巴特沃斯数字低通滤波器要点#(精选.)
- 格式:doc
- 大小:679.00 KB
- 文档页数:12
目录1.题目........................................................ .................................. .22.要求........................................................ (2)3.设计原理........................................................ . (2)3.1 数字滤波器基本概念......................................................... (2)3.2 数字滤波器工作原理......................................................... (2)3.3 巴特沃斯滤波器设计原理 (2)3.4脉冲响应不法......................................................... .. (4)3.5实验所用MATLAB函数说明 (5)4.设计思路........................................................ .. (6)5、实验内容........................................................ . (6)5.1实验程序......................................................... . (6)5.2实验结果分析......................................................... . (10)6.心得体会........................................................ . (10)7.参考文献........................................................ . (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。
巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。
式中N 为整数,是滤波器的阶次。
巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。
巴特沃斯低通滤波器的振幅特性如图a 所示。
滤波器的特性完全由其阶数N 决定。
当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。
滤波器的振幅特性对参数N 的依赖关系如图a 所示。
设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N NpjH j C pλλ==+- 由于p图a 巴特沃斯低通滤波器的振幅特性221()()()1()a a jsNcH s H s A s j Ω=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。
2、常用设计巴特沃斯低通滤波器指标p λ:通带截止频率; p α:通带衰减,单位:dB ;s λ:阻带起始频率;s α:阻带衰减,单位:dB 。
说明:(1)衰减在这里以分贝(dB )为单位;即222110lg10lg 1()NC H j αλλ⎡⎤==+⎣⎦(2)当3dB α=时p C Ω=Ω为通常意义上的截止频率。
(3)在滤波器设计中常选用归一化的频率/C λ=ΩΩ,即1,p sp s ppλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。
(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。
巴特沃斯低通滤波器传递函数一、引言巴特沃斯滤波器是一种常见的滤波器,它可以用于信号处理、图像处理等领域。
其中,低通滤波器是最基本的一种。
本文将详细介绍巴特沃斯低通滤波器传递函数的计算方法。
二、巴特沃斯低通滤波器1. 巴特沃斯低通滤波器概述巴特沃斯低通滤波器是一种对频率响应有要求的低通滤波器,其传递函数为:H(s) = 1 / (1 + (s/wc)^2n)^0.5其中,s为Laplace变换中的复频率变量,wc为截止频率,n为阶数。
2. 巴特沃斯低通滤波器传递函数推导(1)将传递函数H(s)转化为标准形式:H(s) = 1 / (1 + (s/wc)^2n)^0.5= 1 / [(s/wc)^2n + 1]^0.5= 1 / [(s^2n + wc^2n) / wc^2n]^0.5= wc^n / [(s^2n + wc^2n)^0.5](2)将复平面上的频率变量s转化为极坐标形式:s = σ + jω= r * e^(jθ)其中,σ为实部,ω为虚部,r为模值,θ为相位角。
(3)将传递函数H(s)中的s用极坐标表示:H(s) = wc^n / [(s^2n + wc^2n)^0.5]= wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5](4)将传递函数H(s)中的分母进行有理化:H(s) = wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5] = wc^n * (r^2n * e^(j2nθ) - wc^2n)^-0.5(5)将传递函数H(s)中的极坐标形式转化为直角坐标形式:H(s) = wc^n * cos(nθ) - jwc^n * sin(nθ)----------------------------------(r^2n - wc^2n)^0.5(6)根据频率响应要求,令模值等于1时的频率为截止频率wc,则有:1 = |H(jwc)| = wc^n / (wc^2n - wc^2n)^0.5=> 1 = (wc/wc)^n=> n = 1 / [ln(1/√R)] / [ln(tan(π/4 + fc/fs/2))]其中,R为通带最大衰减,fc为通带截止频率,fs为采样频率。
巴特沃斯低通滤波器的设计巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。
式中N 为整数,是滤波器的阶次。
巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。
巴特沃斯低通滤波器的振幅特性如图a 所示。
滤波器的特性完全由其阶数N 决定。
当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。
滤波器的振幅特性对参数N 的依赖关系如图a 所示。
设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N Np jH j C pλλ==+-p 图a 巴特沃斯低通滤波器的振幅特性由于221()()()1()a a jsNcH s H s AsjΩ=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。
2、常用设计巴特沃斯低通滤波器指标pλ:通带截止频率;pα:通带衰减,单位:dB;sλ:阻带起始频率;sα:阻带衰减,单位:dB。
说明:(1)衰减在这里以分贝(dB)为单位;即222110lg10lg1()NCH jαλλ⎡⎤==+⎣⎦(2)当3dBα=时p CΩ=Ω为通常意义上的截止频率。
(3)在滤波器设计中常选用归一化的频率/Cλ=ΩΩ,即1,p sp sp pλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。
(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。
目录1.题目........................................................ .................................. .22.要求........................................................ (2)3.设计原理........................................................ . (2)数字滤波器基本概念......................................................... (2)数字滤波器工作原理......................................................... (2)巴特沃斯滤波器设计原理 (2)脉冲响应不法......................................................... .. (4)实验所用MATLAB函数说明 (5)4.设计思路........................................................ .. (6)5、实验内容........................................................ . (6)实验程序......................................................... . (6)实验结果分析......................................................... . (10)6.心得体会........................................................ . (10)7.参考文献........................................................ . (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。
数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。
巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。
本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。
在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。
巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。
要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。
巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。
一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。
确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。
根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。
设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。
数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。
常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。
在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。
同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。
综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。
巴特沃斯低通滤波器一、设计要求(1)设计一巴特沃斯数字低通滤波器,在0.3π通带频率范围内,通带幅度波动小于1dB ,在0.5π~πrad 阻带频率范围内,阻带衰减大于12dB 。
二.设计过程巴特沃斯双线性变换法(1)数字指数:p w =0.3π,s w =0.5π,(2)求p Ω,s Ω利用频率预畸变公式得:p Ω=2T tan 2p w =2T tan 320π=1.019⨯1Ts Ω=2T tan 2s w =2T tan 4π=2T (3)确定滤波器阶数sp λ=s p ΩΩ=211.019TT ⨯=1.963 sp k≈0.132 N=—lg lg sp sp k λ=—lg 0.132lg1.963≈3.0023 N=4 (4)确定系统函数G(p)= 43212.613 3.4142 2.61311p p p p ++++ c Ω=p Ω()10.12101p a N --=1.019⨯1T⨯()10.1124101-⨯⨯-=1.2065T P=11211c s z s T z ---=Ω+=1c Ω⨯2T ⨯1111z z ---+=11211.20651z z ---+ H(z)=G(p)=12341234146434.1675441.3465432.542711.06234 1.69864z z z z z z z z--------++++-+-+三.软件仿真(1)将分子分母带入Matlab 验证b=[1 4 6 4 1];a=[34.16754 -41.34654 32.5427 -11.06234 1.69864];[H,w]=freqz(b,a,1000);plot(w,20*log10(abs(H)/max(H)),'-');grid;xlabel('frequency');ylabel('magnitude');-250-200-150-100frequency m a g n i t u d e图(a )频率——幅度衰减图0.3π≈0.940.9250.930.9350.940.9450.950.955frequency m a g n i t u d e图(b)0.5π≈1.57frequency m a g n i t u d e图(c)(2)用Matlab 直接仿真出低通滤波器wp=2*tan(0.3*pi/2)*1000;ws=2*tan(0.5*pi/2)*1000;ap=1;as=12;[n,wn]=buttord(wp,ws,ap,as,'s');[b,a]=butter(n,wn,'s');[bn,an]=bilinear(b,a,1000);[H,w]=freqz(bn,an);plot(w,abs(H),'-');grid;xlabel('frequency');ylabel('magnitude');legend('双线性变化法');figure(2);plot(w,20*log10(abs(H)/max(H)),'-');grid;00.51 1.522.533.5frequency m a g n i t u d e0.3π≈0.94图(d)0.5π≈1.57图(e)四.分析将计算得出的低通滤波器系统函数H(z)的分子分母各项系数用Matlab验证,得图(a)幅频关系图。
一阶归一化数字巴特沃斯低通滤波器数字巴特沃斯滤波器是一种常用的数字信号处理滤波器,可用于滤波和去噪等应用。
本文将介绍一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。
1.原理概述一阶归一化数字巴特沃斯低通滤波器是一种理想滤波器。
其设计目标是实现信号在截止频率以下的完美衰减,而在截止频率以上则不进行滤波。
该滤波器的频率响应特点可用模拟巴特沃斯低通滤波器的频率响应特点进行近似。
2.设计步骤实现一阶归一化数字巴特沃斯低通滤波器的设计,可以按照以下步骤进行:步骤一:确定截止频率根据滤波器的应用需求,选择合适的截止频率。
截止频率是指滤波器开始滤波的频率点,一般以赫兹为单位。
步骤二:计算模拟巴特沃斯低通滤波器的阶数根据所选截止频率,使用模拟巴特沃斯低通滤波器的阶数公式计算阶数。
对于一阶滤波器,阶数为1。
步骤三:计算截止频率对应的模拟巴特沃斯低通滤波器的增益根据所选截止频率,使用模拟巴特沃斯低通滤波器的增益公式计算增益。
对于一阶滤波器,增益为-3dB。
步骤四:进行归一化在设计数字巴特沃斯滤波器时,需要对模拟滤波器进行归一化。
归一化处理可将截止频率与折返频率映射到数字滤波器的单位圆上。
步骤五:数值实现根据归一化的模拟滤波器参数,使用双线性变换将其转换为数字滤波器的差分方程。
假设我们需要设计一个一阶归一化数字巴特沃斯低通滤波器,截止频率选取为1kHz。
根据步骤一,确定截止频率为1kHz。
根据步骤二,计算阶数为1。
根据步骤三,计算增益为-3dB。
在步骤四中,进行归一化处理,将1kHz映射到单位圆上。
最后,在步骤五中,根据归一化的模拟滤波器参数,使用双线性变换转换为数字滤波器的差分方程。
本文介绍了一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。
通过明确的设计步骤,我们可以根据所需的截止频率实现滤波器设计。
在应用中,可以根据实际需求调整截止频率和滤波器的阶数,以获得更好的滤波效果。
目录1.题目.......................................................................................... .22.要求 (2)3.设计原理 (2)3.1 数字滤波器基本概念 (2)3.2 数字滤波器工作原理 (2)3.3 巴特沃斯滤波器设计原理 (2)3.4脉冲响应不法 (4)3.5实验所用MATLAB函数说明 (5)4.设计思路 (6)5、实验内容 (6)5.1实验程序 (6)5.2实验结果分析 (10)6.心得体会 (10)7.参考文献 (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。
并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。
用此信号验证滤波器设计的正确性。
三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。
正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。
如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。
2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。
如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z 域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。
同样在频率域内,输入和输出存在下列关系Y(jw)=X(jw)H(jw)式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。
w 为数字角频率,单位rad 。
通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。
X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。
一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。
3、巴特沃斯滤波器设计原理(1)基本性质巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。
巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。
巴特沃思滤波器的低通模平方函数表示1()ΩΩ+=Ωc N /22a 11)(j HN=1,2,…… (2-6)下面归纳了巴特沃斯滤波器的主要特征a 对所有的N ,()1a j H 20=Ω=Ω。
b 对所有的N ,()707.0aj 2c =ΩΩH =Ω即()dB 3a lg 20j H c =Ω=ΩΩ c ()Ωj H a 2是Ω的单调下降函数。
d ()Ωj H a 2随着阶次N 的增大而更接近于理想低通滤波器。
如下图2所示,可以看出滤波器的幅频特性随着滤波器阶次N 的增加而变得越来越好,在截止频率Ωc 处的函数值始终为1/2的情况下,通带内有更多的频带区的值接近于1;在阻带内更迅速的趋近于零。
图2 巴特沃思低通滤波平方幅频特性函数(2)系统函数设巴特沃斯的系统函数为H a (s ),则:(3)设计过程巴特沃思低通滤波技术指标关系式为a p >-20log|H a (j Ω)|,Ω<ΩPa s <-20log|H a (j Ω)|,Ω>Ωs其中:Ωp 为通带边界频率,Ωs 为阻带边界频率。
代入式1.4.1可得:经过化简整理可得:取满足上式的最小整数N作为滤波器的阶数。
再将N代入可得:或查表求得归一化传输函数H(s),令s/Ωc代替归一化原型滤波器系统函数中的s,即得到实际滤波器传输函数。
4、脉冲响应不变法所谓脉冲响应不变法就是数字滤波器的脉冲响应序列h(n)等于模拟滤波器的响应ha(t)的采样值,即h(n)=ha(t)|t=nT=ha(nT)式中,T为采样周期。
因此数字滤波器的系统函数H(Z)可由下式求得H(z)=Z[h(n)]=Z[ha(nT)]Z[-]表示[-]的内容进行变换,变换的内容请参考相应的数字信号处理材料。
如果已经获得了满足性能指标的模拟滤波器的传递函数Ha(s) ,求与之对应的数字滤波器的传递函数H(z)的方法是:(1)、求模拟滤波器的单位脉冲响应ha(t)。
式中,L[Ha(s)]表示对Ha(s)的Laplace.逆变换。
Laplace变换内容请参考高等数学的积分变换或信号处理教材。
(2)、求模拟滤波器单位冲激响应ha(t)的采样值,即数字滤波器冲激响应序列h(n)。
(3)、对数字滤波器的冲激h(n)响应进行z变换,得到传递函数H(z)。
由上述方法推论出更直接地由模拟滤波器系统函数Ha(s)求出数字滤波器系统函数H(z)的步骤是:(1)利用部分分式展开将模拟滤波器的传递函数H(z)展开成Ha(s)= Rk\(S-Pk)在MATLAB中这步可通过residue函数实现若调用residue函数的形式为[b,a]=residue(R,P,K)形式。
若为[R,P,K]=residue(a,b)则为上面调用形式的反过程。
(2)将模拟极点Pk变换为数字极点e^pkT即得到数字系统的传递函数H(z)= Rk\(1-e^pkT*z*(-1))式中T为采样间隔。
(3)将上式转换为传递函数形式,可采用[R,P,K]=residue(b,a)。
对于上面的步骤,中已经提供了冲激响应不变法设计数字滤波器的函数,调用格式为[bz,az]=impinvar(b,a[ ,Fs],Fp)式中,b,a为模拟滤波器分子和分母多项式系数向量;Fs为采样频率(所滤波数据),单位Hz,缺省时为1Hz,为预畸变频率(prewarped frequency),是一个“匹配”频率,在该频率上,频率响应在变换前后和模拟频率可精确匹配。
一般设计中不考虑。
bz,az分别为数字滤波器分子和分母多项式系数向量。
5、实验所用MATLAB函数说数。
(1)[N,wc]=buttord(wp,ws,RP,As,’s’)该格式用于计算巴特沃斯模拟滤波器的阶数N和3db截止频率wc。
Wp、ws和wc是实际模拟角频率(rad\s)。
Rp和As为通带最大衰减和最小衰减。
(2)[Z,P,k]=buttap(N)该格式用于计算N阶巴特沃斯归一化模拟低通原型滤波器系统函数的零、极点和增益因子,返回长度为N的列向量Z和P,分别给出N个零点和极点的位置,K表示滤波器增益。
(3)Y=filter(b,a,x)式中b表示系统传递函数的分子多项式的系数矩阵;a表示系统传递函数的分母多项式的系数矩阵;x表示输入序列;filter表示输出序列。
IIR函数实现的直接形式。
(4) [b,a]=butter(N,wc,‘ftype’)计算N阶巴特沃斯数字滤波器系统函数分子、分母多项式的系数向量b、a。
说明:调用参数N和wc分别为巴特沃斯数字滤波器的阶数和3dB截止频率的归一化值,一般是调用buttord格式(1)计算N和wc。
系数b、a是按照z-1的升幂排列。
(5) [B,A]=butter(N,Ωc,‘ftype’,‘s’)计算巴特沃斯模拟滤波器系统函数的分子、分母多项式系数向量。
说明:调用参数N和Ωc分别为巴特沃斯模拟滤波器的阶数和3dB截止频率(实际角频率),可调用buttord(2)格式计算N和Ωc。
系数B、A按s的正降幂排列。
tfype为滤波器的类型:◇ftype=high时,高通;Ωc只有1个值。
◇ftype=stop时,带阻;Ωc=[Ωcl,Ωcu],分别为带阻滤波器的通带3dB 下截止频率和上截止频率。
◇ ftype缺省时:若Ωc只有1个值,则默认为低通;若Ωc有2个值,则默认为带通;其通带频率区间Ωcl<Ω <Ωcu。
(6)[H,w]=freqz(b,a,N)b和a分别为离散系统的系统函数分子、分母多项式的系数向量,返回量H 则包含了离散系统频响在 0~pi范围内N个频率等分点的值(其中N为正整数),w则包含了范围内N个频率等分点。
调用默认的N时,其值是512。
可以先调用freqz()函数计算系统的频率响应,然后利用abs()和angle()函数及plot()函数,绘制出系统的频响曲线。
(7)lp2lp函数 [bt,at]=lp2lp(b,a,w0)该函数用于实现由低通模拟原型滤波器至低通滤波器的频率变换,可以用传递函数和状态空间进行转换,但无论哪种形式,其输入必须是模拟滤波器原型。
(8)[bz,az]=impinvar(b,a,fs)把具有[b,a]模拟滤波器传递函数模型转换为采样频率为fs的数字滤波器的传递函数模型[bz,az],如果在函数中没有确定频率fs时,函数默认为1Hz.四、设计思路设定信号↓模拟低通滤波器原型→频率变换→模拟离散化→IIR数字滤波器→输出信号五、设计内容1.MATLAB程序设计Wp=2*pi*100; Ws=2*pi*150; %滤波器截止频率Rp=0.5; Rs=10; %通带最大衰减和阻带最小衰减Fs=1000; %采样频率Nn=128; %调用freqz所用的频率点数[N,Wc]=buttord(Wp,Ws,Rp,Rs,'s'); %模拟滤波器的最小阶数[z,p,k]=buttap(N); %设计模拟低通原型Butterworth滤波器[Bap,Aap]=zp2tf(z,p,k); %将零点极点增益形式转换为传递函数形式[b,a]=lp2lp(Bap,Aap,Wc) %进行频率转换[bz,az]=impinvar(b,a,Fs); %运用脉冲响应不变法得到数字滤波器的传递函数figure(1)[H,W]=freqz(bz,az,Nn,Fs); %绘制数字滤波器的幅值特性和相频特性subplot(2,1,1)plot(W,20*log10(abs(H)));xlabel('频率');ylabel('幅度');grid on;subplot(2,1,2);plot(W,180\pi*unwrap(angle(H)));xlabel('频率');ylabel('幅度');grid on;figure(2)f1=50; f2=200; %输入信号的频率N=100; %数据长度dt=1\Fs; n=0:N-1; t=n*dt; %采样间隔和时间序列x=sin(2*pi*f1*t)+sin(2*pi*f2*t); %滤波器输入信号subplot(2,1,1); %绘制输入信号plot(t,x);title('输入信号'); %用filter函数对输入信号滤波y1=filter(bz,az,x);subplot(2,1,2); %绘出输出波形xlabel('时间')title('输出信号');2.实验结果分析实验得到的两幅图如上所示,在第一幅图中,小于100处衰减小于3Hz,而在大于120Hz处衰减大于15dB,满足滤波器设计指标。