表面工程学化学转化膜技术课件
- 格式:ppt
- 大小:1.59 MB
- 文档页数:68
化学转化膜
化学转化膜是金属(包括镀层金属)表层原子与介质中的阴离子发生反应,在金属表面生成附着力良好的隔离层,这层化合物隔离层称为化学转化膜。
转化膜的形成既可以是金属—介质之间的纯化学反应,也可以是电化学反应。
化学转化膜具有防护性、装饰性、导电性、抗蚀性、减磨性、密封性等功能,它的防护性能和装饰性能已被广大用户所认识。
随着科技的发展,对材料表面性能的要求越来越高,对表面防护层的性能要求也越来越高。
化学转化膜由于其优异的性能,越来越受到人们的重视。
第3章conversion film technology3.1 概述3.2化学转化膜3.3电化学转化膜3.4金属的着色与染色定义概念化学转化膜的性质和用途6一、钢铁的化学氧化原理Z 采用含有氧化剂(亚硝酸钠、硝酸钠、硝酸钾)与氢氧化钠的混合溶液,在一定时间、一定温度下对钢铁材料进行氧化处理,使氢氧化钠、硝酸钠以及亚硝酸钠与金属铁作用,生成铁酸钠和亚铁酸钠,再由铁酸钠与亚铁酸钠相互作用生成四氧化三铁氧化膜。
上述机理中不出现氢在微阴极上析出的还原反应,因此可以解释高强度钢在强碱性中化学氧化不会发生氢脆的现象化学氧化膜的性质工艺方法常见工艺配方皂化(后处理):肥皂30~50g/l,80~90℃,2~8min工艺流程:工艺方法工艺方法一、钢铁的化学氧化工艺方法工艺方法14工艺方法大帮助工艺流程:15常温化学发黑液配方及工艺条件常温化学发黑常见缺陷17二、铝及铝合金化学氧化Z 溶液成分:几乎都是碳酸钠为基本成分,添加碱金属的铬酸盐、硅酸盐、磷酸盐等Z 转化膜的成分:铝的水合化合物AlOOH 或Al2O3.H2O 等Z 工艺方法工艺流程特点及应用Z 化学氧化膜获得的氧化膜较薄、多孔、质软,力学性能和抗蚀性能均不如阳极氧化膜。
但在海水、过氧化氢、碱金属的硫酸盐、钙和锌的氯化物的溶液中,以定义:铬酸盐膜的组成和结构铬酸盐处理工艺22三、铬酸盐膜(钝化膜)影响铬酸盐膜质量的因素Z 三价铬的影响:三价铬有利于形成较厚的膜Z Cr 6+与SO42-的质量之比的影响:直接影响膜的颜色和厚度Z PH 值:PH 值达最佳时,才能得到较厚的铬酸盐膜Z 溶液温度:温度升高,膜的生成重量增加Z 干燥温度:低于50℃下干燥钢铁的磷化处理434242)(3)(PO H PO Me MeHPO PO H MeHPO PO H Me +===+===磷化膜的性质磷化膜的性质磷化膜的性能及应用磷化处理的方法一般工艺流程:脱脂→水洗→酸洗→水洗→磷化处磷化处理的溶液及工艺条件概念Z 概念221H e H →++阴极反应:电解液通电后发生电解阳极反应:↑+→−−O O H e OH 22442生成的部分新生(原子)氧与阳极铝反应,生成无水氧化铝热量O Al e O Al +→+++32363232一、铝及其合金的阳极氧化氧化膜的生长规律Z 无孔层形成:阳极氧化开始,表面即形成了一层厚度为0.01~0.1μm 的连续、致密、高绝缘性的氧化膜Z 多孔层形成:继续通电,氧化膜较薄处首先被击穿,形成多孔层Z 多孔层增厚:氧化超过一定时间,电压降至C 点,氧化膜的生成与溶解维持在一个基本恒定的值下进行,无孔层厚度不变,多孔层增厚铝合金阳极氧化方法硫酸法阳极氧化工艺影响氧化膜质量的因素影响氧化膜质量的因素影响氧化膜质量的因素阳极氧化膜的特性oxidation)原理42二、微弧阳极氧化原理Z 普通阳极氧化处于法拉第区,微弧氧化处于火花放电区中Z 当阳极氧化电压超过某一值时,表面初始生成的绝缘氧化膜补击穿,产生微区弧光放电,形成瞬间的超高温区域(200~800℃),在该区内氧化物或基底金属被熔融甚至气化,在与电解液接触反应中,熔融物激冷而形成非金属陶瓷层。
第7章 化学转化膜化学转化膜是金属或镀层金属表层原子与水溶液介质中的阴离子相互反应,在金属表面形成含有自身成分附着性好的化合物膜。
成膜的典型反应式如下:z m n m M nAM A nze -+→+ (7-1)式中,M 为与介质反应的金属或镀层金属;A z-为介质中价态为z 的阴离子。
转化膜是表层的基底金属直接与介质阴离子反应,形成基底金属化合物(M m A n )。
可见化学转化膜实际上是一种受控的金属腐蚀过程。
上述反应式中,电子可视为反应产物,转化膜的形成可以是金属与介质界面间的化学反应,也可以是施加外电源进行的电化学反应。
前者为化学法,后者为电化学法(阳极氧化)。
化学法时反应式产生的电子将传递给介质中的氧化剂。
电化学法时所产生的电子将传递给与外电源相接的阳极,以阳极电流形式脱离反应体系。
实际上,化学转化膜形膜过程相当复杂,存在着伴生或二次反应。
因此得到的转化膜的实际组成往往也不是按上式反应生成典型的化合物膜。
例如,钢铁件在磷酸盐溶液中进行磷化处理时,所得到磷化膜的主要组成是二次反应生成的产物,即锌和锰的磷酸盐。
尽管如此,考虑到化学转化膜形成过程的复杂性,以及二次反应产物也是金属基底自身转化的诱导才生成的,所以一般不再严格进行区分,都称为化学转化膜。
转化膜的形成方法大多是化学法,也可以用电化学法。
化学法是将金属在溶液中浸渍,通过化学反应形成转化膜,也可将溶液喷射于工件表面,通过化学反应成膜。
转化膜按它的组成物分为氧化物膜、硫化物膜、铬酸盐膜、磷酸盐膜和草酸盐膜。
电化学氧化法(阳极氧化法)是指工件作为阳极,在电解液中电化学处理,在金属表面形成10~20μm 稳定的转化膜的过程,也称电化学转化膜。
阳极氧化法可以大大提高铝及铝合金耐蚀耐磨性;可以改善外观,作为装饰用。
还能提高金属的热绝缘性和表层电阻,同时也可以作为油漆的底层。
转化膜用途十分广泛,可以分为:涂装底材用转化膜,塑性加工用转化膜,耐磨损用转化膜,防锈用转化膜,绝缘用转化膜和其他功用转化膜(如搪瓷底材用转化膜、装饰用转化膜)。
第十章转化膜技术第十章转化膜技术1转化膜技术通过化学或电化学手段,使金属表面形成稳定的化合物膜层氧化物膜磷酸盐膜金属着色膜铬酸盐膜转化膜同金属上别的覆盖层不同,它的生成必须有基体金属的直接参与,且自身转化为成膜产物,因此,膜层与基体具有很好的结合力。
通过化学作用在金属表面形成转化膜的过程称为化学转化;通过电化学作用形成转化膜的过程称为电化学转化,也叫阳极转化。
2钢铁的氧化钢铁在潮湿大气中,表面易形成铁锈。
由于它非常疏松并且易吸湿,因而促使潮湿的大气继续对钢铁进行腐蚀,直至破坏。
如果在钢铁表面上形成一层致密的磁性氧化铁(Fe3O4)薄膜,就能使钢铁具有一定的抗大气腐蚀能力,阻止钢铁表面生锈,还能起到表面装饰的作用。
为了对钢铁零件表面进行装饰防护,常采用在含氧化剂的浓碱溶液中进行化学处理的工艺,比使用其他方法更易实施————“碱性氧化”。
3高温碱性氧化工艺:将工件浸入含氧化剂的浓苛性钠溶液中,高温下进行氧化处理。
碱浓度高、温度高、能耗大、时间长、生产效率低。
常温发黑(发蓝)工艺:采用发黑剂,形成不溶性的化合物沉积于钢铁表面,形成黑色膜层。
节能、效率高、成本低。
钢铁件的氧化处理工艺简单,成本低,氧化过程不析氢,厚度一般为0.6-1.5 μm,常用在一般防护装饰领域。
56金属的磷化金属件经过一定的化学处理后,使金属件表面形成一层以难溶性磷酸盐为主要成分的化学转化膜。
磷化膜不耐热,不耐水,不耐酸碱,不导电,不导热,多孔结构。
工艺稳定可靠、成本相对低廉、操作简单。
能够大幅度提高金属表面上有机涂层的附着力和耐腐蚀性。
7磷化的分类:(1)根据磷化膜的成分不同:磷酸锌系、磷酸锰系、磷酸锌锰系、磷酸锌钙系、磷酸铁系等。
(2)根据磷化温度不同:高温磷化(80℃以上)、中温磷化(60 ~75℃) 、低温磷化(35℃~55℃) 、常温磷化(15 ~35℃)。
(3)按磷化方式不同:喷淋式、浸渍式、喷浸结合式、涂刷式。
(4)按磷化膜层的单位面积质量的不同:重量级(7.5g/m2 以上) 、中量级(4.5-7.5g/m2) 、轻量级(1.1-4.5g/m2) 、特轻量级(0.1-1.1g/m2)。