数字滤波器中的系数量化效应
- 格式:ppt
- 大小:340.51 KB
- 文档页数:15
一、实验目的1、掌握IIR 滤波器的直接II 型、级联型和并联型三种结构的基本原理和特点。
2、掌握利用MATLAB 实现IIR 滤波器的三种结构的程序设计方法,并能够进行三者之间的相互转换。
3、掌握滤波器频响特性的绘制方法。
二、实验原理与计算方法按照结构划分数字滤波器,有递归式和非递归式两种。
递归式数字滤波器的差分方程为∑∑==-=-+Mi i Nk ki n x b k n y an y 11)()()((1)其中至少有一个0≠k a .非递归式数字滤波器的差分方程为∑=-=Mi i i n x b n y 1)()( (2)可以看出递归式数字滤波器的响应)(n y 不仅与激励)(n x 有关,而且与以前的输出信号)(k n y -有关;而非递归式数字滤波器的响应)(n y 仅只与激励)(n x 有关。
按照单位样值响应划分数字滤波器,则有无限冲激响应(IIR)和有限冲激响应(FIR)之分。
IIR 滤波器是递归式的,差分方程如(1)式所示,FIR 滤波器一般是非递归式的,差分方程如(2)式所示。
IIR 滤波器常用的典型结构有直接II 型、级联型和并联型,分别介绍如下: 1、直接II 型(也称为正准型结构) 根据(1)式,IIR 滤波器的传输函数为∑∑=-=--=Nk kk Nk kkzazb z H 101)( (3)其中已假设(1)式中的M N =,对于其它情况,则可令相应的某些系数为零。
令 11)( ,)(1201∑∑=-=--==Nk kk Nk k k z az H z b z H则有)()()(21z H z H z H = (4) 由此可以得到相应的时域中激励)(n x 与响应)(n y 之间的关系为∑∑==-=+-=Nk kNk kk n y bn y n x k n y an y 02122)()()()()( (5)其中)(2n y 是与(4)式中的)(2z H 相应的中间函数序列。
数字滤波器优缺点数字滤波器是一种能够处理数字信号的设备,它可以对信号进行滤波处理,去除或者减弱信号中的某些成分,以期望得到符合需求的信号。
数字滤波器广泛应用于各种工程领域,如通信、音频处理、图像处理等,其在信号处理中扮演着重要的角色。
在实际应用中,数字滤波器既有各自的优点,也存在一些局限性。
优点1.灵活性强:与模拟滤波器相比,数字滤波器更加灵活多样,可以很容易地实现各种滤波算法和功能。
2.精确性高:数字滤波器在运算过程中不受模拟元件的误差影响,能够提供较高的滤波精度和稳定性。
3.易于实现:数字滤波器可以通过编程语言在数字处理器或者嵌入式系统中实现,非常适合自动化生产和大规模应用。
4.可调性强:数字滤波器参数可以进行软件调节,可以根据需要随时更改滤波特性,提高了应用的灵活性。
5.可靠性高:数字滤波器结构简单,元器件稳定,故可靠性较高,且易于维护和升级。
缺点1.抗混叠性:在处理高频信号时,数字滤波器需要进行抗混叠处理,否则可能出现混叠误差,影响滤波效果。
2.时滞现象:数字滤波器存在处理延迟,导致信号输出在输入信号之后,这种时滞可能对某些实时性要求高的应用产生不利影响。
3.量化误差:数字滤波器在模拟信号转换为数字信号时,存在量化误差,会对滤波结果产生一定的影响。
4.复杂度:某些高级数字滤波器需要较复杂的算法和大量的计算,对硬件和软件实现都提出了一定的挑战。
结语数字滤波器作为数字信号处理的关键工具,具有诸多优点和一定的局限性。
在实际应用中,我们可以根据具体需求和工程背景选择合适的数字滤波器,充分发挥其优点,同时针对缺点采取有效的补偿措施,以确保信号处理的准确性和稳定性。
在今后的发展中,数字滤波器将继续发挥重要作用,为各类工程问题提供有效的信号处理解决方案。
1、 信号常分为 模拟信号 , 连续时间信号 , 离散时间信号 , 数字信号 。
2、 模拟信号是 时间 连续,幅度也 连续 的信号。
3、 连续时间信号是在规定的 连续 时间内,信号的 幅度 可以连续的,也可以是 离散的信号。
4、 离散时间信号是在一组 离散 的时间下,表示信号 数值 的函数。
5、 数字信号是在 时间 上和 幅度 上都经过 量化 的信号。
6、 系统是指反应信号处理 因果关系的设备或运算 。
7、 系统可分为 连续时间系统 , 离散时间系统 , 模拟系统 , 数字系统 。
8、 连续时间系统是指输入输出皆为 连续时间信号 的系统。
9、 离散时间系统是指输入输出皆为 离散时间信号 的系统。
10、模拟系统是指输入输出皆为 模拟信号 的系统。
11、数字系统是指输入输出皆为 数字信号 的系统。
12、处理就是 变换 ,数字信号处理就是用 数字 的方法,对信号的波形进行变换。
13、数字信号处理是 多种计算机算法的 汇集,因此可以认为它是 计算数学 的另一个分支。
14、数字信号处理的主要内容是 数字滤波 , 谱分析 。
15、数字信号处理的主要理论为 离散时间线性非时变系统 , 离散傅里叶变换 。
16、数字信号处理的过程可分为 前置取样 , A/D , 数字信号处理 , D/A 。
17、数字信号处理突出的优点 精度高 , 灵活性大 , 可靠性强 , 易于大规模集成,时分复用 。
1、信号的取样可分为 实际取样 , 理想取样 。
2、 理想 取样可以看出是实际取样的 科学的本质 的抽象。
3、著名的山农取样定理是h s Ω≥Ω2。
4、折叠频率=0Ω2/s Ω。
5、奈奎斯特频率=h Ω 信号中最高频率 。
6、奈奎斯特取样频率为h Ω2。
7、离散时间信号是用 序列 表示8、序列的运算规则有 积 , 加减 , 标乘 , 延时 , 分支运算 。
9、常用典型序列 单位取样序列 , 单位阶跃序列 , 矩形序列 , 正弦序列 ,实指数序列 , 复指数序列 。
数字滤波器工作原理数字滤波器是数字信号处理中常用的一种工具,用于对数字信号进行滤波处理,去除噪声、调整信号频率等。
数字滤波器的工作原理可以简单理解为对输入信号进行加权求和的过程,通过设计不同的滤波器结构和参数,实现不同的信号处理效果。
1. 数字滤波器分类数字滤波器主要分为两类:有限冲激响应(FIR)滤波器和无限脉冲响应(IIR)滤波器。
FIR滤波器的输出仅依赖于输入信号的有限历史数据,具有稳定性和线性相位特性;而IIR滤波器的输出不仅取决于输入信号,还受到输出以前的反馈数据的影响,其性能灵活但需要对滤波器的稳定性进行仔细设计。
2. FIR数字滤波器FIR滤波器是一种线性时不变系统,其核心是线性组合和延迟操作。
以一维离散信号为例,FIR滤波器对输入信号进行加权求和,利用滤波器的系数和输入信号的延迟版本进行计算,从而得到输出信号。
FIR滤波器常用于需要精确控制频率响应和相位特性的应用。
3. IIR数字滤波器IIR滤波器采用递归结构,其中输出不仅与当前输入有关,还依赖于过去的输出。
IIR 滤波器的反馈机制可以实现比FIR滤波器更高阶的滤波效果,但也容易引入不稳定性和非线性相位特性。
设计IIR滤波器需要谨慎考虑系统的稳定性和滤波效果的均衡。
4. 数字滤波器设计数字滤波器的设计通常包括滤波器类型选择、频率响应设计和系数计算等步骤。
通过在频域和时域之间进行转换,可以实现对信号的频率选择性滤波。
常见的设计方法包括窗函数法、频率采样法、最小均方误差法等,在设计过程中需要考虑滤波器的性能指标和工程应用需求。
5. 数字滤波器应用数字滤波器在信号处理领域有着广泛的应用,如音频处理、图像处理、通信系统等。
通过合理选择滤波器类型和参数,可以实现信号去噪、信号增强、频率选择等功能。
在实际工程中,工程师们经常根据具体的应用要求设计并优化数字滤波器,以提高系统性能和准确度。
结语数字滤波器作为数字信号处理的重要工具,具有广泛的应用前景和研究价值。
正则有符号系数FIR滤波器优化算法谭家杰;黄三伟;邹常青【摘要】为了节约有限长单位冲激响应(FIR)滤波器的资源,提高运行速度,提出了用最小均方根法将浮点系数量化为正则有符号数(CSD)定点系数的方法.这种方法是先求出FIR滤波器的零点,将共轭成对零点组成两个基本节,采用级联型FIR结构,然后逐步对两个节进行定点数量化,最后量化为CSD定点数.为了验证这种方法的有效性,将它与简单量化进行了对比,结果表明最小均方根法更逼近原浮点系数滤波器,即该量化方式比简单量化更加有效.%In order to save the resources of the Finite Impulse Response (FIR) filter and increase the running speed, it was proposed to use the Least Mean-Square-Error (LMSE) to transfer the float point coefficients filter to the Canonical Signed Digit (CSD) filter. The FIR filter was implemented by the cascades structure, which conjugated pairs of zeros into two basic sections. First, all zeros of the digital filter were calculated, which were made of two cascade sections for an FIR. And then the coefficients of the first cascade were transferred to fixed point. Next step was to quantize the second cascade coefficients into fixed point. To eliminate the finite word-length effects, the LMSE was adopted to compensate zeros in this step. Finally,all the fixed point coefficients were quantized into CSD. In order to prove the effectiveness of the two methods, and the FIR filter was also designed with simple quantized coefficients. The magnitude responses of two methods show that the LMSE quantization is more effective than that of the simple quantization.【期刊名称】《计算机应用》【年(卷),期】2011(031)006【总页数】3页(P1727-1729)【关键词】数字滤波器;正则有符号数;定点系数;最小均方根【作者】谭家杰;黄三伟;邹常青【作者单位】衡阳师范学院物理与电子信息科学系,湖南衡阳421008;衡阳师范学院物理与电子信息科学系,湖南衡阳421008;衡阳师范学院物理与电子信息科学系,湖南衡阳421008【正文语种】中文【中图分类】TP3930 引言有限长单位冲激响应(Finite Impulse Response,FIR)数字滤波器既可以满足任意幅度特性,又可以保证严格的相位特性,它的单位冲激响应是有限长且稳定的,是信号处理系统的重要组成部分。
数字滤波器实现中的有限字长效应分析在数字信号处理中,数字滤波器是一种重要的工具,用于对信号进行去噪、提取频率成分等操作。
然而,在数字滤波器的实现过程中,由于计算机的有限字长表示导致了一系列的数值误差和效应,称之为有限字长效应。
有限字长效应是指在数字滤波器的离散运算过程中,由于数字信号的幅度和精度受到数字表示的限制,会导致输出信号与理想信号之间存在误差。
这种误差主要体现在量化误差和舍入误差两个方面。
首先,量化误差是由于数字信号的离散表示,而导致信号的幅度无法被无限细分。
在数字滤波器的计算过程中,信号的幅度会被量化到一个有限的位数,从而引入了量化误差。
量化误差会使得滤波器的频率响应发生变形,尤其在高频区域表现更为明显。
其次,舍入误差是由于数字信号的精度有限,使得计算结果无法完全精确表示。
在数字滤波器的计算过程中,各个组成部分的计算结果需要进行舍入操作,将小数部分近似为整数,从而引入了舍入误差。
舍入误差会使得滤波器的频率响应与理想滤波器之间存在差别,进而影响滤波器的性能。
为了减小有限字长效应带来的误差,常用的方法有以下几种:1. 增加数字信号的表示精度:将数字信号的表示精度增加到更高的位数,可以减小量化误差和舍入误差的影响。
这种方法可以通过使用更多的二进制位数来表示数字信号,从而提高数字滤波器的计算精度。
2. 使用浮点数运算:浮点数运算可以提供更高的计算精度,相比于定点数运算更能减小有限字长效应带来的误差。
然而,由于浮点数运算的计算量较大,相应的计算机硬件要求也较高。
3. 优化滤波器结构和算法:通过优化滤波器的结构和算法,可以在减小有限字长效应的同时,降低计算复杂度。
例如,使用一阶滤波器级联或并联的结构,可以有效降低量化误差;采用更高阶的滤波器可以提高滤波器的抑制比,减小对有限字长效应的敏感度。
综上所述,有限字长效应是数字滤波器实现中不可避免的问题,会导致输出结果与理想结果之间存在一定的误差。
为了降低这种误差,可以通过增加数字信号的表示精度、使用浮点数运算以及优化滤波器结构和算法等方法来改善效果。
iir数字滤波器的设计方法IIR数字滤波器的设计方法IIR数字滤波器是一种常用的数字信号处理工具,用于对信号进行滤波和频率域处理。
其设计方法是基于传统的模拟滤波器设计技术,通过将连续时间滤波器转换为离散时间滤波器来实现。
本文将介绍IIR数字滤波器的设计方法和一些常见的实现技巧。
一、IIR数字滤波器的基本原理IIR数字滤波器是一种递归滤波器,其基本原理是将输入信号与滤波器的系数进行加权求和。
其输出信号不仅与当前输入值有关,还与之前的输入和输出值有关,通过不断迭代计算可以得到最终的输出结果。
二、IIR数字滤波器的设计步骤1. 确定滤波器的类型:低通滤波器、高通滤波器、带通滤波器或带阻滤波器。
2. 确定滤波器的阶数:阶数决定了滤波器的陡峭度和性能。
3. 选择滤波器的截止频率或通带范围。
4. 根据所选的滤波器类型和截止频率,设计滤波器的模拟原型。
5. 将模拟原型转换为数字滤波器。
三、IIR数字滤波器的设计方法1. 巴特沃斯滤波器设计方法:- 巴特沃斯滤波器是一种最常用的IIR数字滤波器,具有平坦的通带特性和陡峭的阻带特性。
- 设计方法为先将模拟滤波器转换为数字滤波器,然后通过对模拟滤波器进行归一化来确定截止频率。
2. 阻带衰减设计方法:- 阻带衰减设计方法是一种通过增加滤波器的阶数来提高滤波器阻带衰减特性的方法。
- 通过增加阶数,可以获得更陡峭的阻带特性,但同时也会增加计算复杂度和延迟。
3. 频率变换方法:- 频率变换方法是一种通过对滤波器的频率响应进行变换来设计滤波器的方法。
- 通过对模拟滤波器的频率响应进行变换,可以得到所需的数字滤波器。
四、IIR数字滤波器的实现技巧1. 级联结构:- 将多个一阶或二阶滤波器级联起来,可以得到更高阶的滤波器。
- 级联结构可以灵活地实现各种滤波器类型和阶数的设计。
2. 并联结构:- 将多个滤波器并联起来,可以实现更复杂的频率响应。
- 并联结构可以用于设计带通滤波器和带阻滤波器。