【细胞生物学】内膜系统与蛋白质分选和膜运输1
- 格式:ppt
- 大小:6.71 MB
- 文档页数:45
幻灯片70
作业
●1、何谓信号肽假说?其主要内容是什么?
●2、简述分泌蛋白的运输过程。
幻灯片71
1、何谓信号肽假说?其主要内容是什么?
●信号肽假说指分泌性蛋白N端序列作为信号肽,指导分泌性蛋白到内质网膜上合成,
然后在信号肽引导下蛋白质边合成边通过易位子蛋白复合体进入内质网腔,在蛋白合成结束之前信号肽被切除。
●其主要内容是:
●信号肽与S R P结合→肽链延伸终止→S R P与受体结合→S R P脱离信号肽→肽链在内
质网上继续合成,同时信号肽引导新生肽链进入内质网腔→信号肽切除→肽链延伸至终止→翻译体系解散
幻灯片72
2、简述分泌蛋白的运输过程。
●分泌蛋白的运输过程如下:
●①核糖体阶段。
分泌性蛋白质起始合成并发生蛋白的跨内质网膜转运。
●②内质网阶段。
蛋白糖基化加工和形成运输小泡。
●③细胞质基质运输阶段。
运输小泡脱离糙面内质网并移向高尔基体,与其顺面膜囊融
合。
●④高尔基复合体加工修饰阶段。
分泌蛋白进行加工修饰,并在反面膜囊中分选和包装,
形成较大囊泡进入细胞质基质。
●⑤细胞质基质运输阶段。
大囊泡接近质膜。
●⑥胞吐阶段。
分泌泡与质膜融合,将分泌蛋白释放出胞外。
第九章内膜系统与蛋白质分选和膜运输9.1内膜系统9.1.1内膜系统概述9.1.2内质网9.1.3高尔基体9.1.4溶酶体9.2细胞的分泌和内吞作用9.2.1细胞分泌过程9.2.2细胞内吞过程9.2.3膜泡运输机制9.3膜的生物发生9.3.1膜脂9.3.2膜整合蛋白和外周蛋白9.3.3脂锚定蛋白形成9.1内膜系统9.1.1内膜系统概述(1)内膜系统的组成内质网、高尔基体、溶酶体、细胞核、液泡。
功能上紧密联系,形成协调统一的整体。
(2)内膜系统的结构特点既相互独立,又相互间处于动态平衡状态。
通过三种途径:生化合成途径;分泌途径;内吞途径。
(3)内膜系统的重要功能—蛋白质分选蛋白质分选三种途径:核孔运输;跨膜运输;膜泡运输。
信号肽指导内膜系统蛋白质的运输,其对蛋白质没有特异性,对不同的膜结合细胞器具有特异性。
(4)内膜系统的进化与生物学意义原因:遗传信息量增大;细胞体积增大;表面积与体积比下降;物质代谢速度受限。
途径:内共生途径;质膜内陷。
生物学意义:形成了特定的功能区域与微环境,有不同的物质浓度及代谢系统,合理利用了资源,工作效率上升;通过各种活动,形成统一整体。
(5)内膜系统的研究方法放射性自显影;差速离心分离与功能分析;突变技术;绿色荧光蛋白定位法。
9.1.2内质网(1)结构与组成平行扁平囊泡(粗面内质网)或管状囊泡(光面内质网)组成。
粗面内质网可与核膜、质膜结构连续,外表面称为胞质溶胶面,内表面为潴泡面。
标志酶为葡萄糖-6-磷酸酶。
(2)功能①光面内质网糖原分解释放葡萄糖;类固醇激素的合成;脂的合成与转运;解毒作用(P450);钙库。
②粗面内质网膜结合核糖体的蛋白质运输:信号假说。
信号序列,SRP识别信号肽、停止翻译、识别停靠蛋白,停靠蛋白,蛋白质运输通道,袢环状过膜。
起始转移信号(信号序列及内部信号序列)与蛋白质运输通道受体位点结合,停止转运信号和内部信号序列决定穿膜次数。
信号序列被信号肽酶切除,内部信号序列保留。
第九章内膜系统与蛋白质分选和膜运输教学目的1、掌握信号肽假说和蛋白质转运的机制。
2、掌握高尔基体参与细胞分泌活动的作用。
3、掌握细胞内蛋白质的分选。
教学内容本章从以下6个方面讨论了细胞质质基质与内膜系统:1.细胞质膜系统及其研究方法2.内质网3.高尔基复合体4.溶酶体5.细胞的分泌与内吞作用6.小泡运输的分子机理计划学时及安排本章计划6学时。
教学重点和难点真核细胞在进化上一个显著特点就是形成了发达的细胞质膜系统,将细胞内环境分割成许多功能不同的区室。
内膜系统是指内质网、高尔基体、溶酶体和液泡(包括内体和分泌泡)等四类膜结合细胞器,因为它们的膜是相互流动的,处于动态平衡,在功能上也是相互协同的,其中包括膜运输系统。
本章是细胞生物学的重点章,包括六个方面的内容,其中内质网及信号肽假说、小泡运输的分子机理是本章的关键内容。
1.内质网是内膜系统中的重要膜结合细胞器,主要分清光面内质网和粗面内质网在功能上的差异。
对于粗面内质网,重点是信号肽假说和蛋白质转运的机制。
2.高尔基复合体是内膜系统中参与蛋白质加工与分选的细胞器,要求了解和掌握高尔基体参与细胞分泌活动的作用,即将内质网合成的多种蛋白质进行加工、分类与包装,然后分门别类地运送到细胞的特定部位或分泌到细胞外。
理解高尔基体在细胞内物质运输中所起的交通枢纽作用。
3.关于溶酶体,要求掌握溶酶体膜的稳定性、溶酶体的类型及特点、溶酶体的功能、溶酶体的生物发生。
4.细胞内蛋白质的分选是本章的核心内容之一,重点学习和掌握运输小泡的类型和分选信号、披网格蛋白小泡形成的机理、COP-被膜小泡形成的机理、小泡的定向运输、停靠和融合机理。
通过本章的学习要充分了解细胞内部结构的动态关系,蛋白质合成和分选的机制和“流水”作业的模式,从中获得启发。
教学方法讲授、讨论教学过程9.内膜系统与蛋白质分选和膜运输9.1 细胞质膜系统及其研究方法9.1.1 膜结合细胞器与内膜系统■ 膜结合细胞器的种类和功能● 膜结合细胞器种类与数量(表)● 膜结合细胞器的功能(表)● 膜结合细胞器在细胞内的分布(图)■ 内膜系统的动态性质内膜系统的最大特点是动态性质(图),这就使内膜系统的结构处于一个动态平衡。
内膜系统与蛋⽩质分选(protein sorting) 蛋⽩质是由核糖体合成的,合成之后必须准确⽆误地运送到细胞的各个部位。
在进化过程中每种蛋⽩形成了⼀个明确的地址签(address target),细胞通过对蛋⽩质地址签的识别进⾏运送,这就是蛋⽩质的分选(protein sorting)。
细胞中蛋⽩质的运输有两种⽅式:共翻译运输和翻译后运输,内膜系统参与共翻译运输,是分泌蛋⽩质分选的主要系统。
■蛋⽩质分选定位的时空概念 所谓蛋⽩质分选定位的时空概念包括两种含义:①合成的蛋⽩质何时转运?②合成蛋⽩质在细胞中定位空间及转运中所要逾越的空间障碍是什么? ●从时间上考虑,蛋⽩质的合成分选有两种情况:先合成,再分选和⼀边合成⼀边分选。
为了适于蛋⽩质分选的时间上的需要,核糖体在合成蛋⽩质时就有两种存在状态:游离的或与内质结合的。
●从蛋⽩质定位的空间看,包括了细胞内各个部分,即使是具有蛋⽩质合成机器的线粒体和叶绿体也需要从细胞质中获取所需蛋⽩质。
细胞中各部位(包括细胞质)中的蛋⽩质都是来⾃胞质溶胶,不过内质以上的细胞器,包括细胞核、线粒体、过氧化物酶体和质体所需蛋⽩是由胞质溶胶直接运送的。
⽽从内质以下的各种细胞器,包括内质、⾼尔基体、溶酶体、内体、分泌泡、细胞质膜以及细胞外基质等所需的蛋⽩质虽然起始于胞质溶胶,但要经过内质和⾼尔基体的中转。
■蛋⽩质分选定位的空间障碍及运输⽅式 从蛋⽩质定位的细胞内空间部位结构来看,可分为三种类型:①没有膜障碍的,如胞质溶胶,包括胞质溶胶中的细胞⾻架蛋⽩和各种酶及蛋⽩分⼦;②有完全封闭的膜障碍,如线粒体、叶绿体、内质、⾼尔基体等;③有膜障碍,但是膜上有孔,如细胞核。
根据三种不同的空间障碍,合成的蛋⽩质通过三种不同⽅式进⾏运输定位(图9-6)。
●核孔运输(transport through nuclear pore)胞质溶胶中合成的蛋⽩质穿过细胞核内外膜形成的核孔进⼊细胞核,被运输的蛋⽩需要有核定位信号。
1、细胞质基质:真核细胞的细胞质中除去细胞器和内含物以外的、较为均质半透明的液态胶状物称为细胞质基质或胞质溶胶。
4、内膜系统:细胞内在结构、功能乃至发生上相关的、由膜围绕的细胞器或细胞结构的统称,主要包括内质网、高尔基体、溶酶体、胞内体、分泌泡等。
2、微粒体:为了研究ER的功能,常需要分离ER膜,用离心分离的方法将组织或细胞匀浆,经低速离心去除核及线粒体后,再经超速离心,破碎ER的片段又封合为许多小囊泡(直径约为100nm),这就是微粒体。
3、糙面内质网:细胞质内有一些形状大小略不相同的小管、小囊连接成网状,集中在胞质中,故称为内质网。
内质网膜的外表面附有核糖体颗粒,则为糙面内质网,为蛋白质合成的部位。
核糖体附着的膜系多为扁囊单位成分,普遍存在于分泌蛋白质的细胞中,其数量随细胞而异,越是分泌旺盛的细胞中越多。
5、分子伴侣:细胞中,这类蛋白能识别正在合成的多肽或部分折叠的多肽,并与多肽的一定部位相结合,帮助这些多肽的转移、折叠或组装,但其本身并不参与最终产物的形成。
6、溶酶体:溶酶体几乎存在于所有的动物细胞中,是由单层膜围绕、内含多种酸性水解酶类、形态不一、执行不同生理功能的囊泡状细胞器,主要功能是进行细胞内的消化作用,在维持细胞正常代谢活动及防御方面起重要作用。
7、残余小体:在正常情况下,被吞噬的物质在次级溶酶体内进行消化作用,消化完成,形成的小分子物质可通过膜上的载体蛋白转运至细胞质中,供细胞代谢用,不能消化的残渣仍留在溶酶体内,此时的溶酶体称为残余小体或三级溶酶体或后溶酶体。
残余小体有些可通过外排作用排出细胞,有些则积累在细胞内不被排出,如表皮细胞的老年斑、肝细胞的脂褐质。
8、蛋白质分选:细胞中绝大多数蛋白质均在细胞质基质中的核糖体上开始合成,随后或在细胞质基质中或转至糙面内质网上继续合成,然后,通过不同途径转运到细胞的特定部位并装配成结构与功能的复合体,参与细胞的生命活动的过程。
又称定向转运。