应用多元统计分析主成分分析习题解答
- 格式:pdf
- 大小:695.26 KB
- 文档页数:9
Abbo无私奉献,只收1个金币,BS收5个金币的…何老师考简单点啊……第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。
答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。
②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。
因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。
因子分析也可以说成是主成分分析的逆问题。
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。
因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。
而因子分析是从显在变量去提炼潜在因子的过程。
此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。
7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。
目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。
具体来说,①因子分析可以用于分类。
如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。
即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。
对我们进一步研究与探讨指示方向。
在社会调查分析中十分常用。
③因子分析的另一个作用是用于时空分解。
如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。
7.3 简述因子模型中载荷矩阵A 的统计意义。
答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。
应用多元统计分析习题解答第七章第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。
答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。
②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。
因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。
因子分析也可以说成是主成分分析的逆问题。
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。
因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。
而因子分析是从显在变量去提炼潜在因子的过程。
此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。
7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。
目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。
具体来说,①因子分析可以用于分类。
如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。
即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。
对我们进一步研究与探讨指示方向。
在社会调查分析中十分常用。
③因子分析的另一个作用是用于时空分解。
如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。
7.3 简述因子模型中载荷矩阵A 的统计意义。
答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a aa a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mik k j i j k a F F F ε=+∑=ij a若对iX作标准化处理,=ija,因此ija一方面表示iX对jF的依赖程度;另一方面也反映了变量i X对公共因子jF的相对重要性。
多元统计分析第三版课后练习题含答案1. 组间差异比较题目有两组数据,分别为A组和B组,经过检验发现两组数据的方差不相等,则应该使用那种方法进行比较?答案当两组数据的方差不相等时,应该使用Welch’s t检验方法进行比较,而不是常规的Student’s t检验方法。
2. 主成分分析题目主成分分析(PCA)是一种常用的数据降维方法。
在PCA分析中,如何选择主成分的个数?答案选择主成分的个数要根据实际情况而定。
一般来说,我们可以参考数据的累计方差贡献率,将累计贡献率大于80%的主成分选出来作为数据的主要特征,进而进行后续的数据分析处理。
3. 线性回归模型题目在线性回归模型中,如何衡量模型的拟合程度?答案模型的拟合程度可以通过R方(R-squared)值来衡量。
R方值越接近1,说明模型越拟合数据,反之则说明拟合程度不高。
但需要注意的是,仅仅使用R方值来衡量一个模型的好坏还不够,也需要考虑其它因素的影响,如是否存在共线性等问题。
4. 混淆矩阵题目什么是混淆矩阵(Confusion Matrix)?在分类问题中,混淆矩阵的作用是什么?答案混淆矩阵是用来评估分类模型的准确度,它可以将分类问题的结果与实际结果进行比较分析。
一般来说,混淆矩阵包含4个参数:真阳性(True Positive, TP)、假阳性(False Positive, FP)、真阴性(True Negative, TN)和假阴性(False Negative, FN)。
在分类问题中,混淆矩阵的作用主要有以下三个:1.衡量模型的质量。
通过混淆矩阵,我们可以计算出分类模型的准确率、精度、召回率等指标来评估模型的质量。
2.选择模型的阈值。
分类模型的阈值是指将不同的样本劃分到不同的分类中的界限值。
通过混淆矩阵,我们可以选择不同的阈值,以获得更好的模型表现。
3.确定模型需要改进的方面。
通过混淆矩阵,我们可以识别出模型中需要改进的方面,从而进一步优化模型。
2(d c)(x 1 a)x 2 (b a)2(d c)2 2[(b a )(X 2 c) 2(X 1 a )(X 2 c)] (b a)2(d c)2dx 22(d c)(x.| a)x 222~(b a) (d c) c2[(b a)t 2(X 1 a)t]2 2 (b a) (d c)dt 2(d c)(x-i a)x 22 2(b a) (d c)所以d c2 2(b a) (d c) o2 2[(b a)t 2(X 1 a)t ] 第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,X (X !,X 2^|X p )的联合分布密度函数是-个p 维的函数,而边际分布讨论是 X (X i ,X 2」||X p)的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量(X 1 X 2)服从二元正态分布,写出其联合分布。
其中 a X 1 b , c X 2 d 。
求(1 )随机变量X 1和X 2的边缘密度函数、均值和方差;(2) 随机变量X 1和X 2的协方差和相关系数; (3) 判断X 1和X 2是否相互独立。
(1)解:随机变量 X 1和X 2的边缘密度函数、均值和方差;2[(d c)(x-i a) (b a)(x 2 c) 2(x 1 a)(x 2c)]2 2(b a) (d c)id解:设(X 1 X 2)的均值向量为口 ,协方差矩阵为21;,则其联合分布密度函数为21/21f(X).2-2.3已知随机向量(X 1f(X 1,X 2)型21122 2exp口)2112 2 2(X口)。
X 2) c)(X 的联合密度函数为a) (b a)(X 2c) 2 2(b a) (d c)2(X 1 a)(x 2 c)] dx(C d)(b a)36COV(N,X2)X i X2(3)解:判断X i和X2是否相互独立。
X i 和X2 由于f(X!,X2) f x,X i) f x,(X2),所以不独立。
第七章因子分析7.1试述因子分析与主成分分析的联系与区别。
答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。
②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。
因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。
因子分析也可以说成是主成分分析的逆问题。
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。
因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。
而因子分析是从显在变量去提炼潜在因子的过程。
此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。
7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。
目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。
具体来说,①因子 分析可以用于分类。
如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。
即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。
对我们进一步研究与探讨指示方向。
在社会调查分析中十分常用。
③因子分析的另一个作用是用于时空分解。
如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。
7.3简述因子模型、一 m 卜中载荷矩阵A 的统计意义。
答:对于因子模型X i =a i 1F 1 - mF ?a j F j I" a m F m•;ii =1,2,Hl , pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k °F j )k=im= Cov(' a ik F k ,F j ) Cov(「F j )k d= a ij若对X i 作标准化处理,=a j ,因此a ij 一方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j的相对重要性。
主成分分析
6.1 试述主成分分析的基本思想。
答:我们处理的问题多是多指标变量问题,由于多个变量之间往往存在着一定程度的相关性,人们希望能通过线性组合的方式从这些指标中尽可能快的提取信息。
当第一个组合不能提取止。
这就是主成分分析的基本思想。
6.2 主成分分析的作用体现在何处?
答:一般说来,在主成分分析适用的场合,用较少的主成分就可以得到较多的信息量。
以各个主成分为分量,就得到一个更低维的随机向量;主成分分析的作用就是在降低数据“维数”
6.3 简述主成分分析中累积贡献率的具体含义。
答:主成分分析把p 个原始变量12,,
,p X X X 的总方差()tr Σ分解成了p 个相互独立的变量
p 个主成分的,忽略一些带有较小方差的主成分将不会给总方差带来太大的影响。
这里我们
()m p <个主成分,则称1
1
p
m
m k
k
k k ψλλ
===∑∑ 为主成分1,
,m Y Y 的累计贡献率,累计贡献率
表明1,
,m Y Y 综合12,,
,p X X X 的能力。
通常取m ,使得累计贡献率达到一个较高的百分
数(如85%以上)。
答:这个说法是正确的。
即原变量方差之和等于新的变量的方差之和
6.5 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。
答:从相关阵求得的主成分与协差阵求得的主成分一般情况是不相同的。
从协方差矩阵出发的,其结果受变量单位的影响。
主成分倾向于多归纳方差大的变量的信息,对于方差小的变量就可能体现得不够,也存在“大数吃小数”的问题。
实际表明,这种差异有时很大。
我
6.6 已知X =(
)’的协差阵为
试进行主成分分析。
解:=0
计算得
当
时
,
同理,计算得
时,
易知相互正交
单位化向量得,
,
综上所述,
第一主成分为
第二主成分为
第三主成分为
6.7 设X=()’的协方差阵(p为
, 0<p<1
证明:为最大特征根,其对应的主成分为。
证明:
=
=
,
为最大特征根
当时,
=
所以,
6.8利用主成分分析法,综合评价六个工业行业的经济效益指标。
解:令资产总计为X1,固定资产净值平均余额为X2,产品销售收入为X3,利润总额为X4,用SPSS 对这六个行业进行主成分分析的方法如下:
1. 在SPSS 窗口中选择Analyze →Data Reduction →Factor 菜单项,调出因子分析主界
面,并将变量15X X -移入Variables 框中,其他均保持系统默认选项,单击OK 按钮,执行因子分析过程(关于因子分子在SPSS 中实现的详细过程,参见7.7)。
得到如表6.1所示的特征根和方差贡献率表和表6.2所示的因子载荷阵。
第一个因子就可以解释86.5%
表6.1 特征根和方差贡献率表
表6.2 因子载荷阵
2. 将表6.2中因子载荷阵中的数据输入SPSS 数据编辑窗口,命名为a 1。
点击菜单项
中的Transform →Compute ,调出Compute variable 对话框,在对话框中输入等式: z 1=a 1 / SQRT (3.46),计算第一个特征向量。
点击OK 按钮,即可在数据编辑窗口中得到以z 1为变量名的第一特征向量。
根据表6.3得主成分的表达式:
4413.03530.02537.01509.0Y1X X X X +++=
3. 再次使用Compute 命令,调出Compute variable 对话框,在对话框中输入等式:
4
.0
509
*
x
x
=
+
+
x+
1
y1x
3
.0
413
.0
*
*
537
53
*
2
.0
根据六个工业行业计算所的y1的大小可得石油和天然气开采业的经济效益最好,煤炭开采和选业其次,接着依次是黑色金属、非金属、有色金属和其他采矿业。
6.9 下表是我国2003年各地区农村居民家庭平均每人主要食品消费量,试用主成分方法对
x6,水产品为x7,食糠为x8,酒为x9,用SPSS进行主成分分析的具体方法参见6.8,分析结果如下:
表6.4 特征根和方差贡献率表
表6.5 因子载荷阵
表6.6 特征向量矩阵
根据表6.6得主成分的表达式:
9141.08388.07501.06329.0551.04456.03005.02054.01001.01X X X X X X X X X Y +++-++++=9493.08333.07119.06408.05142.04076.03185.0232.0155.02X X X X X X X X X Y ++++--+--=
9
02.08130.07112.06269.05055.04167.03698.02617.01005.03X X X X X X X X X Y --++-+++-=分别计算出以上三项后,利用公式321321Y Y Y Y ∑∑∑++=λ
λλλ
λλ得到综合得分并排序如下表:
最后的分类可以根据最终得分Y的值来划分,由于没有给出具体的分类标准,具体分类结果根据各人的主观意愿可以有多种答案。
6.10 根据习题5.10中2003年我国省会城市和计划单列市的主要经济指标数据,利用主成分分析法对这些地区进行分类。
解:用SPSS进行主成分分析的具体方法参见6.8,分析结果如下:
表6.7 特征根和方差贡献率表
表6.8 因子载荷阵
表6.6 特征向量矩阵。