当前位置:文档之家› 继电保护的概念

继电保护的概念

继电保护的概念
继电保护的概念

继电保护的概念:继电保护是由继电保护技术和继电保护装置组成的一个系统

继电保护装置:能够反应系统故障或不正常运行,并且作用于断路器跳闸或发出信号的自动装置

继电保护的任务和作用: 1当电力系统发生故障时,自动,迅速,有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障元件迅速恢复正常运行。2反应电气元件的不正常运行状态,并根据不正常运行的类型和电气元件的维护条件,发出信号,由运行人员进行处理或自动进行调整。3继电保护装置还可以和电力系统中其他自动装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。

继电保护在技术满足的四个基本要求:可靠性(可靠性包括安全性和信赖性),选择性(选择性是指保护装置动作时,应在可能最小的区间内将故障从电力系统中断开,最大限度的保证系统中无故障部分仍能继续安全运行),速动性,灵敏性。主保护:反应被保护元件上的故障,并能在较短时间内将故障切除的保护。

后备保护:在主保护不能动作时,该保护动作将故障切除。根据保护范围和装置的不同有近后备和远后备两种方式。

近后备:一般和主保护一起装在所要保护的电气元件上,只有当本元件主保护拒绝动作时,它才动作,将所保护元件上的故障切除。

远后备:当相邻元件上发生故障,相邻电气元件主保护或近后备保护拒绝动作时,远后备动作将故障切除。

选择性的保证:一是上级元件后备保护的灵敏度要低于下级元件后备保护的灵敏度,二是上级元件后备保护的动作时间要大于下级元件后备保护的动作时间。

继电保护的基本原理:利用被保护线路或者设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,启动逻辑控制环节,发出相应的跳闸脉冲或信号。

继电保护装置的组成:测量比较元件,逻辑判断元件,执行输出元件

动作电流:过电流继电器线圈中使继电器动作的最小电流I op。返回电流:继电器线圈中的使继电器由动作状态返回到起始位置的最大电流I re。

继电返回系数:K re=I re/I op

继电特性:无论启动和返回,继电器的动作都是明确干脆的,不可能停留在某一个中间位置

电磁型电压继电器:过电压K re<1 欠电压K re>1

中间继电器:通常用来增加接点数量和触电容量,以满足操作控制的需求,电流保护的中间继电器动作延时一般不小于0.06s或返回时限不小于0.4s (有小延时)。

电流整定值选取的原则不同电流保护可分为:无时限电流速断保护I段,带时限电流速断保护II段,定时限过电流保护III 段。

电流速断保护:反应电流增加且不带时限(瞬时)动作的电流保护,即无时限电流速断保护。

动作电流的取值原则:按躲过本线路末端发生短路时最大短路电流整定。

保护范围:一般要求最大保护范围≥50%线路全长,最小保护范围≤15%线路全长

I段保护:反应电流增加且不带时限(瞬时)动作的电流保护整定原则:按躲过下一条线路出口处短路条件整定

II段保护:由于无时限电流速断保护(I段)不能保护线路全长,为快速切除本线路其余部分的短路故障应增设II段保护即限时电流速断保护

整定原则:按照躲开下一级各相邻元件电流速断保护的最大动作范围整定

保护范围不超过下一条线路电流速断保护的保护范围(II段)III段保护整定原则:过电流保护通常是指其动作电流按躲过最大负荷电流来整定保护,动作时限按阶梯原则来选择的。

电流速断保护的构成:电流继电器KA、中间继电器KM、信号继电器KS、断路器辅助触点QF、跳匝闸圈YR。

接入中间继电器KM的作用如下:1增大触点容量,防止由KA触点直接接通跳闸回路时因容量过小而被破坏。2当线路上装有管型避雷器时,利用KM延时闭合触点增加保护的固有动作时间,以避免管型避雷器动作时,引起电流速断保护误动作。当校验灵敏系数不能满足要求时,通常都是考虑进一步延伸限时电流速度的保护范围,使之与下一条线路的显示电流速断相配合,这样其动作时限就应该选的比下条线路限时速断的时限再高一个△t。

对于不同的短路接线系数K con数值不同,三相短路为√3,A、C两相短路时K con=2,AB或BC两相短路时,K con=1

在保护中增设一个判断短路功率方向的元件,该元件只当短路功率方向由母线流向线路时动作,而当短路功率方向由线路流向母线时不动作,从而使继电保护的动作具有一定的方向性。具有方向性的过电流保护主要由方向元件KW、电流元件KA 和时间元件KT组成。

I r和U r的相位角φr=-(90°-φse t),称为灵敏角φsen。与φsen =-α时的I重合的线称为最大灵敏角。

继电器的接线方式:1在各种短路故障形式下,能正确判断短路功率的方向。2故障以后加入继电器的电流I和电压U,应尽可能的大一些,并尽可能使φsen接近于最大灵敏角(符号),以便消除和减少方向继电器的死区,提高功率方向继电器动作灵敏性和可靠性。

零序电流保护的评价:1零序过电流保护的灵敏度高。2零序电流保护受系统运行方式变化的影响要小得多。3当系统中发生某些不正常运行状态时零序保护则不受影响。4零序方向元件没有电压死区。5在110KV及以上的高压和超高压系统中,单相接地故障占全部故障70%~90%,而其他故障也往往是由单相接地发展起来的,因此,采用专门的零序保护就具有显著的优越性。

单相接地的特点:1在发生单相接地时,全系统都将出现零序电压。2在非故障的元件上有零序电流,其数值等于本身的对地电容电流,电容性无功功率的实际方向为由母线流向线路。3在故障线路上,零序电流为全系统非故障元件对地电容电流之综合,数值一般较大,电容性无功功率的实际方向为由线路流向母线。

对电容电流补偿程度的不同补偿方式分为:消弧线圈可以有完全补偿,欠补偿和过补偿。

中性点不接地系统中单相接地保护的方式:1绝缘监视装置2零序电流保护3零序功率方向保护。

距离保护:就是指反应保护安装处至故障点的距离,并根据这一距离的远近而确定动作时限的一种保护装置。

L set对应的测量阻抗为Z m=Z1L set,称为整定阻抗,记为Z set,Z m:保护安装处到保护范围末端的线路阻抗。

偏移圆特性的阻抗继电器:圆心位于1?2(Z set

1

+Z set2),半径为|1?2(Z set1- Z set2)|幅值比较|Z m-1?2(Z set1+ Z set2)|≦|1?2

(Z set

1-Z set2)|相位比较—90°≦arg(Z set

1

-Z m/Z m-Z set2)≦

90°

Z m是继电器的测量阻抗,由加入继电器的电压U m、电流I m的比值确定,Z m的阻抗角就是U m、I m之间的相位差φm

距离保护的构成:启动回路,测量回路,逻辑回路。

影响距离保护正确工作的因素主要有:1故障点与保护安装处之间的分支电流(1助增电流的影响,2外汲电流的影响)。2故障点的过渡电阻(1短路点过渡电阻的性质2单侧电源线路上过渡电阻的影响3双侧电源线路上过渡电阻的影响)。3电压回路断线。4电力系统震荡。5串联电容补偿的影响。

输电线路的纵联差动保护:需要将线路一侧电气量信息传到另一侧去,两侧的电气量同时比较,联合工作,也就是说在线路两侧之间发生纵向的联系。原理:比较被保护线路始端和末端电流的大小和相位原理构成

高频保护又称电力线载波纵联保护

电力线高频通道的构成:输电线路,阻波器,耦合电容器,连接滤波器,高频电缆,高频收和发信机,接地开关。

阻波器的作用:在电力系统继电保护中广泛采用高频保护专用的高频阻波器。串联在线路两段,为了使高频载波信号只在本线路中传输而不穿越到相邻线路上去,才用了电感线圈与可调电容组成的并联谐振回路。

闭锁式方向高频保护:采用正常无高频电流,而在外部故障时发闭锁信号的方式构成。并规定线路两段功率从母线流向线路时为正方向,由线路流向母线为负方向。此闭锁信号由功率方向为负的一侧发出,被两端的收信机接受,闭锁两端的保护。闭锁式方向高频保护的构成:KW+为功率正方向元件,KA2为高定值电流启动停信元件,KA1为低定值电流启动发信元件。相差高频保护原理:是根据直接比较线路两段电流相位而确定保护是否动作的原理构成,仅利用输电线路两段电流相位在区外短路时相差180度,区内短路时相差为0度,也可以区分区内,外短路。

变压器故障的分类:油箱内的故障和油箱外的故障。

电路故障主保护:纵联差动保护,重瓦斯保护,压力释放保护。

配置保护:a短路故障主保护b短路故障的后备保护c异常运行保护

轻瓦斯作用于信号,重瓦斯作用于跳闸

瓦斯保护:气体继电器安装在油箱与油枕之间的连接管道中,油箱内的气体通过气体继电器流向油枕,变压器安装时应使顶盖沿气体继电器的方向与水平面具有1%~1.5%的升高坡度,通往继电器的连接管具有2%~4%的升高,这样有利于气体通过气体继电器。

瓦斯保护的接线方式:气体继电器KG的上触点为轻瓦斯触点,动作于信号。下触点为重瓦斯点,动作于跳闸。

产生不平衡电流的原因:1由变压器两侧接线不同产生的不平衡电流2由变压器调节分接头产生的不平衡电流3变压器两侧电流互感器型号不同产生的不平衡电流4)变压器的励磁涌流。变压器的励磁涌动:变压器空载合闸或断开外部故障后系统电压恢复时,短时出现的励磁电流数值可达到额定电流的4~8倍的现象

励磁涌流特点:I励磁涌流含有很大的非周期分量,偏于时间轴一侧。II励磁涌流中含有大量的高次谐波分量,其中以2次谐波分量所占比例最大III励磁涌流相邻波形之间存在间断角。一个周期中间断角为α

防止励磁涌流影响的方法有一下几种:1采用具有速饱和中间变流器的差动继电器2利用二次谐波制动3鉴别短路电流和励磁涌流波形的差别

变压器相间短路的后备保护方案有:过电流保护,低电压启动的过电流保护,复合电压启动过电流保护,负序电流保护或阻抗保护。

复合电压启动的过电流保护:反应不对称短路的负序电压继电器KVN和反应对称短路接于相间电压的低电压继电器KV 组成的电压元件

发电机的故障类型主要有:1定子绕组的相间短路2定子绕组的匝间短路3定子绕组的单相接地4励磁回路一点接地或两点接地短路。

纵差动保护的分类:发电机的纵差动保护反应发电机定子绕组及其引出线的相间短路,是发电机的主保护。根据差动元件两侧输入电流的不同,可以分成完全纵差动保护和不完全纵差动保护。

完全差动:反应发电机内部及引出线上相间短路,不反应发电机内部匝间短路及分支开焊。(中性点输入差动元件的电流为每相的全电流)

不完全差动:用于每相定子绕组为多分支的大型发电机,他除了能反应发电机相间短路还能反应钉子线棒开焊及分支匝间短路。(中性点侧输入到差动元件的电流为每相定子绕组每一分支的电流)

同步发电机定子绕组匝间短路的形式有同一分支绕组中的匝间短路和一相中不同分支绕组间的匝间短路。

单元件式横差保护:当发电机定子绕组为双星形接线且中性点侧有6个引出端子时,匝间短路保护一般采用单元件式横差保护。

当同一绕组匝间短路的匝数较少或同相的两个分支绕组电位相近的两个点发生匝间短路时由于环流较小,保护可能不动作,这种情况下该保护具有动作死区

基波零序电压和三次谐波电压构成--------发电机定子100%接地保护

单元件式横差保护反应:定子绕组的匝间短路故障和分支绕组的开焊故障且反应定子绕组的相间短路故障。该保护具有动作死区。

裂相横差保护的构成原理:是将发电机各相定子绕组并联分支数一分为,分别配以电流互感器,降两个互感器二次电流之差引入过电流元件而构成,正常运行时,各绕组中的电动势相等,流过相等的负荷电流。

纵相零序电压匝间短路保护:若发电机中性点侧无6个引出端子就无法实现上述方案,这时可采用反应零序电压的匝间短路保护。当发电机发生匝间短路造成纵向不对称时,个相对发电机中性点产生零序电压。

对于大型发电机要求装设反应100%定子绕组的单相接地保护。零序电压将随着故障点位置的不同而不同,越靠近中性点,零序电压就越小,在中性点短路时零序电压等于零;越靠近机端,零序电压越大,在机端短路时,零序电压等于额定电压。

利用三次谐波构成的接地保护就可以保护由中性点起,定子绕组50%范围以内的故障,并且当故障点越靠近中性点,保护的灵敏性就越高。

负序电流产生的原因:当电力系统发生不对称故障或在正常运行情况下三相负荷不平衡,在发电机定子绕组中将流过负序电流。

发电机负序过电流保护实际上是对定子绕组电流不平衡而引起转子过热的一种保护。

发电机励磁回路接地保护:励磁回路一点接地检查装置,直流电桥式发电机励磁回路一点接地保护。

母线电流差动保护:1)母线完全电流差动保护2)不完全电流母线差动保护3)电流比相式母线保护。

电流比相式母线保护原理:电流比相式母线保护的基本原理是根据母线在内部故障和外部故障时,各连接元件电流相位的变化来实现的。母线上发生故障时,所有和电源连接的元件都向故障点供应短路电流,在理想条件下,所有供电元件的相位相同。而在正常运行或母线外部故障时,至少有一个元件的电流相位和其余元件的电流相位相反,流入母线的和流出母线的电流相位相反。

母联电流相位比较式母线差动保护工作原理:是基于比较母联断路器回路中电流相位和母线完全电流总差动回路中电流相位来选择故障母线的。

220KV及以上电压等级的电力网中,以及110KV电力网的个别重要部分,应按下列原则装设一套失灵保护:1)线路或电力设备的后备保护采用近后备方式时,主保护拒动由另一套保护实现后备保护,断路器拒动由断路器失灵保护实现后备。2)如断路器和电流互感器之间发生故障不能有该回路主保护切除形成保护死区,而其他线路或变压器后备保护切除又扩大停电范围,并引起严重后果,需装设失灵保护3)对220KV以上分相操作的断路器,可仅考虑单相拒动的情况,按单相接地故障来校验其灵敏度。

继电保护知识点的总结

继电保护知识点的总结 电力系统中常见的故障类型和不正常运行状态 1.故障:短路(最常见也最危险);断线;两者同时发生 2.不正常:过负荷;功率缺额而引起的频率降低;发电机突然甩负荷而产生的过电压;振荡 3.继电保护在电力系统发生故障或不正常运行时的基本任务和作用: 迅速切除故障,减小停电时间和停电范围指示不正常状态,并予以控制 4.继电保护的基本原理 利用电力系统正常运行与发生故障或不正常运行状态时,各种物理量的差别来判断故障或异常,并通过断路器将故障切除或者发出告警信号 5.继电保护装置的三个组成部分 1)测量部分:给出“是”、“非”、“大于”等逻辑信号判断保护是否启动 2)逻辑部分:常用逻辑回路有“或”、“与”、“否”、“延时起动”等,确定断路器跳闸或发出信号 3)执行部分 6.保护的四性 1)选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽量减少 2)速动性:继电保护装置应尽可能快的断开故障元件。 3)灵敏性:继电保护装置应尽可能快的断开故障元件。故障的切除时间等于保护装置和断路器动作时间之和 4)可靠性:在保护装置规定的保护范围内发生了它应该反映的故障时,保护装置应可靠地动作(即不拒动,称信赖性)而在不属于该保护装置动作的其他情况下,则不应该动作(即不误动,称安全性)。 7.主保护、后备保护 1)保护:被保护元件发生故障故障,快速动作的保护装置 2)后备保护:在主保护系统失效时,起备用作用的保护装置 3)远后备:后备保护与主保护处于不同变电站 4)近后备:主保护与后备保护在同一个变电站,但不共用同一个一次电路。 8.继电器的相关概念: 1)继电器是测量和起动元件 2)动作电流:使继电器动作的最小电流值 3)返回电流:使继电器返回原位的最大电流值 4)返回系数:返回值/动作值

继电保护距离保护特性原理说明

三电网距离保护 1距离保护基本原理与构成 1.距离保护的概念 短路时,电压电流同时变化,测量到电压与电流的比值就反映了故障点到保护安装处的距离, 短路时:电流增大、电压变小、 阻抗与电流的关系:故障点与保护安装处越近,阻抗越小,短路电流越大。 阻抗与距离的关系:阻抗与距离成正比,阻抗的单位是欧姆/公里。 距离保护与电流保护的关系:电流保护的范围与距离保护的范围大致相同,电流保护的范围就是用距离来衡量的,电流的保护范围实际反映的是距离的范围。距离与电流是统一的。但是,电流保护只用电流值来判断是否故障,距离保护使用电压、电流2个物理量来判断,因此,距离保护更准确。 2.测量阻抗、负荷阻抗、短路阻抗、整定阻抗、动作阻抗概念辨析? 负荷阻抗:正常运行条件下,额定电压与负荷电流的比值; 短路阻抗:短路发生后,保护安装处的残压与流过保护的短路电流的比值(线路的阻抗值);短路阻抗总小于负荷阻抗。 测量阻抗:继电器测量到的电压除以电流,得到的阻抗值;正常运行时,测量阻抗就是负荷阻抗,短路时,测量阻抗就是短路阻抗。测量阻抗能反应出运行状态。整定阻抗:能使继电器动作的最大阻抗,是一个定值。测量阻抗小于整定阻抗,继电器就动作。阻抗继电器是一个欠量继电器,电流继电器是过量继电器,测量电流大于整定电流时动作。这是一对对偶关系。 动作阻抗:阻抗继电器动作时,测量到的阻抗值。比如:人为设置整定阻抗是20Ω,只要测量到的阻抗值小于20就可以动作,今天动作了一次,一查故障记录,动作阻抗是10Ω,说明动作准确无误。 3.一次阻抗、二次阻抗区别? 这里要对比一次电流和二次电流的概念,道理是一样的。

一次阻抗:一次电压与一次电流的比值, 二次阻抗:二次电压与二次电流的比值, 4.测量阻抗角、负荷阻抗角、短路阻抗角、整定阻抗角、动作阻抗角概念辨析测量阻抗角:测量电压与测量电流的夹角 负荷阻抗角:负荷电压与负荷电流的夹角 短路阻抗角:短路电压与短路电流的夹角 动作阻抗角:继电器动作时,加入继电器的电压与电流的夹角。 整定阻抗角:能够使保护动作的最大灵敏角,这是人为设置的,其余都是测量到的。 5.距离保护的原理 与电流保护一样,需要满足选择性要求,分正方向动作和反方向不动作, 正方向的时候,还判断测量阻抗值,区内动作,区外不动作。 6.测量阻抗怎么表示? 测量阻抗是保护安装处测量的电压与测量电流之比。电压和电流都是向量,带方向的。 阻抗是一个复数,可以用极坐标表示或者用直角坐标表示。 7.测量阻抗在短路前后的差别 短路前:测量到的为负荷阻抗,Z=U/I,负荷电流比短路电流小,额定电压比短路残压高,所以,负荷阻抗值很大,阻抗角较小,功率因数不低于0.9,对应阻抗角不大于25.8度,以电阻性质为主。

电力系统继电保护复习知识点总结材料

第一章、绪论 1、电力系统运行状态概念及对应三种状态: 正常(电力系统以足够的电功率满足符合对电能的需求等)不正常(正常工作遭到破坏但还未形成故障,可继续运行一段时间的情况)故障(电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等故障) 2、电力系统运行控制目的: 通过自动和人工的控制,使电力系统尽快摆脱不正常运行状态和故障状态,能够长时间的在正常状态下运行。 3、电力系统继电保护: 泛指继电保护技术和由各种继电保护装置组成的继电保护系统。 4、事故: 指系统或其中一部分的正常工作遭到破坏,并造成对用户停电或少送电或电能质量变坏到不能允许的地步,甚至造成人身伤亡和电气设备损坏的事件。 5、故障: 电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等。 6、继电保护装置: 指能反应电力系统中电气设备发生故障或不正常运行状态,并动作与断路器跳闸或发出信号的一种自动装置。 7、保护基本任务: 自动、迅速、有选择性的将故障元件从电力系统中切除,使元件免于继续遭到损坏,保障其它非故障部分迅速恢复正常运行;反应电气设备的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。 8、保护装置构成及作用: 测量比较元件(用于测量通过被保护电力元件的物理参量,并与其给定的值进行比较根据比较结果,给出“是”“非”“0”“1”性质的一组逻辑信号,从而判断保护装置是否应启动)、逻辑判断元件(根据测量比较元件输出逻辑信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否该使断路器跳闸、发出信号或不动作,并将对应的指令传给执行输出部分)、执行输出元件(根据逻辑判断部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作) 9、对电力系统继电保护基本要求: 可靠性(包括安全性和信赖性;最根本要求;不拒动,不误动);选择性;速动性;灵敏性 10、保护区件重叠: 为了保证任意处的故障都置于保护区内。区域越小越好,因为在重叠区内发生短路时,会造成两个保护区内所有的断路器跳闸,扩大停电范围。 11、故障切除时间等于保护装置(0.06-0.12s,最快0.01-0.04s)和断路器动作时间(0.06-0.15,最快0.02-0.6)之和。 12、①110kv及以下电网,主要实现“远后备”-一般下级电力元件的后备保护安装在上级(近电源侧)元件的断路器处;②220kv及以上电网,主要实现“近后备”-,“加强主保护,简化后备保护” 13、电力系统二次设备: 对一次设备的运行状态进行监视、测量、控制和保护的设备。

机电一体化1-5作业解答

第一章作业解答 1、机电一体化系统包括那些关键技术?机电一体化系统发展趋势是什么? 答:机电一体化系统包括的关键技术有:机械技术,检测与传感技术,计算机与信息处理技术,自动控制技术,伺服驱动技术,系统总体技术。 机电一体化系统发展趋势是:1)智能化。模拟人类智慧,具有推理、逻辑思维、自主决策的能力。2)网络化。利用网络将各种独立的机电一体化系统联系起来。3)微型化。4)系统化、复合集成化。 2、试列举10种常见的机电一体化产品,并对其中一种分析其所构成的5大要素。 常见的机电一体化产品有:数控机床,机器人,全自动洗衣机,傻瓜照相机,自动物料搬运机,自动取款机,自动售货机,智能水表,电子调速器,智能冰箱等。(一般的洗衣机、冰箱、电风扇、电子秤、电脑、空调不是机电一体化产品,因为它们不包含机电一体化系统所包括的6项关键技术及5个构成要素。) 第二章作业解答 1、机电一体化系统对机械部分的要求是什么? 答:机电一体化机械系统除了应具备普通机械系统的要求外,还有如下要求:1)高精度;2)快速响应性,即,机械系统从接到指令到执行指令任务的时间应短;3)稳定性要好。 2、齿轮传动为何要消除齿侧间隙? 答:机电一体化系统对机械部分的要求是必须具备高精度,以满足自动控制的需要。消除齿轮的齿侧间隙就是为了保证双向传动精度。 3、滚珠丝杠副轴向间隙对传动有何影响?采用什么办法消除它? 答:滚珠丝杠副轴向间隙影响反向传动精度。消除滚珠丝杠副轴向间隙通常采用的方法有:1)采用双螺母结构调整两螺母轴向相对位置实现预紧消除间隙。具体措施有:垫片调隙,螺纹预紧调隙,齿差预紧调隙等方式。2)采用单螺母结构用增大钢球直径的方式实现预紧以消除间隙。

继电保护的概念

继电保护的概念:继电保护是由继电保护技术和继电保护装置组成的一个系统 继电保护装置:能够反应系统故障或不正常运行,并且作用于断路器跳闸或发出信号的自动装置 继电保护的任务和作用: 1当电力系统发生故障时,自动,迅速,有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障元件迅速恢复正常运行。2反应电气元件的不正常运行状态,并根据不正常运行的类型和电气元件的维护条件,发出信号,由运行人员进行处理或自动进行调整。3继电保护装置还可以和电力系统中其他自动装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。 继电保护在技术满足的四个基本要求:可靠性(可靠性包括安全性和信赖性),选择性(选择性是指保护装置动作时,应在可能最小的区间内将故障从电力系统中断开,最大限度的保证系统中无故障部分仍能继续安全运行),速动性,灵敏性。主保护:反应被保护元件上的故障,并能在较短时间内将故障切除的保护。 后备保护:在主保护不能动作时,该保护动作将故障切除。根据保护范围和装置的不同有近后备和远后备两种方式。 近后备:一般和主保护一起装在所要保护的电气元件上,只有当本元件主保护拒绝动作时,它才动作,将所保护元件上的故障切除。 远后备:当相邻元件上发生故障,相邻电气元件主保护或近后备保护拒绝动作时,远后备动作将故障切除。 选择性的保证:一是上级元件后备保护的灵敏度要低于下级元件后备保护的灵敏度,二是上级元件后备保护的动作时间要大于下级元件后备保护的动作时间。 继电保护的基本原理:利用被保护线路或者设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,启动逻辑控制环节,发出相应的跳闸脉冲或信号。 继电保护装置的组成:测量比较元件,逻辑判断元件,执行输出元件 动作电流:过电流继电器线圈中使继电器动作的最小电流I op。返回电流:继电器线圈中的使继电器由动作状态返回到起始位置的最大电流I re。 继电返回系数:K re=I re/I op 继电特性:无论启动和返回,继电器的动作都是明确干脆的,不可能停留在某一个中间位置 电磁型电压继电器:过电压K re<1 欠电压K re>1 中间继电器:通常用来增加接点数量和触电容量,以满足操作控制的需求,电流保护的中间继电器动作延时一般不小于0.06s或返回时限不小于0.4s (有小延时)。

继电保护知识要点

第一章绪论 —、基本概念 1正常状态、不正常状态、故障状态要求:了解有哪三种状态,各种状态的特征正常状态:等式和不等式约束条件均满足; 不正常运行状态:所有的等式约束条件均满足,部分的不等式约束条件不满足但又不是故障的工作状态 故障状态:电力系统的所有一次设备在运行过程中由于外力、绝缘老化、过电压、误操作、设计制造缺陷等原因会发生如短路、断线等故障。 2、故障的危害 要求:(了解,故障分析中学过) ①过短路点的很大短路电流和所燃起的电弧,使故障元件损坏。 ②短路电流通过非故障元件,由于发热和电动力作用,会使其的损坏或缩短其使用寿命。 ③电力系统中部分地区的电压大大降低,使大量的电力用户的正常工作遭到破坏或产生废 品。 ④破坏电力系统中各发电厂之间并列运行的稳定性,引起系统振荡,甚至使系统瓦解。 3、继电保护定义及作用(或任务) 要求:知道定义,明确作用。 定义:继电保护是继电保护技术与继电保护装置的总称 基本任务:①自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证无故障部分迅速恢复正常运行。 ②反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号或 跳闸。 4、继电保护装置的构成及各部分的作用 要求:构成三部分,哪三部分测量比较元件、逻辑判断元件、执行输出元件。 5、对继电保护的基本要求,“四性”的含义 要求:知道有哪四性,各性的含义 选择性:指电力系统发生故障时,保护装置仅将故障元件切除,而使非故障元件仍能正常运行,以尽量缩小停电范围。 速动性:是指尽可能快地切除故障。 灵敏性:在规定的保护范围内,对故障情况的反应能力。 可靠性:在保护装置规定的保护范围内发生了应该动作的故障时,应可靠动作,即不发生拒动;而在任何其他不该动作的情况下,应可靠不动作,即不发生误动作。 6、主保护、后备保护、近后备、远后备保护的概念 要求:什么是主保护、后备保护、近后备、远后备保护 主保护:指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。 后备保护:考虑到主保护或断路器可能拒动而配置的保护。 近后备:当电气元件的主保护拒动时,由本元件的另一套保护起后备作用。 远后备:当主保护或其断路器拒动时,由相邻上一元件的保护起后备作用。 第二章电网的电流保护 —、基本概念 1继电器的定义及类型

机电一体化考试试卷A卷

机电一体化考试试卷 A卷 一. 名词解释 1. 接口——机电一体化系统中各子系统之间进行物质、能量和信息传递与交换的联系部件。 2. 连续控制系统——信号在时间上是连续变化的系统。 3. 计算机控制系统——采用计算机作为控制器的控制系统即为计算机控制系统,又被称为离散控制系统。 5. 直流伺服系统——采用直流伺服电动机作为执行元件的伺服系统。 8. 同步调制——在改变正弦调制波的频率f的同时成正比的改变三角载波的频率f c,使载频比N保持不变,则称为同步调制。 9. 异步调制——在改变正弦调制波的频率f的同时,三角载波的频率f c的值保持不变,使载频波比N值不断变化,则称为异步调制。 11. 抗干扰技术——研究电子设备及系统抵抗外部和内部电磁干扰,保证其正常工作的具体措施。 12. 工业机器人——一种能自动定位控制、可重复编程的、多功能的、多自由度的操作机。能搬运材料、零件或操作工具,用以完成各种作业。 二. 填空 1. 接口的基本功能有三个,一是交换,通过接口完成信号模式或能量的统一,二是放大,达到能量的匹配,三是传递,遵循协调一致的时序,信号格式和逻辑规范将放大后的信号可靠.快速.精确地交换。 3. 在机电一体化系统中,机械结构主要用于执行机构、传动机构和支承部件,用以完成规定的动作;传递功率、运动和信息;起支承连接作用等。通常,它们是微机控制伺服传动系统的有机组成部分。 4. 对机电一体化系统中的机械传动系统建模一般分两步进行,首先把机械系统中各基本物理量折算到传动链中的某个元件上,然后,再根据输入量和输出量的关系建立它的数学模型。 6. 由于非线性摩擦的存在,机械系统在低速运行时,常常出现爬行现象,导致系统运行不稳定。爬行一般出现在某个临界转速以下,而在高速运行时并不出现。 7. 惯量的适当增大只有在改善低速爬行时有利。因此,机械设计时,在不影响系统刚度的条件下,应尽量减小惯量。 10. 一般来说,伺服系统的基本组成可包括控制器、功率放大器、执行机构和检测装置等四大部分。 11. 常用的伺服电动机有直流伺服电动机、交流伺服电动机、步进电动机三种。 14. 若系统的输出量为速度,将此速度反馈到输入端,并与输入量比较,就可以实现对系统的速度控制,这种控制系统称为速度伺服控制系统。 17. 单片微计算机是将CPU 、RAM 、ROM 、定时/计数、多功能I/O(并行、

继电保护知识点总结

1、电保护装置的概念和基本任务:继电保护装置指能反应电力系统中电器元件发生故障或不正常运行状态并动作断路器跳闸或着发出信号的一种自动装置。 基本任务:自动迅速有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行;反应电器元件的不正常运行状态,并根据运行维持条件而动作与发出信号减负荷或跳闸。 2、继电保护装置是由:测量部分,逻辑部分,执行部分组成 3、保护的四性及含义:1选择性:指电力系统中有故障时,应由距离故障点最近的保护装置动作,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中非故障部分继续安全运行。2速动性:快速切除故障,提高电力系统并联运行的稳定性,减少用户在电压降低情况下工作的时间,以及缩小故障元件的损坏程度。3灵敏性:对其保护范围内发生故障或不正常运行状态的反应能力。4可靠性:指在该保护装置规定的保护范围内发生了它应该动作的故障时,他不应该拒绝动作,而在任何其他该保护装置不应该动作的情况下,则不应该误动作。 过电流继电器的技术参数 5继电器能够动作的条件:Me ≥Mth+Mf,满足这个条件并能使保护装置动作的最小电流值称为保护装置的动作电流(起动电流)Ik ’act 继电器能够返回的条件:Me ≤Mth-Mf ,满足这个条件并能使保护装置返回原位的最大电流值称为返回电流Ik ’re 返回电流与动作电流的比值称为返回系数Kre ,在实际应用中,常常要求过电流继电器有较高的返回系数,如0.85~0.9。 6概念:最大运行方式:短路时流过保护装置处电流最大(系统阻抗最小)的运行方式 最小运行方式:短路时流过保护装置处的电流最小(系统阻抗最大)的运行方式 应用:最大运行方式应用于电流保护的整定计算 最小运行方式应用于电流保护的灵敏度校验 在最大运行方式下三相短路时的电流I 3k ’max 在最小情况下两相短路I 2k ’min ()k s k Z Z E I +=? 3()k s k Z Z E I +?=?232 六、功率方向继电器的工作原理 因为在正方向短路时,电流落后于电压的角度为锐角,在反方向短路时为钝角,所以利用判别短路功率的方向或电流、电压之间的相位关系,就可以判断发生故障的方向。 1、相间短路方向继电器接线方式 900接线的定义:在三相对称情况下,当cos φ=1时,加入继电器的电流I A 和电压U BC 相位相差900。最大灵敏角:功率方向继电器输入电压电流幅值不变,并且输出量最大时两者的相位差称为最大灵敏角。 助增:使故障线路电流增加的现象;外汲:是故障电路电流见效的现象;分支系数K br :通过故障线路的电流与通过上一级保护所在线路的电流的比值 对于方向性过电流保护,何种情况下必须加方向原件?何种情况下可以考虑不加方向元件? 1所有负荷支路可不装2电流I 段中,保护反方向短路时,若流过保护的短路电流大于保护整定值,必装,反之可不装。双端电源情况下,整定值小的一侧必装,大的一侧可不装。 3电流II 段中,保护反方向线路的电流I 段保护范围末端以外发生短路时,若流过保护的短路电流大于保护整定值,必装,反之可不装。双端电源情况下,整定值小的一侧必装,大的一侧可不装。4电流III 段中,动作时限唯一最长比其他保护动作时限长△t 以上的保护可不装,其余有源支路必装。 7纵联保护的三种信号:闭锁信号,允许信号,跳闸信号 8相差高频保护原理: 1高频通道传送什么信号?间断的还是连续的? 闭锁信号,连续的 内部故障且伴随通道破坏时,保护是否会拒动或者误动? 收不到闭锁信号不会拒动,但收不到允许信号会拒动 高频闭锁方向保护的工作原理 1通道传送什么信号?有那测的发信机发送? 外部故障时发迅机发闭锁信号;此闭锁信号由短路功率方向为负的一端发出,这个信号被两端的收信机接收,而将保护闭锁。 2内部故障且伴随通道破坏时,保护是否会拒动或者误动? 不会因为内部故障时正好不需要高频通道,只有外部故障时才需要高频通道来传输闭锁信号。 10高频闭锁方向保护通道传送闭锁信号:由非故障侧发送,在内部故障及通道损坏时,保护不会动。 9.双侧电源网络中必须加入方向元件,单侧电源网络中可以考虑不加入方向与元件。 1中性点接地方式:大电流接地方式(中性点直接接地、中性点经小电阻接地) 小电流接地方式(中性点不接地、中性点经消弧线圈接地) 2 我国规定110kv 及以上电压等级的系统采用中性点直接接地方式,35kv 及以下的系统采用中性点不接地或经消弧线圈接地 3中性点有效接地时零序分量的特点: (1)故障点的零序电压最高,离故障点越远零序电压越低,到变压器接地的中性点处为零。(2)零序电流的分布主要决定于线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关。当变压器中性点不接地时,零序电流将变为零。 (3)零序功率的正方向与正序的相反,即由故障点指向母线。 (4)保护安装处的零序电压与零序电流的相位差,只取决于保护安装处背后变压器的零序阻抗而与被保护线路的零序阻抗和故障点的位置无关。 4零序III 段的保护整定原则:原则是按照躲开在下一条线路出口处相间短路时最大不平衡电流 来整定,引入可靠系数Krel ,即为 同时还必须要求各保护之间在灵敏系数上相互配合。 5 中性点不接地系统单相接地故障的特点: 在发生单相接地时,全系统都将出现零序电压; 在非故障的元件上有零序电流,其数值等于本身的对地电容电流之和,电容性无功功率的实际方向为母线流向线路; 在故障线路上,零序电流为除本线路外全系统非故障元件对地电容电流之和,数值一般较大,电容性无功功率的实际方向为线路流向母线。 6 中性点不接地系统中单相接地保护:绝缘监视装置,零序电流保护,零序方向保护、 7全补偿:电感电流=电容电流 过补偿:电感电流>电容电流,补偿后残余电流为电感性。 欠补偿:电感电流<电容电流,补偿后接地电流为电容性。 1 单侧电源线路上过渡电阻的影响:短路点的过渡电阻Rt 总是使继电器的测量阻抗增大,使保护范围缩短。 双侧电源线路上过渡电阻的影响:短路点的过渡电阻还可能使某些保护的测量阻抗减少。 2过渡电阻对不同动作特性阻抗继电器的影响:阻抗继电器的动作特性在R 轴正方向所占面积越大则受过渡电阻Rt 的影响越小。 4振荡中心:从原点作直线 的垂线所得的矢量最短,垂足Z 点所代表的输电线上那一点在振荡角度 下的电压最低,该点称为系统在振荡角度为 时的电气中心或振荡中心。 5振荡对不同动作特性阻抗继电器的影响:一般而言,继电器的动作特性在阻抗平面上沿 方向所占面积越大,受振荡的影响就越大。 6 助增使距离II 段保护测量阻抗增大,外汲使安装处测量阻抗减小。 7 为保证保护II 与保护I 之间的选择性,就应该按Kbr 为最小运行方式来确定保护2距离II 段的整定值,使λ不超过保护1距离Ⅰ段的范围 距离Ⅲ的整定原则:躲过正常运行的最小符合阻抗

继电保护知识点总结

电力系统中常见的故障类型和不正常运行状态 故障:短路(最常见也最危险);断线;两者同时发生 不正常:过负荷;功率缺额而引起的频率降低;发电机突然甩负荷而产生的过电压;振荡 继电保护在电力系统发生故障或不正常运行时的基本任务和作用。 迅速切除故障,减小停电时间和停电范围 指示不正常状态,并予以控制 继电保护的基本原理 利用电力系统正常运行与发生故障或不正常运行状态时,各种物理量的差别来判断故障或异常,并通过断路器将故障切除或者发出告警信号 继电保护装置的三个组成部分。 测量部分:给出“是”、“非”、“大于”等逻辑信号判断保护是否启动 逻辑部分:常用逻辑回路有“或”、“与”、“否”、“延时起动”等,确定断路器跳闸或发出信号 执行部分 保护的四性 选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽量减少速动性:继电保护装置应尽可能快的断开故障元件。 灵敏性:继电保护装置应尽可能快的断开故障元件。故障的切除时间等于保护装置和断路器动作时间之和 可靠性:在保护装置规定的保护范围内发生了它应该反映的故障时,保护装置应可靠地动作(即不拒动,称信赖性)而在不属于该保护装置动作的其他情况下,则不应该动作(即不误动,称安全性)。 主保护、后备保护 保护:被保护元件发生故障故障,快速动作的保护装置 后备保护:在主保护系统失效时,起备用作用的保护装置。 远后备:后备保护与主保护处于不同变电站 近后备:主保护与后备保护在同一个变电站,但不共用同一个一次电路。 继电器的相关概念: 继电器是测量和起动元件 动作电流:使继电器动作的最小电流值 返回电流:使继电器返回原位的最大电流值 返回系数:返回值/动作值 过量继电器:返回系数Kre<1 欠量继电器:返回系数Kre>1 绩电特性:启动和返回都是明确的,不可能停留在某个中间位置 阶梯时限特性: 最大(小)运行方式: 在被保护线路末端发生短路时,系统等值阻抗最小(大),而通过保护装置的电流最大(小)的运行方式 三段式电流保护:由电流速断保护、限时电流速断保护及定时限过电流保护相配合构成的一整套保护 工作原理: 电流速断保护:当所在线路保护范围内发生短路时,反应电流增大而瞬时动作切

机电一体化复习材料(1)

第一部分复习要求 课程的有关内容主要按“了解、掌握和熟练掌握”三个层次要求,具体要求如下: 第一章绪论 第一节机电一体化的产生和发展 1.掌握机电一体化的基本概念和涵义 2.掌握机电一体化的发展趋势 第二节机电一体化的相关技术 1.掌握机电一体化的相关技术及其内容 第三节典型机电一体化系统 1.掌握机电一体化系统的基本功能要素 2.掌握有关控制系统的分类及其概念 3.了解机电一体化产品和系统的分类 第四节机电一体化系统设计简介 1.掌握拟定机电一体化系统设计方案的常用方法及其适用场合 2.掌握机电一体化系统(产品)设计的类型 3.掌握机电一体化系统设计的概念、基本原则 4.掌握系统设计的过程,现代设计方法的步骤 5.了解机电一体化系统(产品)开发的工程路线 第二章机械传动与支承技术 第一节机械传动系统数学模型的建立

1.掌握数控机床进给传动系统建模的步骤、方法 第二节机械结构因素对伺服系统性能的影响 1.掌握阻尼、摩擦、结构弹性变形、惯量及间隙对伺服系统性能的影响 第三节机械传动 1.掌握机电一体化系统对机械传动的要求 2.掌握总传动比的确定 3.掌握传动链的级数和各级传动比的分配原则和方法 4.掌握各种机械传动装置的特点 第四节支承部件 1.掌握机电一体化系统对支承部件的要求 2.了解机电一体化系统中常见的轴承及其特点 3.掌握常用导轨及其特点 4.掌握机身的特点及结构设计主要考虑的因素 第三章伺服传动技术 第一节概述 1.掌握伺服系统的结构组成及分类 2.了解伺服电动机应符合的基本要求、各种伺服电动机的特点及应用场合 3.了解功率放大器的种类 第二节直流伺服系统 1.了解直流伺服系统的各组成环节及其工作原理

继电保护 带答案

§1-1电力系统基本概念1、电力系统是由发电厂、变电所、送电线路、配电线路、()组成的整体。 A.变压器 B.断路器 C.继电保护 D.电力用户 2、电力网主要由()组成。 A.送电线路 B.变电所 C.配电所 D.配电线路 3、无限大容量系统的特征为()。 A.当被供电系统中负荷变动甚至发生故障,电力系统母线电压应维持不变,频率不作要求 B.当被供电系统中负荷变动甚至发生故障,电力系统母线频率应维持不变,电压不作要求 C.当被供电系统中负荷变动甚至发生故障,电力系统母线电压及频率基本维持不变 D.当被供电系统中负荷变动甚至发生故障,电力系统母线电压及频率不作要求 4、低压配电网中所有设备的外露可导电部分均接公共保护线PE,或接公共保护中性线PEN的系统称为()。 TN系统 B.TT系统 C.IT系统 5、电力网主要由送电线路、变电所、配电所和配电线路组成。( V ) 6、电力系统中联系发电机与主变压器的中间环节称为电力网。(X )用户 7、电力系统中作为联系发电厂与用户的中间环节,具有汇集电能和分配电能、变换电压和交换功率等功能的称为()。 A.变电站 B.变压器 C.发电厂 D.断路器 8、变电站中()属于一次设备。 A.变压器 B.断路器 C.继电保护 D.避雷器 E.电压互感器 F.隔离开关 9、从输电网或地区发电厂接受电能,通过配电设施将电能分配给用户的电力网称为输电网。( X )配电网 10、隔离开关没有灭弧机构,不允许切断和接通负荷电流。( V ) 11、隔离开关是将电气设备与电源进行电气隔离或连接的设备。( V ) 12、变电站主接线图一般用单线图表示。( V ) 13、变电站中将交流一次侧大电流转换成二次电流,供给测量、保护等二次设备使用的电气设备是()。 A.变压器 B.电压互感器 C.电流互感器 D.母线 14、变电站中将交流一次侧高电压转换成二次电压,供给控制、测量、保护等二次设备使用的电气设备是()。 A.变压器B.电压互感器C.电流互感器D.断路器 15、变电站中将交流一次侧高电压转换成二次电压,供给控制、测量、保护等二次设备使用的电气设备是电流互感器。(X )电压 16、电力系统中性点运行方式是指电力系统中发电机或变压器的中性点的接

继电保护知识要点

继电保护知识要点 基本元件 电流互感器:不能开路,误差来自励磁电流 Z 2↑→误差↑, 一次电流I 1↑→误差↑ 构成滤序器或差动保护时电流互感器励磁特性的差异形成了不平衡电流 电压互感器:不能短路,误差一般不考虑 电流变换器:I 1→I 2 电压变换器:U 1→U 2 电抗变压器:I 1→U 2,U 2=Z K I 1,转移阻抗Z K 的大小由铁芯气隙决定,角度由 附加绕组上的电阻调整。 *滤序器作用:零序、负序滤序器(目前继电保护均采用微机保护,以软件实现滤序器) 电流保护 主保护:电流速断(Ⅰ段)、限时电流速断(Ⅱ段) 电流速断保护 保护区不得伸出本线范围,整定时躲过本线末最大短路电流 不能保护本线全长,保护区随运方变化而变化 运方变小→保护区缩短,整定值增大→保护区缩短 选择性由电流整定值保证。 限时电流速断保护 保护区伸出本线范围,应与下线Ⅰ段保护配合 时间配合:t Ⅱ=t Ⅰ+?t =?t 电流整定值配合:保证时间配合有意义 保护区不伸出下线Ⅰ段保护范围 整定电流躲过下线Ⅰ段动作电流 选择性由整定时间和电流整定值共同保证。 能否保护本线全长需进行灵敏度校验K sen = > 后备保护:(定时限)过电流保护(Ⅲ段) 作为下线主保护的远后备保护以及本线主保护的近后备保护 选择性由阶梯时间特性保证,电网末端为起点 电流整定原则:正常时不起动,外部故障切除后可靠返回 问题:快速段不能保护本线全长,保护区随运方、短路类型变化, 不能用于双电源线路,最常见的短路类型――单相接地故障时K sen 低 *电流保护接线方式及接线系数 一般电流保护用于35kV 及以下电压等级,单相接地时没有短路电流、继电保护仅发信号,可以采用两相不完全星形接线;当线路未装设零序电流互感器而又需要零序电流供给小电流选线装置时,可以采用三相完全星形接线,在微机保护内部由软件合成零序电流。 方向电流保护 电流保护用于双电源线路时会导致Ⅰ、Ⅱ段灵敏度下降甚至丧失,使Ⅲ段失去选择性。 对策:加方向元件,当故障方向由母线指向线路时接点闭合,起动保护。 方向元件根据母线电压与线路电流相位关系判别故障方向 U I 反向故障 夹角大于90o U I 正向故障 夹角小于90o

机电一体化基础知识考试复习总结

第一章绪论 ●机电一体化是指机械装置和电子设备适当地组合起来,构成机械产品或机电一体与机信一体的新趋势。 ●机电一体化是把机械学和电子学有机地结合起来,提供更加优越技术的一种技术。 ●机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。机电一体化的目的是使产品具有多功能、高效率、高智能、高可靠性,同时又能节省材料、省能源,使产品向轻、薄、细、小、巧的方向发展,以不断满足人们生活的多样化要求和生产的省力化,自动化需求。 机电一体化基本结构要素:

1.机械本体包括机身、框架机械联接等在内的产品支持结构属于基础部分,实现产品的构造功能。 2.动力源向系统提供能量,并将输入的能量转换成需要的形式,实现动力功能。 3.检测与传感装置包括各种传感器及其信号检测路,用于对产品运行时的内部状态和外部环境进行检测,提供运行控制所需的各种信息,实现计测功能。4.控制与信息处理装置主要是指由计算机及其相应硬、软件所构成的控制系统。 5.执行机构包括机械传动与操作机构,在控制信息作用下完成要求的动作,实现产品的主功能。是机电一体化产品中最重要的组成要素之一。 机电一体化产品可划分为功能附加型、功能替代型和机电融合型三类。1.功能附加型产品:主要特征是在原有机械产品基础上,采用微电子技术,使产品功能增加和增强,性能得到适当的提高。经济型数控机床、电子秤、数显量具、全自动洗衣机等都属于这一类机电一体化产品。 2.功能替代型产品:主要特征是采用电子技术及装置取代原产品中的机械控制功能、信息处理功能或主功能,使产品结构简化,性能提高。柔性增加,如电子缝纫机、自动照相机等用微电于装置取代了原来复杂的机械控制机构;线切割加工机床、激光手术器等则用因微电子技术的应用而产生的新功能,取代了原来机械的主功能。

35kV输电线路继电保护设计92146

本科课程设计 课程名称:电力系统继电保护原理 设计题目:35kV输电线路继电保护设计

摘要 力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统围,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护、整定计算、故障分析、设计原理

目录 1.1继电保护的作用 (5) 1.1.1继电保护的概念及任务 (5) 1.2继电保护的基本原理和保护装置的组成 (5) 1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构 成的原理(单端测量原理,也称阶段式原理) (5) 1.2.2 反应电气元件部故障与外部故障(及正常运行)时两端所测电流相位和功率 方向的差别而构成的原理(双端测量原理,也称差动式原理) (6) 1.2.3保护装置的组成部分 (6) 1.3对电力系统继电保护的基本要求 (7) 1.3.1选择性 (7) 1.3.2速动性 (7) 1.3.3灵敏性 (8) 1.3.4可靠性 (8) 1.4继电保护技术发展简史 (8) 2.35KV线路故障分析 (9) 2.1常见故障分析 (9) 2.1.1相间短路 (9) 2.1.2接地短路 (9) 3、35KV线路继电保护的配置 (9) 4.电网相间短路的电流保护 (10) 4.1瞬时电流速断保护 (10) 4.1.1 瞬时电流速断保护的工作原理 (10) 4.1.2原理接线 (11) 4.1.3瞬时电流速断保护的整定计算 (12) 4.2限时电流速断电流保护 (15) 4.2.1限时电流速断保护的工作原理 (16) 4.2.2 限时电流速断保护的整定计算 (16) 4.2.3 限时电流速断保护的单相原理接线 (19) 4.3定时限过电流保护 (19) 4.3.1定时限过电流保护的工作原理 (19) 4.3.2定时限时电流保护的整定计算 (21) 4.3.3 定时限过电流保护的灵敏度校验和保护动作时间 (21) 5:致 (23) 6:参考文献 (23)

常见继电保护类型及原理

A、过电流保护---是按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。为使上、下级过电流保护能获得选择性,在时限上设有一个相应的级差。 B、电流速断保护---是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。 过电流保护和电流速断保护常配合使用,以作为设备或线路的主保护和相邻线路的备用保护。 C、定时限过电流保护---在正常运行中,被保护线路上流过最大负荷电流时,电流继电器不应动作,而本级线路上发生故障时,电流继电器应可靠动作;定时限过电流保护由电流继电器、时间继电器和信号继电器三元件组成(电流互感器二次侧的电流继电器测量电流大小→时间继电器设定动作时间→信号继电器发出动作信号);定时限过电流保护的动作时间与短路电流的大小无关,动作时间是恒定的。(人为设定) D、反时限过电流保护---继电保护的动作时间与短路电流的大小成反比,即短路电流越大,继电保护的动作时间越短,短路电流越小,继电保护的动作时间越长。在10KV系统中常用感应型过电流继电器。(GL-型) E、无时限电流速断---不能保护线路全长,它只能保护线路的一部分,系统运行方式的变化,将影响电流速断的保护范围,为了保证动作的选择性,其起动电流必须按最大运行方式(即通过本线路的电流为最大的运行方式)来整定,但这样对其它运行方式的保护范围就缩短了,规程要求最小保护范围不应小于线路全长的15%。另外,被保护线路的长短也影响速断保护的特性,当线路较长时,保护范围就较大,而且受系统运行方式的影响较小,反之,线路较短时,所受影响就较大,保护范围甚至会缩短为零。 ②、电压保护:(按照系统电压发生异常或故障时的变化而动作的继电保护) A、过电压保护---防止电压升高可能导致电气设备损坏而装设的。(雷击、高电位侵入、事故过电压、操作过电压等)10KV开闭所端头、变压器高压侧装设避雷器主要用来保护开关设备、变压器;变压器低压侧装设避雷器是用来防止雷电波由低压侧侵入而击穿变压器绝缘而设的。 B、欠电压保护---防止电压突然降低致使电气设备的正常运行受损而设的。 C、零序电压保护---为防止变压器一相绝缘破坏造成单相接地故障的继电保护。主要用于三相三线制中性点绝缘(不接地)的电力系统中。零序电流互感器的一

继电保护原理概念汇总

继电保护原理概念汇总 利用故障时电气量的变化特征,可以构成各种作用原理的继电保护。例如,根据短路故障时电流增大,可构成电流速断保护和过电流保护;根据短路故障时电压降低,可构成低电压保护和电压速断保护;根据短路故障时电流与电压之间相角的变化,可构成功率方向保护;根据电压与电流比值的变化,可构成距离保护;根据故障时被保护元件两端电流相位和大小的变化,可构成差动保护;根据不对称短路故障出现的相序分量,可构成灵敏的序分量保护。上述保护还可构成更为复杂的继电保护,例如,将过电流保护与方向保护组合,构成方向电流保护。此外,除了反应各种电气量的保护外,还有反应非电气量的保护,如电力变压器的瓦斯保护和过热保护等。 一、电网相间短路的电流电压保护 根据电流整定值选取的原则不同,电流保护可分为无时限电流速断保护、带时限电流速断保护和定时限过电流保护三种。 1、无时限电流速断保护 根据电力系统对继电保护的要求,可以使电流保护的动作不带时限(只有继电器本身固有动作时间),构成瞬动保护,为了保证动作的选择性,采取动作电流按躲过被保护线路外部短路时最大短路电流来整定。这种保护装置称为无时限电流速断保护(又被称为第Ⅰ段电流保护或瞬动Ⅰ段电流保护)。无时限电流速断保护不能保护线路全长,它存在线路末端保护死区。无时限电流速断保护动作电流值最大。 2、带时限电流速断保护 由于无时限电流速断保护不能保护线路全长,其保护范围外的故障必须由另外的保护来切除。为了保证速动性的要求,用尽可能短的时限来切除该部分的故障。可增设第二套保护,即II段电流速断保护。为了获得选择性,II段电流速断保护必须带时限,以便和相邻的I 段电流速断保护相配合,通常所带时限只比无时限电流速断保护大一个或两个时限级差Δt,所以称它为带时限电流速断保护。带时限电流速断保护范围包括本线路全长和相邻线路一部分,但不会超过相邻线路的无时限电流速断保护和降压变压器电流速断保护的保护范围。带时限电流速断保护动作电流值相比无时限电流速断保护要小得多。 3、定时限过电流保护 定时限过电流保护(简称过电流保护),即电流保护的第III段。它的动作电流按照躲过最大负荷电流来整定,并以时限来保证动作的选择性。它不仅能保护本线路全长,而且也能保护相邻线路的全长,不仅可作本级线路的近后备保护,还可作为相邻线路的远后备保护。如果故障越靠近电源侧,则短路电流越大,而电流保护的动作切除故障的时间越长,这是定时限过电流保护的主要缺点。所以,在电力系统电流保护中采用电流速断保护或带时限电流速断保护作为本级线路的主保护,采用过电流保护作为本级线路的近后备保护,作为相邻线路的远后备保护。 二、电力系统的接地保护 我国电力系统中采用的中性点接地方式,通常有中性点直接接地方式、中性点经过消弧线圈接地方式和中性点不接地方式三种。一般110KV及其以上电压等级的电力系统都采用中性点直接接地方式,3—35KV的电力系统都采用中性点不接地或者经过消弧线圈接地的方式。中性点直接接地电力系统中发生单相接地故障时,因中性点直接接地,在故障相中流过很大的短路电流,所以这种电力系统又称为大接地电流电力系统。而中性点不直接接地(包括中性点经过消弧线圈接地)系统当发生单相接地故障时,由于不构成短路回路,接地故障

继电保护知识点汇总

继电保护知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

电力系统中常见的故障类型和不正常运行状态 故障:短路(最常见也最危险);断线;两者同时发生 不正常:过负荷;功率缺额而引起的频率降低;发电机突然甩负荷而产生的过电压;振荡 继电保护在电力系统发生故障或不正常运行时的基本任务和作用。 迅速切除故障,减小停电时间和停电范围 指示不正常状态,并予以控制 继电保护的基本原理 利用电力系统正常运行与发生故障或不正常运行状态时,各种物理量的差别来判断故障或异常,并通过断路器将故障切除或者发出告警信号 继电保护装置的三个组成部分。 测量部分:给出“是”、“非”、“大于”等逻辑信号判断保护是否启动 逻辑部分:常用逻辑回路有“或”、“与”、“否”、“延时起动”等,确定断路器跳闸或发出信号 执行部分 保护的四性 选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽量减少速动性:继电保护装置应尽可能快的断开故障元件。 灵敏性:继电保护装置应尽可能快的断开故障元件。故障的切除时间等于保护装置和断路器动作时间之和 可靠性:在保护装置规定的保护范围内发生了它应该反映的故障时,保护装置应可靠地动作(即不拒动,称信赖性)而在不属于该保护装置动作的其他情况下,则不应该动作(即不误动,称安全性)。 主保护、后备保护 保护:被保护元件发生故障故障,快速动作的保护装置 后备保护:在主保护系统失效时,起备用作用的保护装置。 远后备:后备保护与主保护处于不同变电站 近后备:主保护与后备保护在同一个变电站,但不共用同一个一次电路。 继电器的相关概念: 继电器是测量和起动元件 动作电流:使继电器动作的最小电流值 返回电流:使继电器返回原位的最大电流值 返回系数:返回值/动作值 过量继电器:返回系数Kre<1 欠量继电器:返回系数Kre>1 绩电特性:启动和返回都是明确的,不可能停留在某个中间位置 阶梯时限特性: 最大(小)运行方式: 在被保护线路末端发生短路时,系统等值阻抗最小(大),而通过保护装置的电流最大(小)的运行方式 三段式电流保护:由电流速断保护、限时电流速断保护及定时限过电流保护相配合构成的一整套保护

相关主题
文本预览
相关文档 最新文档