矩阵论去年试题
- 格式:doc
- 大小:79.50 KB
- 文档页数:4
中国矿业大学2014~2015学年第1学期研究生《矩阵论》试卷答题时间:120分钟 考试方式:闭卷姓名_ _____学号____________院系__________任课老师____________得分______ 【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
【二】(15分) 已知矩阵313729214A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(1)求A 的不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=。
【三】(15分)已知矩阵010865A ⎪=- ⎪ ⎪-⎝⎭(1)求A 的特征多项式; (2)求A 的最小多项式;(3)把矩阵Ate 表示成关于A 的多项式。
【四】(10分)已知矩阵111032A ⎪= ⎪ ⎪⎝⎭,求A 的QR 分解。
【五】(10分) 已知矩阵0.20.70.30.6A ⎛⎫= ⎪⎝⎭(1)求1,A A ∞; (2)讨论矩阵幂级数0kk A∞=∑的敛散性;若收敛,求其和。
【六】(15分)已知下面矛盾方程组123131311221x x x x x x x ++=⎧⎪+=⎨⎪+=⎩ (1)求系数矩阵A 的满秩分解; (2)求A 的广义逆矩阵A +;(3)求该方程组的极小范数最小二乘解。
【七】(15分)()n n ij A a R ⨯=∈,证明:2,,max max ij ij i ji ja An a ≤≤⋅【八】(10分)假设A 是n 阶方阵,若A 不与任何对角阵相似,证明:存在多项式()f λ及正整数k ,使得()f A O ≠但[()]k f A O =。
参 考 答 案【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
09级-研-矩阵论试题及参考答案一(15分)设实数域上的多项式321()223p x x x x =+++,322()23p x x x x =+++ 323()45p x x x x =-+--,324()367p x x x x =-++(1)求线性空间()1234span ,,,W p p p p =的一组基和维数; (2)求多项式32()41p x x x =++在你所求基下的坐标。
解:(1)111110021130101224600123357000r A -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪=−−→⎪ ⎪-- ⎪⎪-⎝⎭⎝⎭123,,p p p 是W 的一组基,dim 3W =;(2)123()()()()p x p x p x p x =++,p 的坐标为(1,1,1)T x =。
或:x^3+1 , x^2 , x+1.这三个基形式是最简单的。
坐标为(1,4,0)。
二(15分)(1)设2T ()tr()Ff X XX X ==,其中()m n ij m n X x R ⨯⨯=∈是矩阵变量,求dfdX ; (2)设()m nij m n A a R ⨯⨯=∈,12(,,,)T n n x x x x R =∈ 是向量变量,()F x Ax =,求T dF dx.解 (1)211()m nij i j f X x ===∑∑,2ij ijfx x ∂=∂, ()22ij m n ijm ndf f x X dX x ⨯⨯⎛⎫∂=== ⎪ ⎪∂⎝⎭;(2) 111()n k k k n mk k k a x F x Ax a x ==⎛⎫⎪ ⎪==⎪ ⎪ ⎪⎪⎝⎭∑∑ ,1,1,2,,i i mi a F i n x a ⎛⎫∂ ⎪== ⎪∂ ⎪⎝⎭ , 11111(,,)n T nm mn a a dF F F A dx x x a a ⎛⎫∂∂ ⎪=== ⎪∂∂ ⎪⎝⎭。
三(15分)已知微分方程组0d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,200031011A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,0111x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求矩阵A 的Jordan 标准形J 和可逆矩阵P 使1P AP J -= (2)求矩阵A 的的最小多项式)(λA m (3)计算矩阵函数Ate ; (4)求该微分方程组的解。
矩阵引论试题及答案一、选择题(每题5分,共20分)1. 矩阵的元素全部为0的矩阵称为:A. 零矩阵B. 单位矩阵C. 对角矩阵D. 标量矩阵答案:A2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行(列)的最大数目D. 矩阵的元素个数答案:C3. 矩阵的转置是指:A. 矩阵的行列互换B. 矩阵的行数变为列数C. 矩阵的列数变为行数D. 矩阵的元素不变答案:A4. 两个矩阵相乘的结果称为:A. 矩阵的和B. 矩阵的差C. 矩阵的积D. 矩阵的逆答案:C二、填空题(每题5分,共20分)1. 如果矩阵A的行列式为0,则称矩阵A为________。
答案:奇异矩阵2. 矩阵A的逆矩阵记作________。
答案:A^(-1)3. 矩阵A与矩阵B相乘,记作________。
答案:AB4. 对于任意矩阵A,矩阵A与单位矩阵相乘的结果仍然是________。
答案:A三、简答题(每题10分,共30分)1. 请简述矩阵的行列式是什么?答案:矩阵的行列式是一个标量值,它提供了关于矩阵的一些重要信息,如矩阵是否可逆(行列式非零则可逆)、线性方程组是否有解等。
2. 矩阵的逆矩阵有什么性质?答案:矩阵的逆矩阵具有以下性质:(A^(-1))^(-1) = A,(AB)^(-1) = B^(-1)A^(-1),以及单位矩阵I的逆矩阵仍然是I。
3. 矩阵的转置矩阵有什么特点?答案:矩阵的转置矩阵具有以下特点:(A^T)^T = A,(AB)^T =B^TA^T,以及矩阵A的转置矩阵的行列式等于矩阵A的行列式。
四、计算题(每题15分,共30分)1. 给定矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\],计算A的行列式。
答案:\[ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 给定矩阵B = \[\begin{bmatrix} 2 & 3 \\ 4 & 5\end{bmatrix}\],计算B的逆矩阵。
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
2011年《矩阵论》习题解答一、 掌握线性空间的定义及判断是否为线性空间。
二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-=== 求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标; (3)在两组基下有相同坐标的非零向量。
解:(1)因为 ()()()12341234123420561336,,,,,,,,,11211013C ββββαααααααα⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭所以由基1234,,,αααα到基1234,,,ββββ的过渡矩阵2056133611211013C ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭ 或解 非齐次线性方程组的解 11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1T k -,对两个基有相同坐标的非零向量为()1234k x x x x ++-,k 非零常数。
二、已知线性空间V 是矩阵空间22R ⨯, (1) 证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。
2017—2018学年第一学期《矩阵论》试卷(17级专业硕士)专业 学号 姓名 得分一.判断题(每小题3分,共15分)1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零,即ker A =0。
( )2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个线性空间。
( )3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分必要条件是A 的谱半径1)(<A ρ。
( )4.n 阶多项式矩阵)(λA 与)(λB 相抵当且仅当它们具有相同的秩。
( )5.对于任意n 阶复矩阵A 与B ,有B A B A e e e +=⋅。
( )二.填空题(每小题4分,共20分)1.设V 是数域K 上全体n 阶反称矩阵按通常的加法与数乘构成的一个 线性空间,则其维数V dim = ,V 的一组基是。
2.⎪⎪⎪⎭⎫ ⎝⎛+-=)1()1(1)(223λλλλλA 的初等因子组为,不变因子组为。
3.设⎪⎪⎭⎫ ⎝⎛--=211`2A ,则1||||A = ,F A ||||= , 2||||A = ,=2)(A cond 。
4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D在基12,,,,1-n x x x 以及基12)!1(1,,!21,,1--n x n x x 下的矩阵分别为, 。
5.设A 是复数域上的正规矩阵,则A 满足: ,并写出常用的三类正规矩阵 。
三.计算题(每小题12分,共48分)1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。
2. 22⨯R 中,取基(I ):⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,000122211211E E E E ,以及基(II ):⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='1001,0111,0011,000122211211E E E E , (1)求基(I )到基(II )的过渡矩阵;(2)若定义22⨯R 中线性变换A A c b aA ⎪⎪⎭⎫ ⎝⎛=0)(,求A 在基(I )下的矩阵。
一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX ;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。
二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。
三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。
四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。
五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-;(2)求A 的Jordan 形(需要讨论)。
六(10分)设m n r A R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),n n x I A A y y R +=-∀∈。
七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n n n n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。
八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。
矩阵论试题一、(10分)设函数矩阵()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin求:()⎰tdt t A 0和(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫⎝⎛-⎰⎰⎰⎰t tt t tdt tdt dt t dtt 0sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-==因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A 三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
南京航空航天大学07-14硕士研究生矩阵论试题2007 ~ 2008学年《矩阵论》 课程考试A 卷一、(20分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-----=111322211A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子;(3)求A 的最小多项式,并计算I A A 236-+;(4)写出A 的Jordan 标准形。
二、(20分)设22⨯R 是实数域R 上全体22⨯实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。
(1)求22⨯R的维数,并写出其一组基;(2)设W 是全体22⨯实对称矩阵的集合, 证明:W 是22⨯R的子空间,并写出W 的维数和一组基;(3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基;(4)给出22⨯R 上的线性变换T : 22,)(⨯∈∀+=R A A A A T T写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。
三、(20分)(1)设⎪⎪⎭⎫⎝⎛-=121312A ,求1A ,2A ,∞A ,F A ; (2)设nn ij C a A ⨯∈=)(,令ijji a n A ,*max ⋅=,证明:*是n n C ⨯上的矩阵范数并说明具有相容性;(3)证明:*2*1A A A n ≤≤。
四、(20分)已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=100100011111A ,向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=2112b , (1)求矩阵A 的QR 分解;(2)计算+A ;(3)用广义逆判断方程组b Ax =是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、(20分)(1)设矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=15.025.011210,2223235t t B t t A ,其中t 为实数,问当t 满足什么条件时, B A >成立?(2)设n 阶Hermite 矩阵022121211>⎪⎪⎭⎫⎝⎛=A A A A A H,其中k k C A ⨯∈11,证明:0,012111122211>->-A A A A A H。
参考答案‘1 0 0、一(15 分〉、设 A= 0 3 1 ,- b(1)求可逆矩阵P使得P'AP=J ,其中丿为A的Jordan标准形;(2)计算0;(3)求微分方程组斗卩=Ax(t), x(0) = 的解。
解:(1) |27-4| = (2-1)(2-2)2‘1 0(P21 — A= 0 —1 -1 , rank(2/ — A) = 2, dim N(2/ — A) = 3 — 2 = 1 w 1 1 > 故A的Jordan标准形为<1 、J= 2 1<1 、记P = [a^a2,a3],由P~l AP = J = 2 1 得1 2丿Aa x = a x T r 0、了Aa2 = 2a2=> «)=0 ,0 =J 1 ,巾= 0Aa, =G2+ 2a30 、一1丿1‘1 0 0、p =0 1 0 (不唯一)9P-}AP = J = 2 11°-1 b < J (2)根据te严=p e J,p-10 (T 2 、0 0、'e!0 0 0 1 0 e" te210 1 0 = 0 e"(l+f) te21-1 1/ X e21z1 b 0 -te2'戶(1-»(3) x(t) = e At x(0) = e2t二(15分人设51 0、0A = 1 2 1 ,b =1<0 1 1> kb(1)求A的满秩分解A = FG,(2)求A的广义逆矩阵?r:(3)求Ax=b的最小2—范数最小二乘解X”。
(2)fl2(3) x Ls. = A'b = — 29br (1 o -n1 2'0 1 0 ,<0 1> \ /FG(不唯一)解:(1) A =5三(15分人设6? =(q卫2卫3“妇)「是给左的常向咼,X=(勺)2站是矩阵变量, 计算d(“)T和d(X叫dX dX解由Xa =(a}x n +a2x}2 +。
参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。
B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。
C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。
D. 同一矩阵的行秩与列秩相等。
题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。
B. 阶梯形矩阵的行秩等于主元的个数。
C. 阶梯形矩阵的列秩等于主元的个数。
D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。
题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。
B. 若A的行秩和列秩都为n,则A为可逆矩阵。
C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。
D. 若A为可逆矩阵,则方程Ax=b存在唯一解。
题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。
B. A的所有特征值都是实数。
C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。
D. A一定可以对角化。
2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。
解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。
解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。
对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。
一(20分) 设矩阵10112043A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, (1)求A 的初等因子组; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使得J AP P =-1; (4)求k A 。
答案:(1)21111120(2)(2)(1)4343I A λλλλλλλλλ+-⎡⎤+-⎢⎥-=--=-=--⎢⎥-⎢⎥-⎣⎦观察得,21231,1,(2)(1)D D D λλ===--因此,初等因子组为2(1),(2)λλ-- 5分 (2)1112J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦10分 (3)设123[,,]P ααα=,由1P AP J -=,得1121233(1)(2)2(3)A A A ααααααα=⎧⎪=+⎨⎪=⎩由(1),1()0I Aα-=,解得1112α⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦其中20110.05110010.54200I A --⎡⎤⎡⎤⎢⎥⎢⎥-=--→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由(2),21()I A αα-=-,解得2011α⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦其中12011100.50.5[,]1101010.50.542200I A α----⎡⎤⎡⎤⎢⎥⎢⎥--=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦由(3)3(2)0I A α-=,解得3010α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中30110021000014100I A -⎡⎤⎡⎤⎢⎥⎢⎥-=-→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦1100100111,201210111P P -⎡⎤⎡⎤⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦15分 (4)1001002kkk J⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,12102122124021k k k kk k kA PJ P k k k k --+⎡⎤⎢⎥==+---+⎢⎥⎢⎥-+⎣⎦20分二(20分) 设微分方程组0d d (0)xA x tx x ⎧=⎪⎪⎨⎪⎪=⎩,其中311202113A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,0111x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)求A 的最小多项式)(λA m ; (2)求A te; (3)求该方程组的解。
矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。
历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。
以下是对矩阵理论历年试题的汇总及答案解析。
矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。
答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。
接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。
特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。
答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。
计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。
矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。
3.是否可将B看作欧式空间V2中某个基的度量矩阵。
()4.(),其中。
5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。
6.AB的全体特征值是()。
7.()。
8.B的两个不同秩的{1}-逆为。
二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。
三.(15分已知。
1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。
四.(10分用Householder变换求矩阵的QR分解。
五.(10分)用Gerschgorin定理隔离矩阵的特征值。
(要求画图表示)六.(15分已知。
1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。
(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。
6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。
南京航空航天大学矩阵论历年试题整理者:王正华2007.1.28一 设2615115126A −=− −(1)求A 的特征多项式和A 的全部特征值;(2)求A 的行列式、不变因子,初等因子; (3)求A 的最小多项式; (4)写出A 的Jordan 标准形二(1)设210121A= −,1)求12,,,F A A A A ∞;(2)设A 为n阶矩阵,证明21,max ij i j na A∞≤≤≤≤三(1)111111112A − =− −,作出A 的满秩分解并求出A +;(2)利用该矩阵判断如下方程组1231231231121x x x x x x x x x −+=−++=− −+= ,是否相容?若相容求通解;若不相容,求极小最小二乘解四 设V 是数域P 上全体3阶实对称矩阵作成的线性结构(1)求V 的维数,并写出一组基(2)在V 中定义变换100100()011010001011T X X=,证明T 是线性变换,并求T 在(1)中所取基下的矩阵五(1)设2010252,022024220t A t B −==,其中t 是实数,t 满足什么条件时A B >成立?(2)设,A B 均为Hermite 半正定矩阵,证明:○1若A >0, 则AB 相似于半正定对角阵; ○2若A >0, 则()00tr AB B =⇒=; ○3若()0,tr AB = 则0AB =一(20分) 已知 A =1001225i i −,其中i(1)求12,,,F A A A A ∞(2)证明:A ≥0 (3)设,,nH c B αβαβ∈=,证明22FBαβ=二(20分) 设A =110101101211 ,b =314(1)作出A 的满秩分解 (2) 计算A +(3)利用广义逆矩阵方法判断线性方程组A x =b 是否相容?若相容,求其通解,若不相容,求其极小最小二乘解三(20分) 设A =110430211− − −(1)求A 的特征多项式和A 的全部特征值(2)求A 的不变因子、初等因子和最小多项式 (3)写出A 的Jordan 标准形(4)设A 为n 阶矩阵,证明:A 非奇异的充要条件是存在常数项不为零的多项式()f x ,使()f x =0 四(20分) (1)设A 、B 均为Hermite 矩阵(n 阶),且A B =B A ,证明: (a )如果A >0,且A B >0 , 则B >0(b )如果A >0, B >0,且33A B >,则A B >(2)若A 是2阶实正规矩阵,且i αβ±是A 的一对共轭实特征值,证明:存在正交矩阵Q ,使得Q AQ αββα+ =−五(20分) 设实数域上线性空间32R ×的子集W =22{,()0}A R tr A ×∈=(1)W 是22R×的子空间(2)给出W 的变换T (A )=A A ++,A W ∀∈,证明:T 是W 上的线性变换 (3)求Ker (T )及其维数(4)求W 的一组基和维数,并写出线性变换T 在所取基下的矩阵一 (20分)设[]n R X 表示实数域R 上次数小于n 的多项式再添上零多项式构成的线性空间(按通常多项式的加法和数与多项式的乘法)(1)求[]n R X 的维数并写出[]n R X 的一组基;(2)在[]n R X 中定义线性变换D :(())'(),()[]n D f x f x f x R x =∈,求D 在(1)中所取基下的矩阵表示,并求R (D )和Ker (D )(3)证明D 在任何一组基下的矩阵都不可能是对角矩阵(4)在[]n R X 中定义内积11(,)()(),f g f x g x dx −=(),()[]n f x g x R X ∈,求出3[]R X 的一组标准正交基二 (20分)设A =3615125125− −−三 (16分)(1)设A =11121013 − −,求12,,,F A A A A ∞ (2)设A 为n 阶矩阵,证明:()1A ρ<的充要条件是存在某种相容矩阵范数.,使得1A <四(14分)设111021111021A − −−=(1) 作出A 的一个QR 分解,即求满足T Q Q I =的4×3矩阵和3阶上三角矩阵R ,使得A QR = (2) 计算A +五 (16分)(1)设311120102A − = − ,121211111B =,问A ≥B 是否成立 (2)设A 为n 阶Hermite 正定矩阵,B 为n 阶Hermite 半正定矩阵,并且AB BA =,证明 (i )AB 为Hermite 半正定矩阵 (ii )如果A ≥B ,则2A ≥2B六 (14分)(1)设222i i A i i i i =− −−,其中i =,证明A 是正定矩阵; (2)若n n A C ×∈,且21A<,则A >B ≥0(3)设,n n A B C ×∈是Hermite 矩阵,证明如果A >B ≥0,则A B −≤A ,且等号成立一(20分)(1)设A 为n 阶非奇异复矩阵,试述矩阵A 的QR 分解定理;(2)设110101111010A= −(i )作出A 的一个满秩分解 (ii )计算广义逆矩阵A +二(18分)(1)设210123032A=− −,求12,,,F A A A A ∞;(2)设A 为n 阶可逆矩阵,.是满足1I =的矩阵范数,证明11AA −−≥,21A ≤三(22分)设3117937100480024A −−−−−= − −(1) 求A 的特征多项式和A 的全部特征值; (2) 求A 的不变因子、初等因子和最小多项式; (3) 写出A 的Jordan 标准形; (4) 求lim k k A →∞;(5) 计算Ae 四(20分)(1)设622250207A −=−,证明A 为正定矩阵;(2)设A ,B 均为Hermite 矩阵,证明:(i ) 如果A >0, 则A B 相似于对角矩阵;(ii ) 如果A >0, B >0, 则A B 的特征值均为正数;(iii ) 如果A >0, B >0,且A B =B A ,则A B 是Hermite 正定矩阵五(20分)设V 是实数域R 上全部3阶实反对称矩阵作成的线性空间(按矩阵的加法和数量乘法)(1) 求V 的维数,并写出V 的一组基;(2) 证明:若A 是3阶实对称矩阵,且X V ∈,则必有AX XA V +∈; (3) 作映射T 如下:011011()101101,110110T X X X X V −−=+∈ −−证明:T 是V 上的线性变换;(4) 求T 在(1)中所取基下的矩阵表示。
同济大学课程考核试卷(样卷)2013—2014学年第一学期命题教师签名: 审核教师签名: 课号:2102001 课名:矩阵论 考试考查:考试此卷选为:期中考试( )、期终考试( √ )、重修( )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟.要求写出解题过程,否则不予计分) 一、填空与选择题(4⨯6分)1.设矩阵134251122A --⎛⎫⎪=-- ⎪⎪⎝⎭的三角分解A LR =,则单位下三角形矩阵L =2.设5阶矩阵A 的特征矩阵E A λ-的初等因子是2,,2,2λλλλ--,则A 的最小多项式()m λ= 。
3.设T 是22R⨯上的线性变换:对任意22R ⨯∈A ,()2TT A A A =+,则T 的特征值是 。
4.设A 为4阶实矩阵,线性方程组0Ax =的解空间是V ,4(){|R }R A Ax x =∈,则V 在4R 内的正交补是A. ()R AB. ()T R AC. ()()T R A R A ⋂D. ()()T R A R A +5. 设3R 中1{(,0,0)|R }TV x x =∈,2{(,,)|R }TV x x x x =∈,则12V V +=A.{(,,)|,R }T x x y x y ∈B.{(,,)|,R }T x y x x y ∈C.{(,,)|,R }T x y y x y ∈D. }R ∈x x x x T |),,{(6.设A 是m n ⨯矩阵,则[()]TR AA +=A.()R AB.()T R A )(+A R D.前三个选项都不对二、(14分)设1231231001002,1,0;0,1,1121111αααβββ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪====== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭是3R 的两组基,T 为3R 上的线性变换,TT1231313((,,))(2,,2)T x x x x x x x =+,求 (1)求由基123,,ααα到基123,,βββ的过度矩阵; (2)T 在基123,,βββ的下的矩阵。
参考答案一(15分)在3R 中的线性变换T 将基11=11α⎛⎫ ⎪ ⎪ ⎪-⎝⎭,20=21α⎛⎫ ⎪ ⎪ ⎪-⎝⎭,31=01α⎛⎫ ⎪ ⎪ ⎪-⎝⎭变为基11=10β⎛⎫ ⎪- ⎪ ⎪⎝⎭,20=11β⎛⎫ ⎪ ⎪ ⎪-⎝⎭,30=32β⎛⎫⎪⎪⎪-⎝⎭, (1)求线性变换T 在基123ααα,,下的表示矩阵A ; (2)求向量(1,2,3)Tξ=及()T ξ在基123ααα,,下的坐标。
解:(1)由123123123(,,)(,,)(,,)T A βββαααααα==知:1123123(,,)(,,)A αααβββ-=1101100212100111120113101113112111012112012011---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪=-=---=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪--------⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭。
(2)设112323(,,)x x x ξααα⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1121233212110(,,)1012411239x x x αααξ-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪==--=- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()T ξ在基123ααα,,下的坐标:112233233213y x y A x y x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭。
二(15分)已知301121101A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭,(1)求A 的最小多项式()m λ及Ate ;(2)求微分方程组d ()()d (0)(1,1,1)T x t Ax t t x ⎧=⎪⎨⎪=⎩的解。
解:(1)3(2)I A λλ-=-,A 的最小多项式2()(2)m λλ=-;设()()()tf e mg a b λλλλλ==++,()t f te λλ'=,由22(2)2(2)2t t f e a b f te ⎧==+⎪⎨'==⎪⎩得:22(12)tt a te b t e ⎧=⎪⎨=-⎪⎩,210101At t t t e aA bI e t t t t +⎛⎫ ⎪=+=-- ⎪ ⎪--⎝⎭; (2)2012()1212At t t x t e x e t t +⎛⎫⎪==- ⎪ ⎪-⎝⎭。
南昌航空大学硕士研究生 2009/2010 学年第 一 学期考试卷
学生姓名: 所在学院: 学号: 课程名称: 矩阵论 班级: 成绩: 任课教师姓名: 艾小伟 任课教师所在学院: 数信学院
一.设矩阵A=010110122---⎛⎫ ⎪ ⎪ ⎪⎝⎭
,求A 的值域与核。
(10分)
二.设1α=(1,1,1,0)T , 2α=(-1,-2,-1,-1)T , 1β=(2,1,3,-1)T , 2β=(1,-1,0,-2)T , V 1=span(1α,2α), V 2=span(1β,2β),分别求V 1∩V 2 ,V 1+V 2 的一组基和维数。
(12分)
三.在22R ⨯中,定义线性变换Г(X) =1102X -⎛⎫ ⎪⎝⎭
,求Г在基E 11=1000⎛⎫ ⎪⎝⎭, E 12=0100⎛⎫ ⎪⎝⎭, E 21=0010⎛⎫ ⎪⎝⎭, E 22=0001⎛⎫ ⎪⎝⎭
下的矩阵。
(10分)
四.求矩阵A=0
401
401
22----⎛⎫ ⎪ ⎪ ⎪⎝⎭的Smith 标准形和Jordan 标准形J ,并求可逆矩阵P ,使P -1AP=J 。
(18分)
五.求矩阵A=123002111021-⎛⎫ ⎪ ⎪ ⎪⎝⎭
的满秩分解。
(10分)
六.设║•║是n n C ⨯上的矩阵范数,对于非零向量n C α∈,定义:T ,n x x x C αα=∀∈,证明:x α是
n C 上的向量范数(8分)
七.求正规矩阵A=010100000⎛⎫ ⎪ ⎪ ⎪⎝⎭
的谱分解式。
(10分)
八.设‖•‖是n n
C⨯上的相容矩阵范数,A是n阶可逆矩阵,λ为A的任一特征值,证明:‖A-1‖-1≤|λ|≤‖A‖。
(10分)
九.已知A=
10
01
00
⎛⎫
⎪
⎪
⎪
⎝⎭
,求A的奇异分解和广义逆矩阵A+。
(12分)。