《生物技术概论》4酶工程
- 格式:ppt
- 大小:422.50 KB
- 文档页数:64
《生物技术概论》课程大纲课程代码:课程学分:2课程总学时:28适用专业:生物科学一、课程概述(一)课程的性质:生物技术概论是由一门多学科综合而成的边缘学科,包括了微生物学、生物化学、细胞生物学、免疫学和育种技术等几乎所有与生命科学有关的学科,特别是现代分子生物学的最新理论成就更是生物技术发展的基础。
本课程为农学专业本科学生开设的专业基础课,为后续专业课程学习打下基础。
(二)设计理念与开发思路:本课程的主要任务是:使学生熟悉生物技术的基本原理、技术和方法,了解生物技术在农业、食品、人类健康、能源及环境诸方面的作用和成果,认识生物技术对人类社会生活产生的深刻影响,进一步了解国内外生物技术发明创新保护与生物安全性政策微生物学是生物科学专业的主干课,是生物科学专业学生必须具备的基础知识。
二、课程目标通过本课程的学习,应使学生达到下列基本要求:1.认识生物技术的概念、种类及其对经济社会发展的影响;2.熟悉生物技术五大工程的原理、技术和方法;3.了解生物技术在农业及其它领域的应用和成果;4.了解国内外生物技术发明创新保护与生物安全性政策法规。
三、课程内容与要求(一)生物技术总论生物技术的含义、特点和特征;生物技术的发展史;生物技术各项技术的概念及其相互关系;生物技术的应用领域及其对人类社会发展的影响。
本章重点:生物技术的含义、特点和特征(六高特征),生物技术各项技术的概念,生物技术在社会、经济和人类生活中的重要性。
本章难点:生物技术各项技术之间的相互关系。
教学要求:通过课堂讲授,使学生理解生物技术的含义,明确生物技术的特点和特征,识记生物技术所包含的五大工程概念,了解生物技术包含的各工程之间的相互关系,进而使学生明确本课程学习的目的和重要性。
思考题:1.概念识记:生物技术基因工程细胞工程发酵工程酶工程蛋白质工程2.什么是生物技术,它包括哪些基本的内容?它对人类社会将产生怎么样的影响?3.现代生物技术作为一项高技术具有的“六高”特征是什么?4.为什么说生物技术是一门综合性学科,它与其他学科有什么关系?5.简要说明生物技术的发展史以及现代生物技术与传统生物技术的联系和区别。
名词解释1. 酶工程:又叫酶技术,是酶制剂的大规模生产和应用的技术。
2.自杀性底物:底物经过酶的催化后其潜在的反应基团暴露,再作用于酶而成为酶的不可逆抑制剂,这种底物叫自杀性底物??3.别构酶;调节物与酶分子的调节中心结合后,引起酶分子的构象发生变化,从而改变催化中心对底物的亲和力,这种影响被称为别构效应,具有别构效应的酶叫别构酶4.诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶5.Mol 催化活性:表示在单位时间内,酶分子中每个活性中心转换的分子数目6. 离子交换层析9比活力11葡萄糖效应13产酶动力学15双向凝胶电泳20固定化细胞21酶化学修饰1.酶的转换数:酶的转换数Kp。
又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数。
2.酶的催化周期:酶进行一次催化所用的时间。
3.固定化酶的比活力:指每克干固定化酶所具有的6活力单位数,它是酶制剂纯度的一个指标。
4.抗体酶:又称催化行抗体。
是一类具有生物催化功能的抗体分子。
抗体是由抗原诱导产生的抗原特异结构免疫球蛋白,要使机体具有生物催化功能,只要在抗体的可变区赋予酶的催化特性,以及酶的高效催化能力。
是通过人工设计采用现代生物技术而获得的一类新的生物催化剂,有些是自然界原本不存在的。
5.端粒酶:是一种核酸核蛋白,包含蛋白质和RNA两种基本成分。
其RNA组分包含有构建端粒的重复序列的核苷酸摸板序列,在合成端粒的过程中,端粒酶以其本身的RNA组分为摸板把端粒的重复序列加到染色体DNA的末端上,使端粒延长。
6.核酶:核酸类酶。
为一类具有生物催化功能的核糖核酸分子。
它可以催化本身RNA剪切或剪接作用,还可以催化其他RNA,DNA多糖,酯类等分子进行反应。
7.KS分段盐析:指在一定温度和PH值条件下,通过改变离子强度使不同的酶和蛋白质分离的方法。
8.B分段盐析:指在盐和离子强度条件下,通过改变温度和PH使不同的酶或蛋白质分离的方法。
1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。
2、酶研究的两个方向:理论研究方向和应用研究方向。
理论研究方向:酶的理化性质、催化性质、催化机制等。
应用研究:促进了酶工程的形成。
3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。
4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。
5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。
6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。
8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。
9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。
在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。
10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。
酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。
在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。
生物技术概论》复习题及参考答案一、名词解释1.生物技术(biotechnology):有时也称为生物工程(bioengineering),是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。
2.基因工程(geneenginerring):是指在基因水平上的操作并改变生物遗传特性的技术。
即按照人们的需要,用类似工程设计的方法将不同来源的基因(DNA分子)在体外构建成杂种DNA 分子,然后导入受体细胞,并在受体细胞内复制、转录和表达的操作,也称DNA重组技术。
3.细胞工程(cellengineering):是指在细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种的目的,加速繁育动植物个体,或获得某种有用物质的技术。
4.酶工程(enzymeengineering):是利用酶、细胞器或细胞所具有的特异催化功能或对酶进行修饰改造,并借助生物反应器和工艺过程来生产人类所需产品的技术。
5.发酵工程(fermentationengineering):是指利用包括工程微生物在内的某些微生物或动、植物细胞及其特定功能,通过现代工程技术手段(主要是发酵罐或生物反应品的自动化、高效化、功能多样化、大型化)生产各种特定的有用物质;或把微生物直接用于某些工业化生产的一种技术。
由于发酵多与微生物密切联系在一起,所以又称之为微生物工程或微生物发酵工程。
6.生物反应器(bioreactor):主要包括微生物反应器、植物细胞培养反应器,动物细胞培养反应器以及新发展起来的有活体生物反应器之称的转基因植物生物反应器,转基因动物生物反应器等。
7.转基因动物:是指在基因组中稳定地整合有导入的外源基因的动物。
&转基因植物:是指通过体外重组DNA技术将外源基因转入到植物细胞或组织,从而获得新遗传特性的再生植物。
酶工程名词解释
一、酶工程
酶工程是以酶为有效的生物催化剂,设计、构建、运用和优化不同的复合体(如多肽、蛋白质、核酸、抗原或抗体)在生命过程中进行酶反应的研究和应用。
它涉及技术有基因工程、蛋白质工程、分子生物学以及分子生物计算等。
酶工程主要用于增强活性及特性,修饰活性中心位点,调整热稳定性,改介质和改变温度等来改善反应的速率、生物效率、稳定性以及产物的生产效率。
酶工程是一种创新的可持续发展的生物技术方法,可有效地改进和提高酶的功能,提高活性,改进反应条件以及提高应用性能。
二、酶
酶是一种特殊的蛋白质,它以酶基因的形式存在于细胞中,在体内发生化学反应可以催化,并以消除不必要的化学反应而达到一定目的。
酶有许多作用,比如可以分解有机分子、形成新的分子或改变分子结构,改变酶结构调节性质和功能,可以促进重要化学反应的进行,维持细胞代谢的正常发挥作用,可以帮助细胞适应外界环境变化,抑制和抗毒素的作用。
三、酶的催化机理
酶的催化机理是指酶通过把化学反应的活性中心结合到自身的
活性中心,形成一个活性复合物,使反应次序从量子化学反应的一步
反应,变成现代酶催化反应的多步复杂反应,从而提高反应速率和效率。
酶催化反应的催化机理可分为几个步骤:
1. 抑制反应体:酶将会抑制原始反应体,从而降低反应的活化能;
2. 促进反应发生:酶通过质点,可以促进反应物间的作用力和配位作用力,从而促进反应的发生;
3. 选择性反应:酶可以选择性地使反应物与活性中心结合,从而确保反应发生的选择性;
4. 调节反应进程:酶还可以调节反应的进程,防止反应的不必要产生,保证反应发生的稳定性。
在西方,苏美尔人和巴比伦人在公元前6000年就已开头啤复习思考题第一章1.现代生物技术是一项高技术,它具有高技术的“六高”特征是指哪“六高”?答:高效益、高智力、高投入、高竞争、高风险、高势能。
2.什么是生物技术,它包括哪些根本的内容?它对人类社会将产生怎么样的影响?答:生物技术,也称生物工程,是指人们以现代生命科学为根底,结合其他根底学科的科学原理,承受先进的工程技术手段,依据预先的设计改造生物体或加工生物原料,为人类生产出所需产品或到达某种目的。
生物工程主要包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。
每一次重大的科学觉察和科技创,都使人们对客观世界的生疏产生一次飞跃;每一次技术革命浪潮的兴起,都使人们改造自然的力量和推动社会进展的力气提高到一个的水平。
生物技术的进展也不例外,它的进展越来越深刻地影响着世界经济、军事和社会进展的进程。
3.为什么说生物技术是一门综合性的学科,它与其他学科有什么关系?答:由于生物技术涉及到很多个方面,有医学、林农业、食品、环境、能源、化学品等等,不仅仅是局限于生物这一方面,例如争辩使用到高科技电子设备,两者必需结合才能进展争辩。
生物分子学也被运用到计算机的研发中去。
4.简要说明生物技术的进展史以及现代生物技术与传统生物技术的关系。
答:传统生物技术诞生较早。
在石器时代后期,我国人民就会利用谷物造酒,这是最早的发酵技术。
在公元前221 年周代后期,我国人民就能制作豆腐、酱和醋,并始终沿用至今。
公元10 世纪,我国就有了预防灭花的活疫苗。
到了明代,就已经广泛地种植痘苗以预防天花。
16 世纪,我国的医生已经知道被疯狗咬伤可传播狂犬病。
酒发酵。
埃及人则在公元前4000年就开头制作面包。
cosmid 而现代生物技术是以20 世纪70 年月DNA 重组技术的建立为标志的。
1944 年Avery 等说明DNA 是遗传信息的携带者。
1953 年Watson 和Crick 提出了DNA 的双螺旋构造模型说明白DNA 的半保存复制模式,从而开拓了分子生物学争辩的纪元。
名词解释:酶(enzyme)是生物体活细胞产生的、具有催化反应功能的蛋白质。
酶工程:是一项利用酶、含酶细胞器或细胞(微生物、植物、动物)作为生物催化剂来完成重要化学反应,并将相应底物转化成有用物质的应用型生物高新技术。
酶活力:是指酶催化一定化学反应的能力,其大小可用在一定条件下酶催化某一化学反应的反应速度来表示。
(单位时间底物减少或产物增加)一个酶单位(active unit, U,I.U)为在确定的最适反应条件下,每分钟催化1 mol(微摩尔)底物变化所需要的酶量。
(国际酶委员会规定)同工酶:同工酶(isozyme,isoenzyme)广义是指生物体内催化相同反应而分子结构不同的酶。
按照国际生化联合会(IUB)所属生化命名委员会的建议,则只把其中因编码基因不同而产生的多种分子结构的酶称为同工酶。
异构酶:异构酶亦称异构化酶,是催化生成异构体反应的酶之总称,催化一种同分异构体转变为另一种同分异构体的酶米氏方程米氏常数Km反应速度为最大反应速度一半时的底物浓度酶的定位突变(site-directed mutagenesis)是根据酶的结构、功能和作用机制的信息,在基因水平上精确改变酶分子中的氨基酸残基,对酶的性质和其催化特性进行改造,产生符合特定需要的酶。
人为地创造特殊的进化条件,模拟自然进化机制,在体外对基因进行随机突变,从一个或多个已经存在的亲本酶(天然的或者人为获得的)出发,经过基因的突变和重组,构建一个人工突变酶库,通过一定的筛选或选择方法最终获得预先期望的具有某些特性的进化酶的分子进化技术称为体外定向进化。
定向进化=随机突变+选择融合酶:主要指将两个或多个酶分子组合在一起的融合蛋白氧化还原酶 Oxidoreductase转移酶 Transferase水解酶 hydrolase 裂合酶 Lyase异构酶Isomerase合成酶 Ligase or Synthetase在特定条件下(温度可采用25℃或其它选用的温度,pH等条件均采用最适条件),每1 min 催化1 μmol 的底物转化为产物的酶量定义为1 个酶活力单位。
《生物技术概论》复习题及参考答案一、名词解释1. 生物技术(biotechnology):有时也称为生物工程(bioengineering),是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。
2.基因工程(gene enginerring):是指在基因水平上的操作并改变生物遗传特性的技术。
即按照人们的需要,用类似工程设计的方法将不同来源的基因(DNA分子)在体外构建成杂种DNA分子,然后导入受体细胞,并在受体细胞内复制、转录和表达的操作,也称DNA重组技术。
3.细胞工程(cell engineering):是指在细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种的目的,加速繁育动植物个体,或获得某种有用物质的技术。
4.酶工程(enzyme engineering):是利用酶、细胞器或细胞所具有的特异催化功能或对酶进行修饰改造,并借助生物反应器和工艺过程来生产人类所需产品的技术。
5.发酵工程(fermentation engineering):是指利用包括工程微生物在内的某些微生物或动、植物细胞及其特定功能,通过现代工程技术手段(主要是发酵罐或生物反应品的自动化、高效化、功能多样化、大型化)生产各种特定的有用物质;或把微生物直接用于某些工业化生产的一种技术。
由于发酵多与微生物密切联系在一起,所以又称之为微生物工程或微生物发酵工程。
6. 生物反应器(bioreactor):主要包括微生物反应器、植物细胞培养反应器,动物细胞培养反应器以及新发展起来的有活体生物反应器之称的转基因植物生物反应器,转基因动物生物反应器等。
7. 转基因动物:是指在基因组中稳定地整合有导入的外源基因的动物。
8. 转基因植物:是指通过体外重组DNA技术将外源基因转入到植物细胞或组织,从而获得新遗传特性的再生植物。