,,,,,-lalls!建立约束方程cmsel,s,hooping reinforcement cmsel,a,longitudinalnsll,s,1ceintf,,ux,uy,uzallsel,all!边界条件约束nsel,s,loc,y,0nsel,r,loc,z,0d,all,uyd,all,uxnsel,s,loc,y,0nsel,r,loc,z,-ld,all,uyd,all,ux!施加外部荷载/solunsel,allnsel,s,loc,y,hnsel,r,loc,z,-1000d,all,uy,-displacement alls!求解nlgeom,on nsubst,200 outres,all,all neqit,100pred,oncnvtol,f,,0.05,2,0.5 allselsolvefinish/post1allselplcrack,0,1plcrack,0,2!时间历程后处理/post26nsel,s,loc,z,-l/2*get,Nmin,node,0,num,min nsol,2,nmin,u,yprod,3,2,,,,,,-1nsel,s,loc,y,0nsel,r,loc,z,0*get,Nnum,node,0,count *get,Nmin,node,0,num,min n0=Nminrforce,5,Nmin,f,y*do,i,2,ndinqr(1,13)ni=ndnext(n0)rforce,6,ni,f,yadd,5,5,6n0=ni*enddoprod,7,5,,,,,,1/1000/axlab,x,uy/axlab,y,p(kn) xvar,3 plvar,7。
ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;——加强材料只能受拉压,不能承受剪切力。
三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型——分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。
2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck-Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck-Prager等),三参数、五参数模型;混凝土开裂前,采用Druck-Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型。
4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf-Ol—闭合裂缝的剪切传递系数,0.9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt—静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。
加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性。
0 前言利用ANSYS分析钢筋混凝土结构时,其有限元模型主要有分离式和整体式两种模型。
这里结合钢筋混凝土材料的工作特性,从模型建立到非线性计算再到结果分析的全过程讲述了利用ANSYS进行钢筋混凝土结构分析的方法与技巧,并以钢筋混凝土简支梁为例,采用分离式有限元模型,说明其具体应用。
1 单元选取与材料性质1. 1 混凝土单元ANSYS中提供了上百种计算单元类型,其中Solid65单元是专门用于模拟混凝土材料的三维实体单元。
该单元是八节点六面体单元,每个节点具有三个方向的自由度( UX , UY , UZ) 。
在普通八节点线弹性单元Solid45 的基础上,该单元增加了针对于混凝土的材性参数和组合式钢筋模型,可以综合考虑包括塑性和徐变引起的材料非线性、大位移引起的几何非线性、混凝土开裂和压碎引起的非线性等多种混凝土的材料特性。
使用Solid65 单元时,一般需要为其提供如下数据:1)、实常数(Real Constants) :定义弥散在混凝土中的最多三种钢筋的材料属性,配筋率和配筋角度。
对于墙板等配筋较密集且均匀的构件,一般使用这种整体式钢筋混凝土模型。
如果采用分离式配筋,那么此处则不需要填写钢筋实常数。
2)、材料模型(Material Model) :在输入钢筋和混凝土的非线性材料属性之前,首先必须定义钢筋和混凝土材料在线弹性阶段分析所需的基本材料信息,如:弹性模量,泊松比和密度。
3)、数据表(Data Table) :利用数据表进一步定义钢筋和混凝土的本构关系。
对于钢筋材料,一般只需要给定一个应力应变关系的数据表就可以了,譬如双折线等强硬化(bilinear isotropic hardening)或随动硬化模型( kinematic hardening plasticity)等。
而对于混凝土模型,除需要定义混凝土的本构关系外,还需要定义混凝土材料的破坏准则。
在ANSYS中,常用于定义混凝土本构关系的模型有:1)多线性等效强化模型(Multilinear isotropic hardening plas2ticity ,MISO模型),MISO模型可包括20条不同温度曲线,每条曲线可以有最多100个不同的应力-应变点;2)多线性随动强化模型(Multilinear kinematic hardening plas2ticity ,MKIN 模型),MKIN 模型最多允许5个应力-应变数据点;3)Drucker2Prager plasticity(DP)模型。
一、关于模型钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。
考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。
裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。
离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。
随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。
就ANSYS而言,可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。
而其裂缝的处理方式则为分布裂缝模型。
二、关于本构关系混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。
混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。
就ANSYS而言,其问题比较复杂些。
1 ANSYS混凝土的破坏准则与屈服准则是如何定义的?采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。
W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。
理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。
而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。
ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;—-加强材料只能受拉压,不能承受剪切力。
三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型—-分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。
2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck —Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck—Prager等),三参数、五参数模型;混凝土开裂前,采用Druck—Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型.4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf—Ol—闭合裂缝的剪切传递系数,0。
9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt-静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。
加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性.例1、矩形截面钢筋混凝土板在中心点处作用-2mm的位移,分析板的受力、变形、开裂(采用整体模型分析法).材料性能如下:1、混凝土弹性模量E=24GPa,泊松比ν=0。
一、简介钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。
Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。
希望大家一起讨论、批评指正(******************.cn)。
程序:ANSYS 单元:SOLID65、BEAM188 建模方式:分离暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。
二、单元选择以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。
最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。
只有计算的开裂荷载与实验还算是比较接近,但这个手算也算得出来的东西费劲去装模作样的建个模型又有什么意义?所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。
建模时发现,只要充分、灵活地运用APDL的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。
[center]暗支撑剪力墙数值模型[/center]看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。
但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如下图箭头方向),从而导致总刚矩阵小主元地出现影响计算精度,或者干脆形成瞬变体系导致计算提前发散。
[center]LINK8+SOLID65的问题[/center]如果采用梁单元模拟暗钢筋,就算包裹钢筋的混凝土破坏了,钢筋单元本身仍可对连接点提供一定的侧向刚度(其实钢筋本身就是有一定抗弯刚度的),保证计算进行下去。
一、用钢筋混凝土简支梁的数值模拟为实例,对ANSYS的使用方法进行说明钢筋混凝土简支梁,尺寸为长2000mm,宽150mm,高300mm。
混凝土采用C30,钢筋全部采用HRB335,跨中集中荷载P作用于一刚性垫板上,垫板尺寸为长150mm,宽100mm。
建立分离式有限元模型,混凝土采用SOLID65单元,钢筋采用LINK8单元,不考虑钢筋和混凝土之间的粘结滑移。
创建分离式模型时,将几何实体以钢筋位置切开,划分网格时将实体的边线定义为钢筋即可。
加载点以均布荷载近似代替钢垫板,支座处则采用线约束和点约束相结合。
单元尺寸以50mm左右为宜。
二、命令流!钢筋混凝土简支梁数值分析!分离式模型FINISH/CLEAR/PREP7!1.定义单元与材料属性ET,1,SOLID65,,,,,,,1ET,2,LINK8MP,EX,1,13585 !混凝土材料的初始弹模以及泊松比MP,PRXY,1,0.2FC=14.3 !混凝土单轴抗压强度和单轴抗拉强度FT=1.43TB,CONCR,1TBDA TA,,0.5,0.95,FT,-1 !定义混凝土材料及相关参数,关闭压碎TB,MISO,1,,11 !定义混凝土应力应变曲线,用MISO模型TBPT,,0.0002,FC*0.19TBPT,,0.0004,FC*0.36TBPT,,0.0006,FC*0.51TBPT,,0.0008,FC*0.64TBPT,,0.0010,FC*0.75TBPT,,0.0012,FC*0.84TBPT,,0.0014,FC*0.91TBPT,,0.0016,FC*0.96TBPT,,0.0018,FC*0.99TBPT,,0.002,FCTBPT,,0.0033,FC*0.85MP,EX,2,2.0E5 !钢筋材料的初始弹模以及泊松比MP,PRXY,2,0.3TB,BISO,2TBDA TA,,300,0 !钢筋的应力应变关系,用BISO模型PI=ACOS(-1)R,1R,2,0.25*PI*22*22R,3,0.25*PI*10*10TBPLOT,MISO,1 !混凝土材料的数据表绘图TBPLOT,BISO,2 !钢筋材料的数据表绘图!2.创建几何模型BLC4,,,150,300,2000*DO,I,1,19 !切出箍筋位置WPOFF,,,100VSBW,ALL*ENDDOWPCSYS,-1WPOFF,,,950 !切出拟加载面VSBW,ALLWPOFF,,,100VSBW,ALLWPCSYS,-1WPROTA,,-90WPOFF,,,30VSBW,ALLWPOFF,,,240VSBW,ALLWPCSYS,-1WPOFF,30WPROTA,,,90VSBW,ALLWPOFF,,,45VSBW,ALLWPOFF,,,45VSBW,ALLWPCSYS,-1!3.划分钢筋网格ELEMSIZ=50 !网格尺寸变量,设置为50mm LSEL,S,LOC,X,30LSEL,R,LOC,Y,30LA TT,2,2,2LESIZE,ALL,ELEMSIZLMESH,ALLLSEL,S,LOC,X,75 LSEL,R,LOC,Y,30LA TT,2,2,2LESIZE,ALL,ELEMSIZ LMESH,ALLLSEL,S,LOC,X,120 LSEL,R,LOC,Y,30LA TT,2,2,2LESIZE,ALL,ELEMSIZ LMESH,ALLLSEL,S,LOC,X,30 LSEL,R,LOC,Y,270LA TT,2,3,2LESIZE,ALL,ELEMSIZ LMESH,ALLLSEL,S,LOC,X,120 LSEL,R,LOC,Y,270LA TT,2,3,2LESIZE,ALL,ELEMSIZ LMESH,ALLLSEL,S,TAN1,Z LSEL,R,LOC,Y,30,270 LSEL,R,LOC,X,30,120 LSEL,U,LOC,X,75 LSEL,U,LOC,Z,0 LSEL,U,LOC,Z,2000 LSEL,U,LOC,Z,950 LSEL,U,LOC,Z,1050 LA TT,2,3,2LESIZE,ALL,ELEMSIZ LMESH,ALLLSEL,ALL!4.划分混凝土网格V A TT,1,1,1 MSHKEY,1ESIZE,ELEMSIZ VMESH,ALLALLSEL,ALL!5.施加荷载和约束LSEL,S,LOC,Y,0LSEL,R,LOC,Z,100DL,ALL,,UYLSEL,S,LOC,Y,0LSEL,R,LOC,Z,1900DL,ALL,,UYDK,KP(0,0,100),UX,,,,UZDK,KP(0,0,1900),UXP0=180000Q0=P0/150/100ASEL,S,LOC,Z,950,1050ASEL,R,LOC,Y,300SFA,ALL,1,PRES,Q0ALLSEL,ALLFINISH!6.求解控制设置与求解/SOLUANTYPE,0NSUBST,60OUTRES,ALL,ALLAUTOS,ONNEQIT,20CNVTOL,U,,0.015ALLSEL,ALLSOLVEFINISH!7.进入POST1查看结果/POST1SET,LASTPLDISP,1 !设定最后荷载步,查看变形ESEL,S,TYPE,,2ETABLE,SAXL,LS,1PLLS,SAXL,SAXL !绘制钢筋应力图ESEL,S,TYPE,,1/DEVICE,VECTOR,ONPLCRACK,1,1 !绘制裂缝和压碎图三、计算结果图1 混凝土材料的数据表绘图图2 钢筋材料的数据表绘图图3 钢筋的模拟图4 混凝土梁的模拟图5 梁在荷载作用下Y方向上的位移图图5 梁在荷载作用下Z方向上的应力图。
ANSYS钢筋混凝土概述ANSYS是一种强大的工程模拟软件,可用于钢筋混凝土的分析和设计。
本文档将介绍如何使用ANSYS进行钢筋混凝土建模、分析和评估。
建模在ANSYS中建立钢筋混凝土模型的第一步是创建几何模型。
可以使用ANSYS中的几何建模工具,或者从其他CAD软件导入一个现有的几何模型。
确定好模型的尺寸和形状后,可以开始定义材料和断面。
材料定义在ANSYS中,钢筋混凝土可以由两种材料组成:混凝土和钢筋。
可以通过输入混凝土和钢筋的弹性模量、抗拉强度、抗压强度等材料属性来定义它们。
还可以定义混凝土的增量模型,以考虑非线性行为。
断面定义在建立钢筋混凝土模型时,需要定义构件的断面属性,包括形状和尺寸。
可以选择矩形、圆形、T型等断面形状,并输入各个参数。
此外,还可以定义钢筋的位置和数量。
分析建立了钢筋混凝土模型后,可以进行各种分析,包括静力分析、动力分析和热力分析。
静力分析静力分析用于评估结构在外部载荷作用下的行为。
可以施加不同类型的载荷,比如集中载荷、分布载荷、温度载荷等。
通过静力分析可以计算出结构的位移、应力和应变,并评估结构的安全性。
动力分析动力分析用于评估结构在地震、风载等动力荷载作用下的行为。
可以施加模拟实际工况的时间历程载荷,分析结构的振动特性、动态应力等。
动力分析可以帮助工程师设计出更稳定和抗震的结构。
热力分析热力分析用于评估结构在温度变化下的行为。
可以考虑温度梯度引起的热应力,以及温度载荷引起的结构位移和变形。
热力分析可以用于设计具有温度变化的结构,如核电站、高温窑炉等。
评估通过ANSYS进行钢筋混凝土分析后,可以评估结构的安全性和性能。
可以根据应力和应变结果,进行疲劳分析、损伤评估,评估结构的寿命和性能。
此外,还可以进行参数化分析,改变不同的模型参数,比如尺寸、材料属性等,评估对结构的影响。
通过评估不同方案的结果,工程师可以选择最优的设计方案。
结论ANSYS是一种强大而灵活的工程模拟软件,为钢筋混凝土的建模、分析和评估提供了有效的工具。
!跨中施加110KN的集中力FINISH $/CLEAR$/PREP7!
AS0=380.1 $AS1=50.3 $A=30 $B=150!
H=300 $L=2650 $L0=125!
ET,1,SOLID65!
KEYOPT,1,1,0!
KEYOPT,1,5,1!
KEYOPT,1,6,3!
KEYOPT,1,7,1!
ET,2,LINK180!
ET,3,SOLID185,,3
R,1,AS0$R,2,AS1$R,3
MP,EX, 1,2.4E4 $MP,PRXY,1,0.2$FC=25!
TB,CONCR,1,1,9!
TBDATA,,0.35,0.75,3.1125,-1!
TB,MISO,1,,15!
TBPT,,0.0002,4.8$TBPT,,0.0004,9.375$TBPT,,0.0006,13.51! TBPT,,0.0008,17.02$TBPT,,0.001,19.83,$TBPT,,0.0012,21.95! TBPT,,0.0014,23.43$TBPT,,0.0016,24.365$TBPT,,0.0018,24.856! TBPT,,0.002,FC $TBPT,,0.0038,FC !
TBPLOT!
MP,EX,2,2E5$MP,PRXY,2,0.25!
TB,BKIN,2$TBDATA,,360!
MP,EX,3,2E5$MP,PRXY,3,0.25!
TB,BKIN,3$TBDATA,,210!
N,1,,B $N,9$FILL,1,9!
NGEN,11,9,1,9,1,,,A!
NGEN,2,1000,1,99,1,75!
NGEN,3,1000,1001,1099,1,50!
NGEN,7,1000,3001,3099,1,75!
NGEN,7,1000,12001,12099,1,75!
NGEN,2,1000,18001,18099,1,50!
/VIEW,1,-1,-1,1!
TYPE,2 $REAL,2$MAT,3!
*DO,II,11,16,1$E,II,II+1 $*ENDDO!
*DO,II,83,88,1$E,II,II+1 $*ENDDO!
*DO,II,11,74,9$E,II,II+9 $*ENDDO!
*DO,II,17,80,9$E,II,II+9 $*ENDDO! EGEN,20,1000,1,28,1!
*DO,II,83,18083,1000$E,II,II+1000$*ENDDO! *DO,II,89,18089,1000$E,II,II+1000$*ENDDO! TYPE,2$REAL,1$MAT,2
*DO,II,11,18011,1000$E,II,II+1000$*ENDDO!
*DO,II,17,18017,1000$E,II,II+1000$*ENDDO!
/ESHAPE,1$EP!
BLC4,,,L/2,B,H $BLC4,75,,100,B,-40$WPOFFS,,,H$BLC4,625,,200,B,40 $WPCSYS,-1!WPOFFS,75$WPROTA,,,90$VSBW,ALL!
WPOFFS,,,100$VSBW,ALL$WPOFFS,,,450$VSBW,ALL!
WPOFFS,,,200$VSBW,ALL$WPOFFS,,,450$VSBW,ALL!
WPCSYS,-1$ALLSEL!
LSEL,S,LOC,Y,0$LSEL,A,LOC,Y,150$LSEL,R,LOC,X,0$LESIZE,ALL,,,10!LSEL,S,LOC,Z,0 $LSEL,A,LOC,Z,300$LSEL,R,LOC,X,0$LESIZE,ALL,,,8!
LSEL,S,LOC,Z,300$LSEL,R,LOC,Y,0$LSEL,R,LOC,X,0,75$LESIZE,ALL,75!LSEL,S,LOC,Z, 300$LSEL,R,LOC,Y,0$LSEL,R,LOC,X,75,175$LESIZE,ALL,25!LSEL,S,LOC,Z,300$LSEL,R,LO C,Y,0$LSEL,R,LOC,X,175,625
LSEL,S,LOC,Z,300$LSEL,R,LOC,Y,0$LSEL,R,LOC,X,625,825
LSEL,S,LOC,Z,300$LSEL,R,LOC,Y,0$LSEL,R,LOC,X,825,1275
LSEL,S,LOC,Z,300$LSEL,R,LOC,Y,0$LSEL,R,LOC,X,1275,1325$LESIZE,ALL,50!LSEL,S, LOC,Z,340$LSEL,R,LOC,X,625$LESIZE,ALL,,,8!
LSEL,S,LOC,Y,0$LSEL,R,LOC,X,625$LSEL,R,LOC,Z,300,340$LESIZE,ALL,,,1!LSEL,S,LO C,Z,-40$LSEL,R,LOC,X,75$LESIZE,ALL,,,8!
LSEL,S,LOC,Y,0$LSEL,R,LOC,Z,-40$LESIZE,ALL,,,4!
LSEL,S,LOC,Y,0$LSEL,R,LOC,X,75$LSEL,R,LOC,Z,0,-
40$LESIZE,ALL,,,1!VSEL,S,LOC,Z,0,H $VATT,1,3,1
MSHAPE,0,3D $MSHKEY,1
VMESH,ALL $ALLSEL
VSEL,S,LOC,Z,-40,0$VSEL,A,LOC,Z,H,H+40$VATT,2,3,3
MSHAPE,0,3D $MSHKEY,1$VMESH,ALL
/VIEW,1,-0.2,-1,1$EPLOT$ALLSEL
NUMMRG,ALL $NUMCMP,ALL$EPLOT
/SOLU!
NSEL,S,LOC,Z,-40$NSEL,R,LOC,X,L0$D,ALL,UY,,,,,UZ$ALLSEL!
ASEL,S,LOC,X,L/2$DA,ALL,SYMM$ALLSEL!
NSEL,S,LOC,Z,H+40$NSEL,R,LOC,X,725!
*GET,NODE1,NODE,,COUNT $F,ALL,FZ,-110000/NODE1$ALLSEL!
ANTYPE,STATIC
$NLGEOM,ON$NSUBST,80$OUTRES,ALL,ALL$AUTOTS,1$LNSRCH,1!CNVTOL,F,,0. 05,2,
0.5$ALLSEL!
SOLVE $FINISH
/POST1 $SET,LAST $PRRSOL,FZ!
SET,LAST $PLDISP,1!
ESEL,S,TYPE,,2$ETABLE,SAXL,LS,1$PLLS,SAXL,SAXL!
ESEL,S,TYPE,,1$/DEVICE,VECTOR,ON$PLCRACK!
/POST26$NSOL,2,NODE(L/2,B/2,0),U,Z!
PROD,3,2,,,,,,-1$PROD,4,1,,,LOAD,,,110!
/AXLAB,X,MID-UZ(MM)$/AXLAB,Y,P(KN)!
XVAR,3$PLVAR,4。