钢筋混凝土建模参考
- 格式:pdf
- 大小:252.82 KB
- 文档页数:4
钢筋混凝土花瓶墩实体CAD操作例题1模型概况本案例为某钢筋混凝土花瓶墩,墩高为8.25m,直线段为5m,实际结构为墩梁固结的桥墩,为了更能反映《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)中提到的D区受力分析,对花瓶墩受力进行修改,模拟为双支座形式,另外,按照设计图纸,立面图和剖面图显示均有装饰槽,考虑建模方便和受力影响,混凝土和钢筋分别用实体单元和钢筋单元模拟,整体模型如下图:图1-1 整体示意图2 建模流程有限元模型的建模流程一般都是类似的。
本次的花瓶墩的实体建立以及钢筋线的生成是重点,需要重点学习。
3 建模步骤3.1定义材料特性3.1.1运行FEA运行FEA ,点击文件>新建,打开新项目,弹出分析控制对话框。
选择分析类型 [3D]单位,单位为N ,mm ,J ;点击[确认] 键。
3.1.2建立材料点击分析-材料-创建,定义混凝土材料。
混凝土定义可以直接在右下角的数据库中选择相应的规范给出的材料,选择JTG04(RC)_C40,依次点关闭和适用,然后选择JTG04(RC)_C40定生进施定果图3-1 添加材料定义钢绞线和钢筋是同样的方法选择数据库规范中的GB03(S)_Q345,点击确认。
3.1.3建立特性材料定义好之后,就可以定义特性。
本模型包含混凝土实体和钢筋两种单元类型。
点击分析-特性-创建-3D,定义C40的桥墩实体单元。
图3-2 设置特性然后选择创建-钢筋,分别建立不同直径的钢筋,直径28、直径16和直径12的钢筋三种钢筋单元,具体设置下图:图3-3 设置钢筋信息除了定义正常的钢筋参数之外,在生成钢筋的时候需要一个梁截面代号,如下定义一个即可。
图3-4 设置钢筋截面3.2生成几何体3.2.1导入几何线框使用midas FEA时,可以借助CAD中绘制好的各个断面的导入来快速建立桥墩的实体。
在建模窗口单击右键出现如下图菜单,选择移动工作平面,选择旋转轴X 轴,输入90度角度(以右下角的整体坐标系来确定平面)。
MIDAS结构技术之预应力钢筋混凝土箱梁现浇支架例题一、项目简介某工程32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。
箱梁正视图、断面图分别如图1.1、1.2所示。
图1.1 简支箱梁正视图图1.2 简支箱梁断面图现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。
为便于卸落支架,在钢管顶部设置一道砂筒(砂筒高为650mm),砂箱上采用2I45a作传力分配梁,贝雷片直接放置在2I45a分配梁上,贝雷片顶部I12.6分配梁,设置位置随侧模竖肋桁片,底模及侧模采用加工好的定型钢模,内模采用竹胶板和小方木构成的木模。
支架布置如图1.3、1.4所示。
对于本工程32.6m简支箱梁施工,由于地基条件较差、墩身高度受限,拟采用单层贝雷梁+分配梁+钢管柱结构支撑体系,中部支承采用斜柱。
图1.3 简支箱梁支架布置正视图图1.4 简支箱梁支架布置断面图设计参数如表1.1、1.2所示,荷载信息如表1.3所示。
表1.1 材料设计参数表表1.2 钢材设计强度值(N/mm2)表1.3 单片贝雷梁荷载信息统计表说明:1、考虑最不利荷载分担,翼缘板、腹板及中箱室区域的单片贝雷梁分别承担上部荷载的1/2、1/2、1/3,即计算单片贝雷梁荷载时,n取值分别为2、2、3;二、操作流程1、材料属性定义1.运行midas CIVIL;2.点击新建,打开新建项目;3.点击工具-单位系,对话框如右图2.1所示,单位系统选N、mm,其余保持默认值;4.点击确认;图2.15.主菜单选择特性-材料特性值,点击添加,弹出材料数据对话框如图2.2所示,材料号:1 名称:16Mn设计类型:用户定义规范:无弹性模量:2.06e+005(N/mm^2)泊松比:0.3线膨胀系数:1.2e-005(1/[C])容重:9.83e-005(N/mm^3)(适用)注意:此处对16Mn钢材的容重进行调整,是基于成片贝雷梁模型自重与实际自重不一致的原因,调整容重后,成片贝雷梁模型自重与实际自重一致。
PKPM里面的梁间荷载一般的就是梁上墙所产生的荷载;计算时,设墙为二四墙取普通砖容重18一般用的是普通机制砖,取19KN/平米,摸灰层取17石灰沙浆,混合沙浆KN/平米,这么一来,每平方墙面产生的荷载为:19乘0.24+17乘0.02乘2=5.24 KN/平米摸灰层一般取20厚,双面摸灰,所以要乘以2; 最后,用5.24乘以梁上墙面面积,就得梁上荷载;5.24是一个用得很多的数据,熟悉了就自然知道,算的时候直接用;pkpm中的荷载输入:当建筑模型建好后,输完楼板上的恒载、活载后,输梁上荷载时:那么梁上的恒载应该包括那些呢活载应该包括哪些呢“楼面荷载传导计算”是做什么用的梁上的恒载是不是包括:主梁:梁的自重+梁上自承重墙重楼板下的主梁:梁的自重;还要不要加上主梁上的次梁的自重、楼板的自重和其上所承担的荷载柱子上的恒载是不是只包括其所在的楼层这个区段内自重,要不要加上该楼层以上的荷载这样理解对吗:在楼板上布置完恒载和活载后,布置梁的荷载时只考虑梁自身的自重;然后在荷载导计算中就把梁所承担的所有荷载就算出来了一般只要输入楼板上的恒载和活载,注意楼板恒载应包括楼板自重钩选了自动计算楼板自重的除外;程序会自动将楼面荷载传导至梁上,因此梁上一般只要输入上面一层的填充墙自重作为恒载,所有梁柱的自重都不需要输入,程序会自动计算;对于柱子,一般不用输入荷载,所有梁传来的荷载会自动倒算到柱子上;以上是一般情况,要注意按实际情况输入荷载;比如说梁上没有填充墙,但是有一个比较重的设备,那么就不用输入梁的恒载,但要按设备的实际作用力输入梁上活载;再比如柱子在中部受到一个水平力,例如设置了一个雨篷斜拉杆拉在柱子上,那么就要输入柱子的活载;楼面荷载传导计算就是把楼面的荷载传至梁上,再把梁的荷载传至柱上,再把柱的荷载传至最低层,为基础计算做准备;pkpm梁间荷载,均布、集中荷载分别指什么加载在哪里呢均布荷载jun bu he zaidistributed loaduniform load连续作用在构件表面的较大面积上,不能看成集中荷载,且任意两个荷载的大小方向均相同的荷载称为均布荷载集中荷载是对应于均布荷载的一个概念,其作用面积相对于被作用的面来说很小,可以简化成一个点的荷载就是集中荷载了;在PKPM中,梁、墙间都可能有均布荷载,举例说,框架结构,楼层梁之间,要砌隔墙,隔墙的位置,从柱间、梁间封闭成的一个面上都有,这样就简化成了均匀布置在梁上的均布荷载; 而集中荷载要看具体情况,比如说某个梁上起小柱,而在模型中不打算建这个小柱或者标高不在楼层上,那就把柱子上的力转化为集中力,加在梁或柱子相应的作用点上就可以了;加载位置看作用位置,加载在哪就加在哪~还有节点荷载,一般节点荷载的加载用不到,但是比如说坡屋面,会对梁有水平力,而PKPM中的均不荷载,集中荷载都是竖向加的,水平力就必须用节点荷载来施加~PKPM砌体结构建模我在PM建模过程中,把墙体上的窗洞和门洞都减去;在荷载输入中还需不需要输入梁间荷载和墙间荷载最佳答案砌体建模时,墙体的自重程序会自动计算的;除此之外的荷载你都要自己输入;PKPM里面的柱间荷载指什么柱间荷载就是作用在柱子中间的荷载呀;具体有没有要看实际情况呀;一般框架结构是没有的,但是要实际分析,比如你在柱子上挑个牛腿,支撑别的什么东西,那就要加柱间荷载了;又或者你的柱子在高度一半的地方受到水平集中力,那也要加啊;具体就是有荷载就输,没荷载就不输;柱上的荷载有活和恒载;恒载程序自动算;活载一般是接受梁和板传来的;一般不用输入柱荷载;一般需要自己算好输入的是梁上的恒载,墙体的重量填充墙--框架结构中,剪力墙不需要;再就是板上的活荷载;LT中的是预留洞口,但是荷载要输入;楼面恒活荷载计算1、比如砌体墙的荷载转换:假设体荷载为12kN/m3,墙厚为0.1m,墙高为3m,则面荷载为12x0.1=1.2kN/m2,线荷载为1.2x3=3.6kN/m2、PKPM建立模型过程中,面荷载主要有恒载与活载,恒载主要包括面层做法与吊顶等在楼面荷载菜单中点取自动计算楼板自重那一项,活载一般查荷载规范所得;线荷载主要为隔墙荷载,按第一条所示方法计算即可要自己根据实际情况计算一下才好:包括面层、板、屋顶粉刷等自重在输入楼板荷载时,勾选“自动计算楼板自重”后, 恒载仅加面层荷载就ok了,一般选1.5kn即可;没勾选“自动计算楼板自重”时,一般选4.5kn;面层的重量一定是要加的,从一般情况来说,恒1活2基本差不多了;PKPM中恒载输入:1钩选程序自动计算楼板自重,则输入的楼面均布荷载应该包括建筑面层自重、顶棚抹灰、设备荷载折算、吊顶、管道等;2不钩选程序自动计算楼板自重,则输入的楼面均布荷载应该包括建筑面层自重、楼板自重、顶棚抹灰、设备荷载折算、吊顶、管道等;对砖混结构墙体抹灰可以通过适当增加砌体自重考虑;楼板的恒荷载=结构自重+装修荷载,注意都要用标准值;看来你要多看看教科书;一些例题给你们参考一下1 上人屋面恒载40厚C25细石砼:0.04x25=1.00 kN/m225厚挤塑保温板:0.17x0.025=0.004SBS防水卷材一道:0.35 kN/m220厚1:2.5水泥砂浆分层找平:0.020x20=0.4 kN/m250厚膨胀珍珠岩芯板:0.06x17=1.02 kN/m218厚1:3水泥砂浆找平:0.018x20=0.36kN/m2结构层:0.12 x25=3.00 kN/m2板底粉刷:17x0.02=0.34kN/m2恒载总计:6.57kN/m2活载:2.0kN/m23不上人屋面恒载:40厚C20细石混凝土保护层:0.04x25=1.0 kN/m225厚1:3水泥砂浆分层找平:0.025x20=0.5 kN/m250厚膨胀珍珠岩芯板:0.05x4=0.2 kN/m2结构层:0.12 x25=3.00 kN/m2板底粉刷:17x0.02=0.34kN/m2恒载总计:5.04kN/m2活载:0.70kN/m24楼面楼梯间、楼梯不包括现浇板自重,均为标准值恒载13厚1:1.5水泥砂浆面层压光:0.013x20=0. 26kN/m220厚1:2.5水泥砂浆底层纯水泥浆一道:0.02x20=0.4 kN/m2板底粉刷:17x0.02=0.34kN/m2恒载总计:1kN/m2活载:2.5kN/m2卫生间、厨房恒载20厚1:2.5水泥砂浆保护层:0.02x20=0.4kN/m2水泥砂浆向地漏找泛水,最薄处15厚:0.02x20=0.4kN/m2结构层:0.01 x25=2.5 kN/m2板底粉刷:17x0.02=0.34kN/m2恒载总计:3.64kN/m2活载:2.5kN/m2卫生间楼面:结构层: 130板:3.25 kN/m2面层: 1.06 kN/m2板底抹灰:0.40 kN/m2防水层: 0.30 kN/m2找平层: 0.40 kN/m2蹲位荷载及隔板: 3.27 kN/m2合计:8.68 kN/m2除楼梯间、楼梯、卫生间、厨房外所有房间13厚1:1.5水泥砂浆面层压光:0.013x20=0. 26kN/m220厚1:2.5水泥砂浆底层纯水泥浆一道:0.02x20=0.4 kN/m2结构层:0.12 x25=3.00 kN/m2板底粉刷:17x0.02=0.34kN/m2恒载总计:4.0kN/m2活载:4.0kN/m25填充墙墙体荷载240厚粘土空心砖砌体:4.54 kN/m2120厚粘土空心砖砌体:2.39kN/m2PKPM中楼梯间荷载输入值得注意的是地梁这一层和楼梯最上面一层的荷载有楼板的楼面层上,我采用的方法是梯板板厚取为0,楼面恒载分别取7.0和1.8常见;其他情况查规范,在架梯柱的框架梁上输入梯柱的集中荷载梁间荷载地梁层如果也按这种方法输入的话,比实际的荷载要大一点,大的那一点,以双跑楼梯为例,多了上部那块梯板的一半荷载,这一半荷载已经考虑在了上一层的楼面恒载中;这时,我们按以下方法处理:起步的这块梯板一半的荷载加在地梁上,并且只分布在这根地梁一半的长度上;与梯梁连接的两块梯板有一半的荷载加在梯梁上,沿梯梁全长分布,另外还要加上平台板一半的荷载;在两边框架梁上各加上一个梯柱的集中荷载;如下图示:计算过程:荷载210.0001.30:梯板长2800,宽1300,楼板面荷载取7.07.02.8/2=9.8,取10荷载111.500:平台板宽1.8;1.81.8+10,取11.5梯柱2002501800集中荷载:0.20.251.825楼梯最上面一层,只有一块梯板两端分别搭于上一层的次梁和中间的梯梁上,没有其他荷载,楼面恒活载均为0,这板块梯板的荷载加在次梁上如下图示:计算过程略;屋面与楼面荷载取值3.1.1 恒载恒载:又称永久荷载,在结构使用期间内,荷载的大小不随时间的推移而变化、或其变化与其平均值相比较可以忽略不计、或其变化是单调的并能趋于限值的荷载;如结构自重、构造层重、土压力等;结构自重和构造层重的标准值计算,可按照施工图纸的设计尺寸和材料的单位体积、或面积、或长度的重力,经计算直接确定;土压力标准值的计算详有关基础设计资料;3.1.1.1 楼面恒荷载楼面恒荷载主要由三部分组成:建筑面层恒荷载、结构层恒荷载、顶棚恒荷载,分布形式详图3.1.1所示;1由建筑面层引起的楼面恒荷载计算建筑面层引起的楼面恒荷载计算,必须根据建筑楼面面层的具体做法确定,常用建筑楼面面层恒荷载取值可图3.1.1 楼面恒荷载组成示意图参考表3.1.1;2由结构层引起的楼面恒荷载计算结构层引起的楼面恒荷载 = 结构楼层楼板厚度×钢筋混凝土容重一般取25kN/m3程序计算时,只要输入结构楼层楼板厚度和混凝土容重,结构层恒荷载即会自行导算,详4.1所述;表3.1.1 常用建筑楼面面层恒荷载取值参考表3由顶棚引起的楼面恒荷载计算顶棚引起的楼面恒荷载计算,必须根据建筑顶棚的具体做法确定,常用建筑顶棚恒荷载取值可参考表3.1.2;表3.1.2 常用建筑顶棚恒荷载取值参考表3.1.1.2 屋面恒荷载屋面恒荷载主要由三部分组成:建筑屋面面层恒荷载、结构层恒荷载、顶棚恒荷载,分布形式详图3.1.2所示;图3.1.2 屋面恒荷载组成示意图由结构层与顶棚引起的屋面恒荷载计算方法,同相应楼面恒荷载的计算方法,由建筑屋面面层引起的屋面恒荷载,必须根据建筑屋面面层的具体做法确定;由于建筑屋面承担着保温、隔热和防水、排水的功能,因此建筑屋面面层的做法相对于建筑楼面面层的做法要复杂得多,加之各地气候、雨水情况不同,保温隔热材料和防水材料的不断更新发展,使各地屋面面层的做法不完全相同,但基本构造层相差不多;1平屋面面层恒荷载计算平屋面,又称建筑找坡屋面,排水坡度为2%~3%,屋面面层的基本构造、荷重如下:①结构层钢筋混凝土屋面板上水泥砂浆找平层:厚度15~30mm,容重20kN/m3;②隔气层:以成品为主,重量较轻,可以忽略;③保温层兼找坡层:一般采用憎水性能好、导热系数小和重量轻的保温材料,起坡处厚度必须满足热工要求、由建筑专业计算决定,如膨胀珍珠岩系列容重7~15 kN/m3,现场拌制的砂浆取大值,成品取小值、挤塑板系列很轻,重量可以忽略等;④水泥砂浆找平层:厚度15~20mm,容重20kN/m3;⑤防水层:如二毡三油系列、二布六胶系列等,重量2~8 kN/m2;⑥保护面层:对于不上人屋面,可以是涂料、反射膜、砂石粘料常称绿豆砂、蛭石云母粉、纤维纺织毯、水泥砂浆块材等;对于上人屋面,与楼面面层的做法相同,一般以水泥砂浆面层为主;也可以结合环境绿化,采用种植屋面、蓄水屋面等;2坡屋面面层恒荷载计算坡屋面,又称结构找坡屋面,排水坡度≧5%,相对于平屋面来说屋面面层的基本构造要简单一些,通常如下:①结构层钢筋混凝土屋面板上水泥砂浆找平层:厚度15~30mm,容重20kN/m3;②隔气层:以成品为主,重量较轻,可以忽略;③保温层:材料同平屋面;④水泥砂浆找平层:厚度15~20mm,容重20kN/m3;⑤保护面层:如涂料系列、瓦片系列块瓦、油毡瓦、钢板彩瓦、琉璃瓦等,瓦片荷重较大,计算重量时必须根据瓦片的规格、样品及施工方法决定等;3.1.1.3 墙体恒荷载常用建筑墙体荷重及墙面面层荷重取值,可参考表3.1.3;墙体恒荷载一般简化为线荷载的形式,直接作用于支承板或支承梁上,由墙体引起的恒荷载计算方法如下:对于无门窗洞口的墙体实墙:墙体恒荷载kN/m= 墙体净高×墙体单位面积荷重kN/m2对于有门窗洞口的墙体:墙体恒荷载kN/m= 墙体面积×墙体单位面积荷重kN/m2÷支承梁长度墙体单位面积荷重可以直接查相应的设计手册,如表3.1.3所述,也可以按照下式计算:墙体单位面积荷重 = 砌体容重×墙体厚度 + 砌体两侧墙面面层荷重表3.1.3 常用建筑砌体荷重及墙面面层荷重取值参考表续表3.1.33.1.1.4 其它恒荷载1门窗恒荷载取值门窗恒荷载不大,可忽略不计;如要计算,一般简化为均布荷载;常用建筑门窗荷重取值可参考表3.1.4;表3.1.4 常用建筑门窗荷重取值参考表门、保温门、隔声门等的荷重,必须根据厂家样本提供的荷重采用;2楼梯、阳台栏板与栏杆恒荷载取值楼梯、阳台栏板与栏杆的恒荷载计算与建筑做法、采用的材质有关;对于楼梯、阳台的栏板恒荷载,可按下式计算:栏板荷重kN/m= 栏板高度m×栏板容重kN/m3×栏板厚度m= 栏板高度m×栏板面荷重kN/m2对于栏杆恒荷载,可近似取0.5kN/m均布荷载做简化计算;3设备恒荷载取值为满足建筑使用功能需要,常常需要配置一些设备;设备恒荷载的取值依据生产厂家提供的设备样本,设备恒荷载作用的位置依据建筑图中的平面布置;一般设备恒荷载:如电梯机房、自动扶梯、自动人行道等设计时,必须根据厂家提供的产品样本,确定支承钢梁所在的平面位置与设备恒荷载作用的大小;同样屋顶布置了风机房,设计者要根据厂家提供的产品样本,确定风机支承点所在的平面位置与作用恒荷载的大小;振动设备恒荷载:荷载规范4.6明确:对于在使用期间有可能产生振动的设备,在有充分的依据时,有必要考虑一定的动力系数,将设备的自重乘以动力系数后按照静力荷载计算;如:搬运和装卸重物以及车辆起动和刹车的动力系数可采用 1.1~1.3;直升机在屋面上的荷载也应乘动力系数,对具有液压轮胎起落架的直升机可取 1.4,其动力荷载只传至本层屋面板和梁;如设备振动比较厉害、或没有足够的经验参数,则应对设备本身安装必要的减振设施、或对设备基础采取必要的减振措施;。
!跨中施加110KN的集中力FINISH $/CLEAR $/PREP7!AS0=380.1 $AS1=50.3 $A=30 $B=150!H=300 $L=2650 $L0=125!ET,1,SOLID65!KEYOPT,1,1,0!KEYOPT,1,5,1!KEYOPT,1,6,3!KEYOPT,1,7,1!ET,2,LINK180!ET,3,SOLID185,,3R,1,AS0 $R,2,AS1 $R,3MP,EX, 1,2.4E4 $MP,PRXY,1,0.2 $FC=25!TB,CONCR,1,1,9!TBDATA,,0.35,0.75,3.1125,-1!TB,MISO,1,,15!TBPT,,0.0002,4.8 $TBPT,,0.0004,9.375 $TBPT,,0.0006,13.51! TBPT,,0.0008,17.02 $TBPT,,0.001,19.83, $TBPT,,0.0012,21.95! TBPT,,0.0014,23.43 $TBPT,,0.0016,24.365 $TBPT,,0.0018,24.856! TBPT,,0.002,FC $TBPT,,0.0038,FC !TBPLOT!MP,EX,2,2E5 $MP,PRXY,2,0.25!TB,BKIN,2 $TBDATA,,360!MP,EX,3,2E5 $MP,PRXY,3,0.25!TB,BKIN,3 $TBDATA,,210!N,1,,B $N,9 $FILL,1,9!NGEN,11,9,1,9,1,,,A!NGEN,2,1000,1,99,1,75!NGEN,3,1000,1001,1099,1,50!NGEN,7,1000,3001,3099,1,75!NGEN,4,1000,9001,9099,1,200/3!NGEN,7,1000,12001,12099,1,75!NGEN,2,1000,18001,18099,1,50!/VIEW,1,-1,-1,1!TYPE,2 $REAL,2 $MAT,3!*DO,II,11,16,1 $E,II,II+1 $*ENDDO!*DO,II,83,88,1 $E,II,II+1 $*ENDDO!*DO,II,11,74,9 $E,II,II+9 $*ENDDO!*DO,II,17,80,9 $E,II,II+9 $*ENDDO!EGEN,20,1000,1,28,1!*DO,II,83,18083,1000 $E,II,II+1000 $*ENDDO!*DO,II,89,18089,1000 $E,II,II+1000 $*ENDDO!TYPE,2 $REAL,1 $MAT,2*DO,II,11,18011,1000 $E,II,II+1000 $*ENDDO!*DO,II,17,18017,1000 $E,II,II+1000 $*ENDDO!/ESHAPE,1 $EP!BLC4,,,L/2,B,H $BLC4,75,,100,B,-40 $WPOFFS,,,H $BLC4,625,,200,B,40 $WPCSYS,-1! WPOFFS,75 $WPROTA,,,90 $VSBW,ALL!WPOFFS,,,100 $VSBW,ALL $WPOFFS,,,450 $VSBW,ALL!WPOFFS,,,200 $VSBW,ALL $WPOFFS,,,450 $VSBW,ALL!WPCSYS,-1 $ALLSEL!LSEL,S,LOC,Y,0 $LSEL,A,LOC,Y,150 $LSEL,R,LOC,X,0 $LESIZE,ALL,,,10!LSEL,S,LOC,Z,0 $LSEL,A,LOC,Z,300 $LSEL,R,LOC,X,0 $LESIZE,ALL,,,8!LSEL,S,LOC,Z,300 $LSEL,R,LOC,Y,0 $LSEL,R,LOC,X,0,75 $LESIZE,ALL,75!LSEL,S,LOC,Z,300 $LSEL,R,LOC,Y,0 $LSEL,R,LOC,X,75,175 $LESIZE,ALL,25!LSEL,S,LOC,Z,300 $LSEL,R,LOC,Y,0 $LSEL,R,LOC,X,175,625 $LESIZE,ALL,75/2!LSEL,S,LOC,Z,300 $LSEL,R,LOC,Y,0 $LSEL,R,LOC,X,625,825 $LESIZE,ALL,100/3! LSEL,S,LOC,Z,300 $LSEL,R,LOC,Y,0 $LSEL,R,LOC,X,825,1275 $LESIZE,ALL,75/2! LSEL,S,LOC,Z,300 $LSEL,R,LOC,Y,0 $LSEL,R,LOC,X,1275,1325 $LESIZE,ALL,50!LSEL,S,LOC,Z,340 $LSEL,R,LOC,X,625 $LESIZE,ALL,,,8!LSEL,S,LOC,Y,0 $LSEL,R,LOC,X,625 $LSEL,R,LOC,Z,300,340 $LESIZE,ALL,,,1!LSEL,S,LOC,Z,-40 $LSEL,R,LOC,X,75 $LESIZE,ALL,,,8!LSEL,S,LOC,Y,0 $LSEL,R,LOC,Z,-40 $LESIZE,ALL,,,4!LSEL,S,LOC,Y,0 $LSEL,R,LOC,X,75 $LSEL,R,LOC,Z,0,-40 $LESIZE,ALL,,,1!VSEL,S,LOC,Z,0,H $VATT,1,3,1MSHAPE,0,3D $MSHKEY,1VMESH,ALL $ALLSELVSEL,S,LOC,Z,-40,0 $VSEL,A,LOC,Z,H,H+40 $VATT,2,3,3MSHAPE,0,3D $MSHKEY,1 $VMESH,ALL/VIEW,1,-0.2,-1,1 $EPLOT $ALLSELNUMMRG,ALL $NUMCMP,ALL $EPLOT/SOLU!NSEL,S,LOC,Z,-40 $NSEL,R,LOC,X,L0 $D,ALL,UY,,,,,UZ $ALLSEL!ASEL,S,LOC,X,L/2 $DA,ALL,SYMM $ALLSEL!NSEL,S,LOC,Z,H+40 $NSEL,R,LOC,X,725!*GET,NODE1,NODE,,COUNT $F,ALL,FZ,-110000/NODE1 $ALLSEL!ANTYPE,STATIC $NLGEOM,ON $NSUBST,80 $OUTRES,ALL,ALL $AUTOTS,1 $LNSRCH,1! CNVTOL,F,,0.05,2,0.5 $ALLSEL!SOLVE $FINISH/POST1 $SET,LAST $PRRSOL,FZ!SET,LAST $PLDISP,1!ESEL,S,TYPE,,2 $ETABLE,SAXL,LS,1 $PLLS,SAXL,SAXL!ESEL,S,TYPE,,1 $/DEVICE,VECTOR,ON $PLCRACK!/POST26 $NSOL,2,NODE(L/2,B/2,0),U,Z!PROD,3,2,,,,,,-1 $PROD,4,1,,,LOAD,,,110!/AXLAB,X,MID-UZ(MM) $/AXLAB,Y,P(KN)!XVAR,3 $PLVAR,4。
ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;—-加强材料只能受拉压,不能承受剪切力。
三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型—-分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。
2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck —Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck—Prager等),三参数、五参数模型;混凝土开裂前,采用Druck—Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型.4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf—Ol—闭合裂缝的剪切传递系数,0。
9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt-静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。
加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性.例1、矩形截面钢筋混凝土板在中心点处作用-2mm的位移,分析板的受力、变形、开裂(采用整体模型分析法).材料性能如下:1、混凝土弹性模量E=24GPa,泊松比ν=0。
ABAQUS中的钢筋混凝土剪力墙建模曲哲2006-5-29一、试验标定选用ABAQUS中的塑性损伤混凝土本构模型,分离式钢筋建模,建立平面应力模型模拟钢筋混凝土剪力墙的单调受力行为。
李宏男(2004)本可以提供比较理想的基准试验。
然而计算发现,该文中试验记录的初始刚度普遍偏小,仅为弹性分析结果的1/5~1/8,原因不明,故此处不予采用。
左晓宝(2001)研究了小剪跨比开缝墙的低周滞回性能,其中有一片整体墙作为对照试件,本文仅以这片墙为基准标定有限元模型。
图1:剪力墙尺寸与配筋该试件尺寸及配筋如图1所示。
墙全高750mm,宽800mm,厚75mm,墙内布有间距φ6@100的分布钢筋,墙两端设有暗柱。
混凝土立方体抗压强度为54.9MPa,钢筋均为一级光圆筋。
(a)墙体分区及网格(b)钢筋网图2:ABAQUS中的有限元模型剪力墙采用平面应力八节点全积分单元,墙上下两端各加设100mm高的弹性梁。
钢筋采用两节点梁单元,通过Embed方式内嵌于墙体内。
模型网格及外观如图2所示。
墙下弹性梁底面嵌固。
分析中,先在墙顶施加160kN均布轴压力,再在墙上方弹性梁的左端缓缓施加位移荷载。
ABAQUS中损伤模型各参数取值如表1、图3所示。
未说明的参数均使用ABAQUS默认值。
表1:有限元模型材料属性混凝土 钢筋 材料非线性模型 Damaged PlasticityPlasticity初始弹性模量(GPa )38.1 210 泊松比 0.2 0.3 膨胀角(deg ) 50 初始屈服应力(MPa ) 13 235 峰值压应力(MPa ) 44 峰值压应变(µε) 2000 峰值拉应力(MPa )3.65注:其中混凝土弹性模量为文献中提供的试验值,其余均为估计值。
(a )压应力-塑性应变曲线 (b )拉应力-非弹性应变曲线 (c )受拉损伤指标-开裂应变曲线图3:混凝土塑性硬化及损伤参数ABAQUS 的混凝土塑性损伤模型用两个硬化参数分别控制混凝土的拉压行为,同时可以分别引入受压和受拉损伤指标。
钢筋混凝土梁—钢筋-箍筋T3D2单元-基本建模实例简单介绍如下:1、梁,截面尺寸:300mm*500mm,长度6m。
混凝土保护层取20mm2、混凝土:采用帮助文档 abaqus verification manual 2.2.24提供的本构模型数据,强度应该在C20-C30之间。
3、钢筋:1)纵向受力筋:模型中代号Zongjin,梁上部配筋2根,梁下部3根直径20,HRB335;2)箍筋,直径8@200]8@200。
模型中代号Gujin4、模型采用的单位制:国际单位制,m,s,kg,pa ,N把模型的CAE文件、inp文件和ODB文件附在这里,若要有什么指教或者建议,明天回来再和大家探讨,周末了,天气很不错,出去看满大街小巷满座冰城的紫丁香花去了....模型一:混凝土梁:实体solid单元,C3D8R,一次缩减积分实体单元。
钢筋均采用T3D2 Truss单元。
混凝土梁建模很简单,不再赘述,part部件图如下:对于纵筋和箍筋,现在part里面分别建一根钢筋,然后在assembly里面阵列,组装号以后,merge 为一个part,如下:可能要用到assembly里面的旋转和移动命令:混凝土材料定义:混凝土损伤塑性本构模型;钢筋,最简单的二折线模型单元划分:Mesh模块Assembly模块:通过定义参考点等移动,组装:Interaction模块,分别建立混凝土与纵筋,混凝土与箍筋之间的Embedded,下图:(PS:其实,纵筋和箍筋也可以在一个part里面建成钢筋笼,然后作为一体,建立一个Embed到混凝土梁中.....,可以尝试一下。
)加载计算:先假若此梁为一悬臂梁(呵呵,可能作为悬臂梁,长度太长了点。
),先这么假定吧。
基本情况如下:1、梁一段固定,一段施加集中载荷,采用位移加载。
2、在加载端,设置一刚片,采用离散刚体,与梁间tie连接,荷载加载刚片的参考点上,参考点取在刚片的中心。
下面这个是是定义的step:因为先加载的位移为6cm,我把增量步调的很小还是没有收敛,所以加载3cm时,依然采用这个增量步,这个可以根据收敛情况进行调节...基本搞定,提交job,计算。
用拘束方程法模拟钢筋混凝土梁结构问题描述P位移载荷hbL建立钢筋线对钢筋线区分网格后形成钢筋单元建立混凝土单元对钢筋线节点以及混凝土节点之间建立拘束方程后施加拘束以及位移载荷进入求解器进行求解;钢筋单元的受力云图混凝土的应力云图混凝土开裂fini/clear,nostart/config,nres,5000/filname,yue su fang cheng 5 jia mi hun nin tu /prep7/title,rc -beamb=150h=300a=30l=2000displacement=5!定义单元种类et,1,solid65et,2,beam188et,3,plane42!定义截面种类sectype,1,beam,csolid,,0secoffset,centsecdata,8,0,0,0,0,0,0,0,0,0sectype,2,beam,csolid,,0secoffset,centsecdata,4,0,0,0,0,0,0,0,0,0!定义资料属性,混凝土资料属性mp,ex,1,24000tb,conc,1,1,9tbdata,,0.4,1,3,-1!纵向受拉钢筋mp,ex,2,2e5tb,bkin,2,1,2,1tbdata,,350!横向箍筋,受压钢筋资料属性mp,ex,3,2e5tb,bkin,3,1,2,1tbdata,,200!生成钢筋线k,,k,,bkgen,2,1,2,,,hk,,a,ak,,b-a,akgen,2,5,6,,,h-2*akgen,21,5,8,,,,-100 *do,i,5,84,1l,i,i+4*enddo*do,i,5,85,4l,i,i+1l,i,i+2*enddo*do,i,8,88,4l,i,i-1l,i,i-2*enddo!受拉钢筋lsel,s,loc,y,alsel,r,loc,x,alsel,a,loc,x,b-a lsel,r,loc,y,acm,longitudinal,line type,2mat,2secnum,1 lesize,all,50lmesh,allallscmsel,u,longitudinalcm,hooping reinforcement,line !箍筋,受压钢筋type,2mat,2secnum,2lesize,all,50lmesh,all/eshape,1!将钢筋节点建为一个会集cm,steel,node!生成面单元,以便拉伸成体单元a,1,2,4,3lsel,s,loc,y,0lsel,a,loc,y,hlesize,all,,,10lsel,alllsel,s,loc,x,0lsel,a,loc,x,blesize,all,,,20type,3amesh,all!拉伸成混凝土单元type,1real,3mat,1extopt,esize,30extopt,aclear,1vext,all,,,,,-lalls!建立拘束方程cmsel,s,hooping reinforcement cmsel,a,longitudinalnsll,s,1ceintf,,ux,uy,uzallsel,all!界限条件拘束nsel,s,loc,y,0nsel,r,loc,z,0d,all,uyd,all,uxnsel,s,loc,y,0nsel,r,loc,z,-ld,all,uyd,all,ux!施加外面荷载/solunsel,allnsel,s,loc,y,hnsel,r,loc,z,-1000d,all,uy,-displacement alls!求解nlgeom,onnsubst,200outres,all,allneqit,100pred,onallselsolvefinish/post1allselplcrack,0,1plcrack,0,2!时间历程后办理/post26nsel,s,loc,z,-l/2*get,Nmin,node,0,num,min nsol,2,nmin,u,yprod,3,2,,,,,,-1nsel,s,loc,y,0nsel,r,loc,z,0*get,Nnum,node,0,count *get,Nmin,node,0,num,min n0=Nminrforce,5,Nmin,f,y*do,i,2,ndinqr(1,13)ni=ndnext(n0)rforce,6,ni,f,yadd,5,5,6n0=ni*enddoprod,7,5,,,,,,1/1000/axlab,x,uy/axlab,y,p(kn) xvar,3 plvar,7。
ANSYS整体式钢筋混凝土模型算例分析在土木工程结构中,最为常用的一种结构形式就是钢筋混凝土结构,在各类房屋、水坝、桥梁、道路中都有广泛应用。
ANSYS软件提供了专门的钢筋混凝土单元和材料模型。
本算例将介绍ANSYS软件分析混凝土一些基本应用。
(1) 首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,选择添加Solid 65号混凝土单元。
(2) 点击Element types窗口中的Options,设定Stress relax after cracking为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。
(3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。
进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。
(4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。
(5) 下面输入混凝土的材料属性。
混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。
下面分别介绍如下。
(6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2(7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。
ABAQUS中的钢筋混凝土剪力墙建模范本一:1. 引言1.1. 目的本文档旨在指导如何在ABAQUS中建模钢筋混凝土剪力墙,并对相关参数和步骤进行详细说明。
1.2. 背景钢筋混凝土剪力墙是一种常见的结构形式,在工程中广泛应用。
通过对其进行建模和分析,可以评估其在地震等荷载下的性能,并进行优化设计。
2. 模型准备2.1. 材料定义在ABAQUS中,首先需要定义钢筋混凝土的材料特性,包括混凝土的弹性模量、泊松比、抗拉强度等,钢筋的弹性模量、屈服强度等。
2.2. 几何建模钢筋混凝土剪力墙的几何模型可以根据实际需求进行建模,常见的有矩形、T形等形状。
3. 节点和单元的3.1. 网格划分根据剪力墙的几何模型,可以使用ABAQUS提供的网格划分工具节点和单元,确保网格密度足够细致。
4. 材料和截面属性的设置4.1. 材料属性的设置根据2.1中定义的材料特性,在ABAQUS中设置材料属性,包括材料的弹性模量、泊松比等。
4.2. 截面属性的设置根据剪力墙的几何形状,在ABAQUS中设置截面属性,包括截面面积、惯性矩等。
5. 节点和单元的约束和加载5.1. 边界条件的设置根据实际情况,设置剪力墙的约束条件,包括固定边界、滑移边界等。
5.2. 荷载的施加根据实际荷载情况,在剪力墙上施加荷载,可以包括地震荷载、垂直荷载等。
6. 分析求解6.1. 求解设置在ABAQUS中设置分析求解的参数,包括初始条件、收敛准则等。
6.2. 结果输出在分析求解完成后,输出剪力墙的应力、应变等结果,并进行后处理分析。
7. 结论在本文档中,我们详细介绍了如何在ABAQUS中建模钢筋混凝土剪力墙,并分析了相关参数和步骤。
通过此文档,可以准确地进行钢筋混凝土剪力墙的建模和分析。
附件:本文档无任何附件。
法律名词及注释:本文档无任何法律名词及注释。
范本二:1. 简介1.1. 目的本文档旨在为提供在ABAQUS中进行钢筋混凝土剪力墙建模的全面指南,包括详细步骤和参数设置。
ANSYS 钢筋混凝土建模一、简介钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。
Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。
希望大家一起讨论、批评指正(******************.cn)。
程序:ANSYS单元:SOLID65、BEAM188建模方式:分离暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。
二、单元选择以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。
最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。
只有计算的开裂荷载与实验还算是比较接近,但这个手算也算得出来的东西费劲去装模作样的建个模型又有什么意义?所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。
建模时发现,只要充分、灵活地运用APDL的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。
暗支撑剪力墙数值模型看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。
但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如下图箭头方向),从而导致总刚矩阵小主元地出现影响计算精度,或者干脆形成瞬变体系导致计算提前发散。
LINK8+SOLID65的问题如果采用梁单元模拟暗钢筋,就算包裹钢筋的混凝土破坏了,钢筋单元本身仍可对连接点提供一定的侧向刚度(其实钢筋本身就是有一定抗弯刚度的),保证计算进行下去。
盈建科钢筋混凝土框架结构牛腿建模(实用版)目录1.盈建科钢筋混凝土框架结构概述2.牛腿建模的背景和意义3.盈建科钢筋混凝土框架结构牛腿建模的流程4.盈建科钢筋混凝土框架结构牛腿建模的实践应用5.盈建科钢筋混凝土框架结构牛腿建模的未来发展正文1.盈建科钢筋混凝土框架结构概述盈建科是一家专业从事建筑结构设计和施工的企业。
其主要业务是提供钢筋混凝土框架结构的设计和施工服务。
钢筋混凝土框架结构是现代建筑中常见的一种结构形式,它具有结构简单、施工方便、抗震性能好等优点。
2.牛腿建模的背景和意义在建筑设计和施工中,牛腿是一种常见的构件,主要用于支撑楼板和屋顶。
随着建筑行业的发展,对牛腿建模的需求也越来越大。
牛腿建模可以帮助建筑设计师快速、准确地完成牛腿的设计,提高设计效率和质量。
3.盈建科钢筋混凝土框架结构牛腿建模的流程盈建科钢筋混凝土框架结构牛腿建模的流程主要包括以下几个步骤:(1)需求分析:根据建筑设计需求,确定牛腿的尺寸、形状和材料等参数。
(2)模型创建:根据需求分析结果,使用专业的建模软件创建牛腿模型。
(3)模型验证:对创建的牛腿模型进行验证,确保模型的准确性和可靠性。
(4)模型应用:将创建的牛腿模型应用到建筑设计中,进行结构分析和计算。
4.盈建科钢筋混凝土框架结构牛腿建模的实践应用盈建科钢筋混凝土框架结构牛腿建模已经在多个建筑项目中得到应用,取得了良好的效果。
例如,在某住宅楼项目中,盈建科使用牛腿建模技术,不仅提高了设计效率,还提高了结构的稳定性和安全性。
5.盈建科钢筋混凝土框架结构牛腿建模的未来发展随着建筑行业的不断发展和技术的不断进步,盈建科钢筋混凝土框架结构牛腿建模将继续完善和提高。
常规态型近场动力学模型钢筋混凝土常规态型近场动力学模型钢筋混凝土1. 引言钢筋混凝土是广泛应用于建筑和基础设施中的一种重要材料。
为了确保结构的安全性和耐久性,工程师们需要深入了解钢筋混凝土在不同加载条件下的力学响应。
近年来,常规态型近场动力学(CR-FEM)模型被引入,在钢筋混凝土研究领域取得了显著的成果。
本文将通过对常规态型近场动力学模型在钢筋混凝土力学响应研究中的应用进行全面评估,旨在深入探讨其优势及潜在局限性。
2. 概述常规态型近场动力学模型是一种基于粘弹性理论的离散元素方法。
与传统的连续介质力学模型相比,CR-FEM模型可以更准确地模拟钢筋混凝土材料的宏观力学性质。
它不仅考虑了材料的非线性行为,还能够模拟裂缝的形成和扩展过程,从而提供了更细致的局部破坏信息。
3. CR-FEM模型的优势3.1. 高精度CR-FEM模型可以基于更具体和精细的参数设置,对钢筋混凝土材料进行建模。
通过调整模型的参数,可以准确地预测结构在不同加载条件下的变形和破坏行为。
3.2. 考虑非线性和非均质性与传统的连续介质力学模型不同,CR-FEM模型能够更好地模拟钢筋混凝土的非线性行为。
它能够捕捉到材料在受力过程中的非线性变形和应力分布,并且能够处理不均质材料的力学响应。
3.3. 模拟裂缝形成和扩展CR-FEM模型具备很好的断裂能力,可以模拟裂缝的形成和扩展过程。
这对于预测钢筋混凝土在强烈加载或震动条件下的破坏行为至关重要。
4. CR-FEM模型的局限性4.1. 较高的计算复杂度由于CR-FEM模型需要进行离散元素的计算,相比传统的连续介质力学模型,它具有更高的计算复杂度和更长的计算时间。
这对于大规模结构的分析和优化可能会带来一定的挑战。
4.2. 参数选择的困难性CR-FEM模型的准确性高度依赖于参数的选择。
在实际应用中,需要进行大量的试验和参数拟合,以获得准确的模型参数。
这增加了模型的调试和验证的难度。
5. 个人观点和理解CR-FEM模型的引入为钢筋混凝土力学响应研究提供了一种新的途径。
!建模
finish$/clear$/prep7 ET,1,SOLID65
ET,2,LINK8
k,,60,210,0
k,,-60,210,0
k,,-60,-210,0
k,,-20,-210,0
k,,20,-210,0
k,,60,-210,0
k,,60,210,50
k,,-60,210,50
k,,-60,-210,50
k,,-20,-210,50
k,,20,-210,50
k,,60,-210,50
*do,j,0,58,1
*do,i,7+j*6,12+j*6,1
kgen,2,i,,,,,100,,, *enddo
*enddo
k,,60,210,6000 k,,-60,210,6000 k,,-60,-210,6000 k,,-20,-210,6000 k,,20,-210,6000 k,,60,-210,6000
*do,i,1,367,6
l,i,i+1
l,i+1,i+2
l,i+2,i+3
l,i+3,i+4
l,i+4,i+5
l,i+5,i
*enddo
*do,i,1,6,1
*do,j,i,i+360,6
l,j,j+6
*enddo
*enddo
!附加点
k,,100,250,0
k,,-100,250,0
k,,-100,-250,0
k,,100,-250,0
k,,60,250,0
k,,-60,250,0
k,,-60,-250,0
k,,60,-250,0
k,,100,250,6000
k,,-100,250,6000
k,,-100,-250,6000
k,,100,-250,6000
k,,60,250,6000
k,,-60,250,6000
k,,-60,-250,6000
k,,60,-250,6000
!粘体
v,1,2,3,6,367,368,369,372
v,373,377,380,376,381,385,388,384 v,378,374,375,379,386,382,383,387 v,377,378,2,1,385,386,368,367
v,6,3,379,380,372,369,387,388 vglue,all
NUMMRG,KP, , , ,LOW
!参数
R,1,1256,
R,2,113.04,0, MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,1.8145e10 MPDATA,PRXY,1,,0.2
TB,kinh,1,1,13,0
TBTEMP,0
TBPT,,0.0002 , 3629000 TBPT,,0.0004 , 6876000 TBPT,,0.0006, 9741000 TBPT,,0.0008, 12224000 TBPT,,0.001, 14325000 TBPT,,0.0012, 16044000 TBPT,,0.0014, 17831000 TBPT,,0.0016, 18336000 TBPT,,0.0018, 18909000 TBPT,,0.002, 19100000 TBPT,,0.0024, 19063032
TBPT,,0.0028, 19026065 TBPT,,0.0032, 18989097 TB,CONC,1,1,9, TBTEMP,0
TBDATA,,0.5,0.95,1.71,19.1 ,, TBDATA,,0,0,1
MPTEMP,,,,,,,, MPTEMP,1,0
MPDATA,EX,2,,2e11 MPDATA,PRXY,2,,0.3
TB,BISO,2,1,2, TBTEMP,0
TBDATA,,310e6,0.76e11,,,,
!分网
VSEL, , , , all VATT, 1, , 1 ESIZE,50,0,
vsweep,all
allsel,all
LSEL, , , ,1,372
LATT,2,2,2, , , ,
LESIZE,all,50, , , , , , ,1 lmesh,all
allsel,all
LSEL, , , ,373,738
LATT,2,1,2, , , ,
LESIZE,all,50, , , , , , ,1 lmesh,all
allsel,all
NUMMRG,ALL, , , ,LOW
!加力
ASEL,S,loc ,z ,0
ASEL,a,loc ,z ,6000
!NSLA,R,1
Da,all,ALL
allsel,all
ASEL,S,loc ,y ,250
SFA,all,1,PRES,1000000 allsel,all
/SOL
TIME,1
antype,0
nlgeom,1
nropt,full,
eqslv,spar,,0,
time,1.0
autots,1
nsubst,1000,200,50,1
kbc,0
cnvtol,u,,0.03,0
neqit,50
pred,on,,on
outres,all,all
SAVE
SOLVE
*DO,I,2,1000,1
TIME,I
etable,strain,epto,eqv
esel,s,etab,strain,0.033
EKILL,all
SAVE
SOLVE
*ENDDO
!/sol
!solve
!/POST1
!PLDISP,1
仅含建模部分后处理理论纷争因ANSYS 版本不同稳定性不高难以服众仅限参考本模型属于分离式建模考虑各种复杂情况(两排钢筋外加不等间距箍筋)
声明:本模型为本人17届北京力学分会会议论文集附属文件。
完全引用请注明。
声明人:flybebrave
建模后概图:。