高中数学直线与圆的位置关系练习题
- 格式:docx
- 大小:33.29 KB
- 文档页数:4
第 1 页 共 3 页 2020年高中数学必修二《直线与圆的位置关系》1.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( )A .122B .2 2C .3 2D .4 2答案 B解析 x 2+y 2+4x -4y +6=0,即(x +2)2+(y -2)2=2,∴圆心(-2,2)到x -y +4=0的距离d =0.∴弦长等于直径2 2.故选B.2.经过点M(2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y =5 B.2x +y +5=0 C .2x +y =5D .2x +y +5=0 答案 C解析 ∵M(2,1)在圆上,∴切线与MO 垂直,∵k MO =12,∴切线斜率为-2.又过(2,1),∴y -1=-2(x -2),即y +2x =5.故选C.3.以点P(-4,3)为圆心的圆与直线2x +y -5=0没有公共点,则圆的半径r 的取值范围为( )A .(0,2)B .(0,5)C .(0,25)D .(0,10) 答案 C解析 圆心到直线的距离为d ,则d =|-8+3-5|5=2 5. ∵没有公共点,∴d>r ,∴选C.4.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .1个B .2个C .3个D .4个 答案 C解析 ∵x 2+y 2+2x +4y -3=0,∴(x +1)2+(y +2)2=8,圆心(-1,-2)到x +y +1=0的距离为d =|-1-2+1|2=2=r 2,∴有三个点.故选C. 5.由点P(1,3)引圆x 2+y 2=9的切线的长是( )A .2B.19 C .1D .4 答案 C。
2.6 直线与圆、圆与圆的位置关系2.6.1 直线与圆的位置关系A级必备知识基础练1.(2022江苏盐城伍佑中学高二月考)点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是()A.(x-1)2+y2=4B.(x-1)2+y2=2C.x2+y2=2xD.x2+y2=-2x2.圆x2+y2=1与直线y=kx-3有公共点的充要条件是()A.k≤-2或k≥2B.k≤-2C.k≥2D.k≤-2或k>23.(2022山东高二学情联考)过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,则切线长为()A. B.2C.2D.4.(多选题)(2022重庆育才中学高二月考)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法正确的是()A.圆M的圆心为(4,3)B.圆M的半径为5C.圆M被x轴截得的弦长为6D.圆M被y轴截得的弦长为65.圆x2+y2-2x-8y+13=0截直线ax+y-1=0所得的弦长为2,则a=()A.-B.-C. D.26.已知圆C与直线x-y=0及x-y=4都相切,圆心在直线x+y=0上,则圆C的方程为.7.若点P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为.8.已知圆C:x2+y2-6x-8y+21=0,直线l过点A(1,0).(1)求圆C的圆心坐标及半径;(2)若直线l与圆C相切,求直线l的方程;(3)当直线l的斜率存在且与圆C相切于点B时,求|AB|.B级关键能力提升练9.(2020全国Ⅰ,文6)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.410.已知直线l:x-y+m=0与圆x2+y2=4交于A,B两点,O为坐标原点,且=0,则实数m为()A.2B.2C.±2D.±211.(多选题)(2022云南罗平县高二检测)过点(2,2),斜率为k的直线与圆x2+y2-4x=0的位置关系可能是()A.相离B.相切C.相交但不过圆心D.相交且经过圆心12.(多选题)(2022辽宁葫芦岛协作校高二联考)已知直线l:3x+4y=0,圆C:x2-4x+y2=m-5,则()A.m的取值范围为(0,+∞)B.当直线l与圆C相切时,m=C.当1<m<2时,l与圆C相离D.当直线l与圆C相交时,m的取值范围是13.已知k∈R,若直线l:y=kx+1被圆x2-2x+y2-3=0所截,则截得的弦长最短为,此时直线l的方程为.14.如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A交于M,N两点.(1)求圆A的方程;(2)当|MN|=2时,求直线l的方程.C级学科素养创新练15.(2022黑龙江大庆中学高二月考)若圆x2+y2-2x-6y+1=0上恰有三点到直线y=kx的距离为2,则k的值为()A.2B.1C.D.16.若直线l:y=ax-3与圆C:x2+y2=4相交,求a的取值范围.参考答案2.6直线与圆、圆与圆的位置关系2.6.1直线与圆的位置关系1.B∵PA是圆的切线,|PA|=1且圆的半径为r=1,∴点P到圆心的距离恒为.又圆心(1,0),设P(x,y),由两点间的距离公式得(x-1)2+y2=2,即点P的轨迹方程是(x-1)2+y2=2.故选B.2.A若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=≤1,即≥3,∴k2+1≥9,即k2≥8,解得k≤-2或k≥2.∴圆x2+y2=1与直线y=kx-3有公共点的充要条件是k≤-2或k≥2.故选A.3.D由圆C:(x+2)2+(y-1)2=5,可得圆心C(-2,1),半径r=,过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,两条切线长相等,只取其中一条切线,设切点为M,则CM⊥PM,由题得|PC|==3,|CM|=r=,所以切线|PM|=.故选D.4.BD将x2+y2-8x+6y=0化为圆的标准方程是(x-4)2+(y+3)2=25,所以圆M的圆心坐标为(4,-3),半径为5,故A错误,B正确;圆心(4,-3)到x轴的距离为3,所以圆M被x轴截得的弦长为2=8,故C错误;对选项D,圆心(4,-3)到y轴的距离为4,所以圆M被y轴截得的弦长为2=6,故D正确.故选BD.5.A将x2+y2-2x-8y+13=0化为(x-1)2+(y-4)2=4,则该圆圆心为(1,4),半径为2.又弦长为2,则圆心到直线距离为=1.根据点到直线距离公式可知d==1,化简可得(a+3)2=a2+1.解得a=-,故选A.6.(x-1)2+(y+1)2=2设圆心为点C(a,-a),由点到直线的距离公式得,解得a=1,所以圆心为(1,-1),且半径为,故圆的方程为(x-1)2+(y+1)2=2.7.x-y-3=0圆心坐标为点C(1,0),由题可得,k PC==-1.又|CP|⊥|AB|,因此k AB=1.因为直线AB过点P,可知直线AB的方程为y+1=x-2,即x-y-3=0.8.解将圆C的方程化成标准式方程得(x-3)2+(y-4)2=22.(1)圆C的圆心坐标是(3,4),半径为2.(2)当直线l的斜率不存在时,直线l的方程是x=1,满足题意;当直线l的斜率存在时,可设直线l的方程是y=k(x-1),即kx-y-k=0.由圆心(3,4)到直线l的距离等于圆C的半径,可得=2,解得k=,故直线l的方程是3x-4y-3=0.综上所述,直线l的方程是x=1或3x-4y-3=0.(3)由(2)可得直线l的方程是3x-4y-3=0.圆C的圆心是点C(3,4),则|AC|==2,所以|AB|==4.9.B圆的方程可化为(x-3)2+y2=9.因为=2<3,所以点(1,2)在圆内.如图所示,设圆心O1(3,0),A(1,2),当弦BC与O1A垂直时弦最短,因为|O1A|==2,|O1B|=3,所以|AB|==1,所以|BC|=2|AB|=2.10.C由=0可知∠AOB=90°.由于圆半径为r=2,则圆心(0,0)到直线l的距离d=,解得|m|=2,即m=±2,故选C.11.BC由题得,圆的标准方程为(x-2)2+y2=4,则圆心为(2,0),半径为2.设过点(2,2),斜率为k的直线为y=k(x-2)+2,即kx-y-2k+2=0,∴圆心到kx-y-2k+2=0的距离d=≤2,∴当d=2时,直线与圆相切;当d<2时,直线与圆相交但直线不过圆心.故B,C正确,A,D错误.故选BC.12.BC圆C的标准方程为(x-2)2+y2=m-1,则圆C的圆心为C(2,0),半径r=,由r=>0,得m>1,故A错误;因为C(2,0)到直线l的距离为,所以当直线l与圆C相切时,r=,解得m=,故B正确; 当1<m<2时,0<r<1<,所以直线l与圆C相离,故C正确;当直线l与圆C相交时,,解得m>,故D错误.故选BC.13.2y=x+1圆x2-2x+y2-3=0的标准方程为(x-1)2+y2=22,所以圆心为O(1,0),半径为r=2.直线l:y=kx+1过定点P(0,1).故|OP|=.当l⊥OP时,截得的弦长最短,则最短弦长为2=2.由题得,k OP=-1,所以k l=1,故直线l的方程为y=x+1.14.解(1)设圆A的半径为r.∵圆A与直线l1:x+2y+7=0相切,∴r==2.故圆A的方程为(x+1)2+(y-2)2=20.(2)①当直线l的斜率不存在时,可得直线l的方程为x=-2,易得|MN|=2,符合题意;②当直线l的斜率存在时,设直线l的方程为y=k(x+2),即kx-y+2k=0.取MN的中点Q,连接AQ,则AQ⊥MN.∵|MN|=2,∴|AQ|==1.∴=1,解得k=.∴直线l的方程为3x-4y+6=0.综上,直线l的方程为x=-2或3x-4y+6=0.15.C将方程x2+y2-2x-6y+1=0化为(x-1)2+(y-3)2=9,则圆心(1,3),半径为3.∵圆上恰有三点到直线y=kx的距离为2,∴圆心(1,3)到直线y=kx的距离为1,即=1,解得k=.故选C.16.解(方法1)圆C:x2+y2=4的圆心C(0,0),r2=4.直线l:y=ax-3可化为ax-y-3=0.圆心C(0,0)到直线l:ax-y-3=0的距离d=.由直线l与圆C相交可得r>d,则r2>d2,即4>,解得a>或a<-.因此a 的取值范围是-∞,-∪,+∞.(方法2)将y=ax-3代入x2+y2=4得到x2+(ax-3)2=4,整理可得(1+a2)x2-6ax+5=0.因为直线与圆相交,则Δ=(-6a)2-4×(1+a2)×5=36a2-20-20a2=16a2-20>0,即a2>,解得a>或a<-,故a 的取值范围是-∞,-∪,+∞.11。
高中数学-直线与圆的位置关系练习题5分钟训练(预习类训练,可用于课前)1.已知直线x=a(a>0)和圆(x-1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.2解析:考查直线与圆的位置关系及平面几何知识.结合图形,可知直线x=a 要与圆(x-1)2+y 2=4相切,则a=3或-1,因为a >0,所以a=3. 答案:C2.直线l:4x-3y+5=0与圆C:x 2+y 2-4x-2y+m=0无公共点的条件是m 属于( )A.(-∞,0)B.(0,5)C.(1,5)D.(1,+∞) 解析:由圆心(2,1)到直线l:4x-3y+5=0的距离大于圆的半径可得. 答案:C3.过点M(3,2)作⊙O:x 2+y 2+4x-2y+4=0的切线方程是____________.解析:作图知,所求切线不可能垂直x 轴,故切线斜率必定存在.设切线方程为y-2=k(x-3),即kx-y+2-3k=0,由22)1(|3212|-+-+--k k k =1,得k=125或k=0,代入即可求得. 答案:y=2或5x-12y+9=010分钟训练(强化类训练,可用于课中)1.已知直线l:ax-y-b=0,圆C:x 2+y 2-2ax-2by=0,则l 与C 在同一坐标系中的图形只可能是( )图2-3-1解析:考查对直线与圆的方程的认识,直线与圆位置关系的判断.注意到圆的方程的特点,易知圆C 过原点,所以A 、C 均不正确;再由B 、D 两选项和圆心、直线的斜率知B 正确. 答案:B2.直线m(x+1)+n(y+1)=0(m≠n)与圆x 2+y 2=2的位置关系是( )A.相切B.相离C.相交D.不确定解析:方法一,考查直线与圆的位置关系的判定方法.直线方程可化为mx+ny+m+n=0.由于圆心(0,0)到该直线的距离为22||nm n m ++,又222222)(2)(n m n m n m n m +--=-++<0(m≠n),∴d<r,即直线与圆相交.方法二:易知直线m(x+1)+n(y+1)=0(m≠n)恒过点(-1,-1),且点(-1,-1)在圆上,又m≠n,所以直线与圆不相切.所以直线与圆相交. 答案:C3.过点(2,1)的所有直线中,被圆x 2+y 2-2x+4y=0截得的弦最长的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.3x-y-1=0 D.3x+y-5=0 解析:考查直线与圆的位置关系及圆的性质.直线被圆截得的最长弦应是直径,故问题即求过(2,1)和圆心的直线方程.圆的方程为(x-1)2+(y+2)2=5,直线被圆截得的弦最长时,应过圆心(1,-2).由两点式,得直线方程为3x-y-5=0. 答案:A4.已知圆C :(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R ). (1)证明不论m 取什么实数,直线l 与圆C 恒相交;(2)求直线l 被圆C 截得的弦长的最短长度及此时的直线方程.(1)证明:∵直线过定点(3,1),(3-1)2+(1-2)2=5<25, ∴点(3,1)在圆的内部.∴不论m 为何实数,直线l 与圆恒相交. (2)解:从(1)的结论知当直线l 过定点M(3,1)且与过此点的圆O 的半径垂直时,l 被圆所截得的弦长d(A,B)最短,由垂径定理知d(A,B)=54])21()13[(25222222=-+--=-OM r ,此时k l =OMk -1. 由31121112---=++-m m =2,得m=43-,代入得l 的方程为2x-y-5=0.5.已知圆x 2+y 2-6mx-2(m-1)y+10m 2-2m-24=0(m∈R ). (1)求证:不论m 为何值,圆心总在同一条直线l 上. (2)与l 平行的直线中,哪些与圆相交、相切、相离?(3)求证:任何一条平行于l 且与圆相交的直线被圆截得的弦长相等.(1)证明:将圆的方程配方得(x-3m)2+[y-(m-1)]2=25. 设圆心为(x,y),则⎩⎨⎧-==,1,3m y m x消去m 得l:x-3y-3=0.∴圆心恒在直线l:x-3y-3=0上.(2)解:设与l 平行的直线是l′:x -3y+b=0,圆心(3m,m-1)到直线l′的距离为d=10|3|10|)1(33|b b m m +=+--.∵半径r=5,∴当d <r ,即3105--<b <3105-时,直线与圆相交;当d=r ,即b=±3105-时,直线与圆相切;当d >r 时,即b <3105--或b >3105-时,直线与圆相离.(3)证明:设对于任一条平行于l 且与圆相交的直线l 1:x-3y+b=0,由于圆心到直线l 1的距离d=10|3|b +,则弦长=222d r -与m 无关,故截得的弦长相等.30分钟训练(巩固类训练,可用于课后)1.圆x 2+y 2-4x=0在点P(1,3)处的切线方程是( )A.x+y 3-2=0B.x+y 3-4=0C.x-y 3+4=0D.x-y 3+2=0 解:点P(1,3)在圆x 2+y 2-4x=0上,所以点P 为切点, 从而圆心与P 的连线应与切线垂直. 又因为圆心为(2,0),所以1230--·k=-1,解得k=33,所以切线方程为x-3y+2=0. 答案:D2.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A.(22,22-)B.(2,2-)C.(42,42-) D.(81,81-) 解析:圆x 2+y 2=2x 可化为(x-1)2+y 2=1,当直线l 的斜率不存在时,显然直线与圆不相交,不合题意;当直线的斜率存在时,设直线的点斜式方程为y=k(x+2),即kx-y+2k=0.因为直线和圆相交,故圆心到直线的距离小于半径,即1|3|2+k k <1,解得k 2<81,所以k∈(42,42-). 答案:C3.过点(1,2)的直线l 将圆(x-2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=_____________.解析:由数形结合思想可知满足题设条件的直线与圆心(2,0)和点(1,2)垂直,由两点间连线的斜率公式可得过两点(2,0)和(1,2)的直线的斜率为2212-=-,故所求直线的斜率为22. 答案:22 4.直线3x+y-23=0截圆x 2+y 2=4所得的弦长是( )A.1B.3C.2D.32解析:本题考查点到直线的距离公式和圆的弦长公式.圆心(0,0)到直线323-+y x =0的距离为3232=,由圆的半径为2,结合圆中弦长公式可得:所求圆的弦长为22)3(22-=2.答案:C5.直线l 过点P(0,2),且被圆x 2+y 2=4截得的弦长为2,则直线l 的斜率为( ) A.22 B.±2 C.±3 D.±33解析:设直线l:y-2=kx,即kx-y+2=0,由题意,得[22)1(|200|-++-k ]2+12=22,解得k=±33. 答案:D6.若点P(x 0,y 0)是圆x 2+y 2=r 2内一点,则直线x 0x+y 0y=r 2和该圆的位置关系是______________.解析:考查点与圆、线与圆的位置关系的判断方法.由已知x 02+y 02<r 2,又(0,0)到x 0x+y 0y=r2的距离为d=r r y x r 220202>+=r,∴直线与圆相离.答案:相离7.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B,∠APB=60°,则动点P 的轨迹方程为______________.解:因为∠APB=60°,故∠APO=30°,设P(x,y),因为sin∠APO=||||PO AO ,即22121yx +=,所以x 2+y 2=4.答案:x 2+y 2=48.已知圆C 和y 轴相切,圆心C 在直线x-3y=0上,且被直线y=x 截得的弦长为72,求圆C 的方程.解:设圆心坐标为(3m ,m),∵圆C 和y 轴相切,得圆的半径为3|m|,∴圆心到直线y=x 的距离为22|2|=m |m|.由半径、弦心距的关系得9m 2=7+2m 2,∴m=±1.∴所求圆C 的方程为(x-3)2+(y-1)2=3,(x+3)2+(y+1)2=3.9.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域.已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响? 解:以台风中心为原点O,东西方向为x 轴,建立如图所示坐标系,其中,取10 km 为长度单位.这样,受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9.轮船航线所在直线l 的方程为4x+7y-28=0,问题转化为圆O 与直线l 有无公共点问题.由于d=65|2800|-+≈3.5>半径3,所以这艘轮船不用改变航线,不会受到台风影响.。
2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【考点梳理】考点一:直线Ax +By +C =0与圆(x -a )2+(y -b )2=r 2的位置关系位置关系相交相切相离公共点个数2个1个0个判断方法几何法:设圆心到直线的距离为d =|Aa +Bb +C |A 2+B 2d <r d =r d >r代数法:由Ax +By +C =0,(x -a )2+(y -b )2=r 2,消元得到一元二次方程,可得方程的判别式ΔΔ>0Δ=0Δ<0考点二:直线与圆的方程解决实际问题审题→建立数学模型→解答数学模型→检验,给出实际问题的答案.【题型归纳】题型一:判断直线与圆的位置关系1.(2021·全国高二单元测试)直线10mx y -+=与圆22(2)(1)5x y -+-=的位置关系是()A .相交B .相切C .相离D .与m 的值有关2.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是()A .相交B .相切C .相离D .与a 的大小有关3.(2021·北京房山·高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为()A .相交B .相切C .相离D .不能确定题型二:由直线与圆的位置关系求参数4.(2021·云南省云天化中学高二期末(文))直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =()A .1-B .1C .3-D .35.(2021·内蒙古赤峰市·)若直线()200,0ax by a b --=>>被圆22 2210x y x y +-++=截得的弦长为2,则11a b+的最小值为()A .14B .4C .12D .26.(2020·大连市红旗高级中学)若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是()A .相交B .相切C .相离D .不确定题型三:圆的弦长问题7.(2021·汕头市澄海中学高二月考)若圆22:160C x x y m +++=被直线3440x y ++=截得的弦长为6,则m =()A .26B .31C .39D .438.(2021·湖南长沙市·长郡中学高二期中)圆22:(2)4C x y -+=与直线40x y --=相交所得弦长为()A .1B .2C .2D .229.(2021·湖北十堰市·高二期末)直线3410x y ++=被圆220x y x y +-+=所截得的弦长为()A .710B .57C .75D .145题型四:圆的弦长求参数或者切线方程10.(2021·上海闵行中学高二期末)圆()()22134x y -+-=截直线10ax y +-=所得的弦长为23,则a =()A .43-B .34-C .3D .211.(2021·广西河池市·高二期末(文))已知斜率为1-的直线l 被圆C :222430x y x y ++-+=截得的弦长为6,则直线l 的方程为()A .2210x y ++=或2230x y +-=B .0x y +=或20x y +-=C .2220x y +-=或22320x y ++=D .20x y +-=或220x y ++=12.(2021·长春市第二十九中学高二期末(理))直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是()A .9B .4C .12D .14题型五:直线与圆的应用13.(2021·广东深圳市·高三月考)一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度最接近()A .13.1米B .13.7米C .13.2米D .13.6米14.(2021·渝中区·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A .230米B .202米C .430米D .125米15.(2020·重庆市万州沙河中学高二月考)一艘海监船上配有雷达,其监测范围是半径为26km 的圆形区域,一艘外籍轮船从位于海监船正东40km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10km/h 这艘外籍轮船能被海监船监测到且持续时间长约为()小时A .1B .2C .3D .4题型六:直线与圆的位置关系的综合应用16.(2021·贵州遵义市·高二期末(理))已知O 圆心在直线2y x =+上,且过点()1,0A 、()2,1B .(1)求O 的标准方程;(2)已知过点()3,1的直线l 被所截得的弦长为4,求直线l 的方程.17.(2020·永丰县永丰中学高二期中(文))已知圆C 经过点()()1,0,2,1A B ,且圆心在直线:l y x =上.(1)求圆C 的方程;(2)若(,)P x y 为圆C 上的动点,求22y x +-的取值范围.18.(2020·黑龙江哈尔滨·哈九中高二期中(文))已知线段AB 的端点B 的坐标是()6,8,端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点()1,0.(1)求点M 的轨迹方程;(2)记(1)中求得的图形的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,P Q 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【双基达标】一、单选题19.(2021·嘉兴市第五高级中学高二期中)直线:1l y x =-截圆22:1O x y +=所得的弦长是()A .2B .3C .2D .120.(2021·陆良县中枢镇第二中学高二月考)经过点()2,3P -作圆22:224C x y x ++=的弦AB ,使得点P 平分弦AB ,则弦AB 所在直线的方程为()A .50x y --=B .50x y +-=C .50x y -+=D .50x y ++=21.(2021·云南保山市·高二期末(文))若直线m :0kx y +=被圆()2224x y -+=所截得的弦长为2,则点()0,23A 与直线m 上任意一点P 的距离的最小值为()A .1B .3C .2D .2322.(2021·四川省乐至中学高二期末)圆222410x y x y ++-+=关于直线220ax by -+=(),a b R ∈对称,则ab 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .10,4⎛⎤⎥⎝⎦C .1,04⎛⎤- ⎥⎝⎦D .1,4⎛⎫-∞ ⎪⎝⎭23.(2021·全国高二专题练习)直线3y kx =+与圆()()22324x y -+-=相交于M ,N 两点,若23MN =,则k 的值是()A .34-B .0C .0或34-D .3424.(2021·广西桂林市·(理))圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有()A .1个B .2个C .3个D .0个25.(2021·全国)已知圆C 的方程为22(3)(4)1x y -+-=,过直线:350l x ay +-=上任意一点作圆C 的切线.若切线长的最小值为15,则直线l 的斜率为()A .4B .-4C .34-D .43-26.(2021·全国高二期中)在平面直角坐标系中,动圆222:(1)(1)C x y r -+-=与直线1(2)()y m x m R +=-∈相切,则面积最大的圆的标准方程为()A .22(1)(1)4x y -+-=B .22(1)(1)5x y -+-=C .22(1)(1)6x y -+-=D .22(1)(1)8x y -+-=27.(2021·山西晋中·高二期末(理))已知圆22:20C x y x +-=,直线:10l x y ++=,P 为l 上的动点,过点P 作圆C 的两条切线PA 、PB ,切点分别A 、B ,当·PC AB 最小时,直线AB 的方程为()A .0x y +=B .0x y -=C .2210x y -+=D .2210x y ++=28.(2021·克拉玛依市第一中学高二月考)已知圆22:4210C x y x y +--+=及直线():2l y kx k k R =-+∈,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为()A .42B .22C .8D .82【高分突破】一:单选题29.(2021·全国高二专题练习)已知圆()()22224244100x y mx m y m m m +--++++=≠的圆心在直线70x y +-=上,则该圆的面积为()A .4πB .2πC .πD .2π30.(2021·南昌市豫章中学(文))若圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,则实数a 的取值范围是()A .2921,44⎡⎤-⎢⎥⎣⎦B .91,44⎡⎤-⎢⎥⎣⎦C .91,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭D .2921,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭31.(2021·浙江丽水·高二期中)已知圆22:1O x y +=,直线:20l x y ++=,点P 为l 上一动点,过点P 作圆O 的切线PA ,PB (切点为A ,B ),当四边形PAOB 的面积最小时,直线AB的方程为()A .10x y -+=B .20x y -+=C .10x y ++=D .20x y +-=32.(2021·云南师大附中(理))已知在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,则r =()A .23B .26C .42D .833.(2021·四川(理))已知圆221x y +=与直线310ax by ++=(a ,b 为非零实数)相切,则2213a b+的最小值为()A .10B .12C .13D .1634.(2021·黑龙江哈尔滨市·哈尔滨三中高二其他模拟(理))若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .3,3⎡⎤-⎣⎦B .()3,3-C .33,33⎡⎤-⎢⎥⎣⎦D .33,33⎛⎫- ⎪ ⎪⎝⎭35.(2021·全国高二专题练习)已知三条直线1:0l mx ny +=,2:30l nx my m n -+-=,3:0l ax by c ++=,其中m ,n ,a ,b ,c 为实数,m ,n 不同时为零,a ,b ,c 不同时为零,且2a c b +=.设直线1l ,2l 交于点P ,则点P 到直线3l 的距离的最大值是()A .52102+B .105822+C .58102+D .105222+二、多选题36.(2021·全国高二专题练习)已知直线:20l kx y k -+=和圆22:16O x y +=,则()A .直线l 恒过定点()2,0B .存在k 使得直线l 与直线0:220l x y -+=垂直C .直线l 与圆O 相交D .若1k =-,直线l 被圆O 截得的弦长为437.(2020·河北武强中学高二月考)直线l 经过点()5,5P ,且与圆22:25C x y +=相交,截得弦长为45,则直线l 的方程为()A .250x y --=B .250x y -+=C .250x y -+=D .250x y --=38.(2021·全国高二专题练习)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为()A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为322D .l 被C 截得的最短弦长为439.(2021·山东菏泽·高二期末)已知直线:(2)10l mx m y m --+-=,圆22:20C x y x +-=,则下列结论正确的是()A .直线l 与圆C 恒有两个公共点B .圆心C 到直线l 的最大距离是2C .存在一个m 值,使直线l 经过圆心CD .当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称三、填空题40.(2021·合肥百花中学高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于,A B 两点,则AB =__________.41.(2021·绵阳市·四川省绵阳江油中学(文))已知点(),x y 在圆22(2)(3)1x y -++=上,则x y +的最大值是________.42.(2021·上海高二期中)在平面直角坐标系中,过点()2,2M 且与圆2220x y x +-=相切的直线方程为__________.43.(2021·江苏南京市·南京一中高二期末)已知直线1l :()0kx y k R +=∈与直线2l :220x ky k -+-=相交于点A ,点B 是圆()()22232x y +++=上的动点,则AB 的最大值为___________.四、解答题44.(2021·合肥百花中学高二期末(理))已知圆22:20C x y x my +-+=,其圆心C 在直线y x =上.(1)求m 的值;(2)若过点(1,1)-的直线l 与圆C 相切,求直线l 的方程.45.(2021·荆州市沙市第五中学高二期中)已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程.46.(2021·台州市书生中学高二期中)已知圆()22:15C x y +-=,直线:10l mx y m -+-=.(1)求证:对m R ∈,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交与不同两点,A B ,求弦AB 的中点M 的轨迹方程;(3)若直线过点()1,1P ,且P 点分弦AB 为12AP PB =,求此时直线l 的方程.47.(2020·安徽六安市·立人中学高二期中(理))已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交;(3)求直线l 被圆C 截得的弦长的取值范围.48.(2020·吉安县立中学(文))已知两个定点(0,4)A ,(0,1)B ,动点P 满足||2||PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【答案详解】1.A 【详解】10mx y -+=过定点()0,1,且()22(214501)+-=<-,故()0,1在圆内,故直线和圆相交.故选:A 2.A 【详解】直线l :1=-+y ax a ,即()11y a x =-+恒过()1,1,而221124+=<,故()1,1点在圆内,故直线与圆必然相交.故选:A .3.A 【详解】直线方程整理为(1)10k x y --+=,即直线过定点(1,1)P ,而22114120+-⨯=-<,P 在圆C 内,∴直线l 与圆C 相交.故选:A .4.B 【详解】由22240x y x y ++-=,得22(1)(2)5x y ++-=,则圆心坐标为(12)-,,又直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,由圆的对称性可知,该圆的圆心(12)-,在直线30x y a ++=上,则3(1)121a =-⨯--⨯=,故选:B .5.D 【详解】由圆的方程22 2210x y x y +-++=,可得圆心坐标为(1,1)-,半径为1r =,因为直线20ax by --=被圆截得的弦长为2,可直线20ax by --=必过圆心(1,1)-,代入可得2a b +=,又因为0,0a b >>,则1111111()()(2)(22)2222b a b aa b a b a b a b a b+=⋅++=⋅++≥⋅+⋅=,当且仅当b aab=时,即1a b ==时,等号成立,所以11a b+的最小值为2.故选:D.6.A 【详解】由圆C 方程知其圆心()2,1C ,半径为2,直线l 与圆C 相切,221121k k --∴=+,解得:23k =±,由圆D 方程知其圆心()2,0D ,半径3r =,∴圆心D 到直线l 距离2211k d k -=+;当23k =+时,()()2222323330843231d r +-=-=-<+++,即d r <,此时圆D 与直线l 相交;当23k =-时,()()2222323330843231d r --=-=-<--+,即d r <,此时圆D 与直线l 相交;综上所述:圆D 与直线l 相交.故选:A.7.C 【详解】将圆化为22(8)64(64)x y m m ++=-<,所以圆心到直线3440x y ++=的距离d =24445-+=,该距离与弦长的一半及半径组成直角三角形,所以224364m +=-,解得39.m =8.D 【详解】圆22:(2)4C x y -+=的圆心坐标为()20,,半径为2,圆心到直线40x y --=的距离为204211d --==+,故弦长为:24222-=,故选:D.9.C 【详解】由220x y x y +-+=可得22111222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则圆心坐标为11,22⎛⎫- ⎪⎝⎭,半径22r =,所以圆心到直线3410x y ++=的距离为22113412211034d ⎛⎫⨯+⨯-+ ⎪⎝⎭==+,所以所求弦长为22725r d -=.故选:C.10.B 【详解】由题意圆心到直线的距离为()()2222222222232241111a a a d r d a a a a +++=∴=-=-∴=∴=+++34-故选:B 11.B 【详解】圆C 的标准方程为22(1)(2)2x y ++-=,设直线l 的方程为0x y m ++=,可知圆心到直线l 的距离为2262(2)22⎛⎫-= ⎪ ⎪⎝⎭,有|1|222m +=,有0m =或2-,直线l 的方程为0x y +=或20x y +-=.故选:B【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=,故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D.13.C 【详解】如图建立平面直角坐标系,则圆心在y 轴上,设圆的半径为r ,则圆的方程为222(+)x y r r +=,∵拱顶离水面3米,水面宽12米,∴圆过点(6,3)-,∴2236(3+)r r +-=,∴152r =∴圆的方程为2215225(+)24x y +=,当水面下降1米后,可设水面的端点坐标为(,4)t -,则244t =,∴211t =±,∴当水面下降1米后,水面宽度为411,约为13.2,故选:C.14.C 【详解】以圆拱桥的顶点为坐标原点,建立如图所示的平面直角坐标系,则圆拱所在圆的圆心位于y 轴负半轴上,设该圆的圆心为()0,a -,0a >,则该圆的方程为()222x y a a ++=,记水面下降前与圆的两交点为A ,B ;记水面下降1米后与圆的两交点为C ,D ;由题意可得,()10,4A --,则()()222104a a -+-+=,解得292a =,所以圆的方程为222292922x y ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,水面位下降1米后,可知C 点纵坐标为5y =-,所以2222929522x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,解得2120x =,则此时的桥在水面的跨度为22120430CD x ===米.故选:C.15.B根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴,所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束,所以:14030AB x y l +=,即:341200AB l x y +-=,因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时,故选:B.16.(1)()2225x y +-=;(2)1y =或34130x y +-=.由点()1,0A 、()2,1B 可得AB 中点坐标为31,22⎛⎫⎪⎝⎭,10121AB k -==-,所以直线AB 的垂直平分线的斜率为1-,可得直线AB 的垂直平分线的方程为:1322y x ⎛⎫-=-- ⎪⎝⎭即20x y +-=,由202x y y x +-=⎧⎨=+⎩可得:02x y =⎧⎨=⎩,所以圆心为()0,2O ,()()2210025r OA ==-+-=,所以O 的标准方程为()2225x y +-=,(2)设直线的方程为()13y k x -=-即310kx y k --+=,圆心()0,2O 到直线的距离2131k d k --=+,则()2222134521k k ⎛⎫--⎛⎫=- ⎪ ⎪⎝⎭+⎝⎭可得()222135211k k +=-=+,即2430k k +=,解得:0k =或34k =-,所以直线l 的方程为10y -=或()3134y x -=--,即1y =或34130x y +-=17.(1)22(1)(1)1x y -+-=;(2)4,3⎛⎤-∞- ⎥⎝⎦.【详解】(1)设所求圆的方程为222()()x a y b r -+-=由题意得222222(1)(0)(2)(1)a b r a b r b a ⎧-+-=⎪-+-=⎨⎪=⎩,解得1a b r ===所以,圆的方程为22(1)(1)1x y -+-=(2)由(1)得()()22111x y -+-=,则圆心为()1,1,半径为1;而22y x +-表示圆上的点(,)P x y 与定点()2,2M -连线的斜率,当过点()2,2M -的直线与圆相切时,不妨设直线方程为:()22y k x +=-,即220kx y k ---=,则圆心()1,1到直线220kx y k ---=的距离为212211k k k ---=+,解得43k =-,因此22y x +-的取值范围是4,3⎛⎤-∞- ⎥⎝⎦;18.【详解】(1)设(),M x y ,()00,A x y ,M 是线段AB 中点,006282x x y y+⎧=⎪⎪∴⎨+⎪=⎪⎩,整理可得:002628x x y y =-⎧⎨=-⎩,A 在圆2216x y +=上,()()22262816x y ∴-+-=,整理可得M 点轨迹方程为:()()22344x y -+-=.(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离23421k k d k --==+,解得:34k =,:3430l x y ∴--=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于,P Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离22342411k k k d k k ---==++,()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.19.C圆心(0,0)到直线10x y --=的距离|1|122d -==,因为圆的半径为1,则弦长为2212122⎛⎫-= ⎪⎝⎭.故选:C.20.A 【详解】由题意,圆22:224C x y x ++=,可得圆心坐标为(1,0)C -,点()2,3P -在圆C 内,则过点P 且被点P 平分的弦所在的直线和圆心与P 的连线垂直,又由3012(1)CP k --==---,所以所求直线的斜率为1,且过点()2,3P -,可得所求直线方程为(3)1(2)y x --=-⨯-,即50x y --=.故选:A 21.B 【详解】根据题意,圆()2224x y -+=的圆心为()2,0,半径为2,设圆心到直线0kx y +=的距离为d ,则221k d k =+,若直线0kx y +=被圆()2224x y -+=所截得的弦长为2,则2222r d =-,所以214d +=,又0d >,解得3d =,所以2321k d k==+,解得3k =±,点()0,23A 与直线m 上任意一点P 的最小值为点到直线的距离122331d k ==+,故选:B .22.A 【详解】解:把圆的方程化为标准方程得:22(1)(2)4x y ++-=,∴圆心坐标为(1,2)-,半径2r =,根据题意可知:圆心在已知直线220ax by -+=上,把圆心坐标代入直线方程得:2220a b --+=,即1b a =-,则设2211(1)24m ab a a a a a ⎛⎫==-=-+=--+ ⎪⎝⎭,∴当12a =时,m 有最大值,最大值为14,即ab 的最大值为14,则ab 的取值范围是(-∞,1]4.故选:A .23.C由题意,知23MN =,圆心为(3,2).设圆的半径为r ,则2r =,所以圆心到直线的距离224312MN d r ⎛⎫=-=-= ⎪⎝⎭.由点到直线的距高公式,得232311k k -+=+,解得0k =或34k =-.故选:C.24.B 【详解】由222420x x y y -+++=,得22(1)(2)3x y -++=,则圆心为(1,2)-,半径3r =,因为圆心(1,2)-到直线2220x y -+=的距离为22222243381d +++==>+,且2242243333133d ++--=-=<,所以圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有2个,故选:B25.C 【详解】解:由22(3)(4)1x y -+-=,得圆心(3,4)C ,过直线:350l x ay +-=上任意一点作圆C 的切线,要使切线长最小,即要使圆心到直线l 的距离最小,根据题意作图,如图所示:圆的半径为1,切线长为15,∴圆心到直线l 的距离等于221(15)4+=,∴由点到直线的距离公式得2|3345|49a a ⨯+-=+,解得4a =,此时直线l 的斜率为34-.故选:C .26.B 【详解】解:根据题意,直线1(2)y m x +=-,恒过定点(2,1)-,动圆222:(1)(1)C x y r -+-=,其圆心为(1,1),半径为r ,若圆的面积最大,即圆心到直线l 的距离最大,且其最大值22(12)(11)5CP =-++=,即圆的面积最大时,圆的半径5r =,此时圆的方程为:22(1)(1)5x y -+-=,故选:B .27.A 【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0,半径为1r =.依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC ,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△,而21PA PC =-,当直线PC ⊥l 时,PA 最小,此时PC AB ⋅最小.结合图象可知,此时切点为()()0,0,1,1-,所以直线AB 的方程为y x =-,即0x y +=.故选:A28.A 【详解】将圆C 方程整理为:()()22214x y -+-=,则圆心()2,1C ,半径2r =;将直线l 方程整理为:()12y k x =-+,则直线l 恒过定点()1,2,且()1,2在圆C 内;最长弦MN 为过()1,2的圆的直径,则4MN =;最短弦PQ 为过()1,2,且与最长弦MN 垂直的弦,21112MN k -==-- ,1PQ k ∴=,∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ 的距离为21122-+==d ,22224222PQ r d ∴=-=-=;∴四边形PMQN 的面积114224222S MN PQ =⋅=⨯⨯=.故选:A.29.A 【详解】圆的方程可化为()()()222210x m y m m m -+--=≠,其圆心为(),21m m +.依题意得,2170m m ++-=,解得2m =,∴圆的半径为2,面积为4π,故选:A 30.A 【详解】解:将圆的方程化为标准形式得圆()()22216x a y -++=,所以圆心坐标为(),2a -,半径为4r =因为圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,所以圆心到直线的距离d 满足15d r ≤+=,即4455a d +=≤,解得:2921,44a ⎡⎤∈-⎢⎥⎣⎦故选:A31.C 【详解】设四边形PAOB 的面积为S ,2||||||PAO S S AO AP AP === ,222||||||||1AP OP OA OP =-=-,所以,当||OP 最小时,||AP 就最小,|002|||22min o l OP d -++===,所以||211min min S AP ==-=.此时OP l ⊥.所以||||||||1OA AP PB OB ====,四边形PAOB 是正方形,由题得直线OP 的方程为y x =,联立20y x x y =⎧⎨++=⎩得(1,1)--P ,所以线段OP 的中点坐标为11(,)22--,由题得直线AB 的斜率为1,-所以直线AB 的方程为11()[()]22y x --=---,化简得直线AB 的方程为10x y ++=.故选:C 32.C 【详解】解:因为圆()2222x y r ++=的圆心为()2,0-,半径为r ,圆心()2,0-到直线40x y +-=的距离22432d --==,因为在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,所以32242r =+=.故选:C .33.D 【详解】因为圆221x y +=与直线310ax by ++=相切,所以2200113a b++=+,所以2231a b +=,所以()2222222222222213133310616310a b a b a b ab b a b b a a ⎛⎫+=+=++≥+⋅= ⎪⎭+⎝,取等号时2214a b ==,所以2213a b +的最小值为16.故选:D.34.C 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-=曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,2233411k kk-+-∴≤+,即221k k -≤+,解得3333k -≤≤.故选:C.35.D 【详解】由于1:0l mx ny +=,2:30l nx my m n -+-=,且()0mn n m +⋅-=,12l l ∴⊥,易知直线1l 过原点,将直线2l 的方程化为()()130n x m y ---=,由1030x y -=⎧⎨-=⎩,解得13x y =⎧⎨=⎩,所以,直线2l 过定点()1,3M ,所以10OM =,因为2a c b +=,则2a cb +=,直线3l 的方程为02a c ax y c +++=,直线3l 的方程可化为1022y y a x c ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,由02102y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12x y =⎧⎨=-⎩,所以,直线3l 过定点()1,2N -,如下图所示:设线段OM 的中点为点E ,则13,22E ⎛⎫⎪⎝⎭,若点P 不与O 或M 重合,由于OP PM ⊥,由直角三角形的性质可得EP EO EM ==;若点P 与O 或M 重合,满足12l l ⊥.由上可知,点P 的轨迹是以OM 为直径的圆E ,该圆圆心为13,22E ⎛⎫ ⎪⎝⎭,半径为102.设点E 到直线3l 的距离为d ,当3EN l ⊥时,d EN =;当EN 不与3l 垂直时,d EN <.综上,22135212222d EN ⎛⎫⎛⎫≤=-+--=⎪ ⎪⎝⎭⎝⎭.所以,点P 到直线3l 的距离的最大值为521022OM EN ++=.故选:D.36.BC 【详解】解:对于A 、C ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,所以直线l 恒过定点(2,0)-,故A 错误;因为直线l 恒过定点(2,0)-,而()2220416-+=<,即(2,0)-在圆22:16O x y +=内,所以直线l 与圆O 相交,故C 正确;对于B ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故B 正确;对于D ,1k =-时,直线:20l x y ++=,圆心到直线的距离为22002211d ++==+,所以直线l 被圆O 截得的弦长为()22222242214r d -=-=,故D 错误.故选:BC.37.BD 【详解】圆心为原点,半径为5,依题意可知直线l 的斜率存在,设直线l 的方程为()55y k x -=-,即550kx y k -+-=,所以()2225552521k k k -=-⇒=+或12k =.所以直线l 的方程为25520x y -+-⨯=或1155022x y -+-⨯=,即250x y --=或250x y -+=.故选:BD38.BD 【详解】对于A 选项,直线l 过定点()0,1,且点()0,1在圆C 内,则直线l 与圆C 必相交,A 选项错误;对于B 选项,若直线l 将圆C 平分,则直线l 过原点,此时直线l 的斜率不存在,B 选项正确;对于C 选项,当1k =时,直线l 的方程为10x y -+=,圆心C 到直线l 的距离为22d =,所以,直线l 被C 截得的弦长为2225322⎛⎫-= ⎪ ⎪⎝⎭,C 选项错误;对于D 选项,圆心C 到直线l 的距离为2111d k =≤+,所以,直线l 被C 截得的弦长为2254d -≥,D 选项正确.故选:BD.39.AD 【详解】解:由直线:(2)10l mx m y m --+-=,即(1)210m x y y +--+=,得10210x y y +-=⎧⎨-+=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,则直线l 过定点1(2P ,1)2,圆22:20C x y x +-=化为22(1)1x y -+=,圆心坐标为(1,0)C ,22112||(1)(0)1222PC =-+-=< ,点P 在圆C 内部,∴直线l 与圆C 恒有两个公共点,故A正确;圆心C 到直线l 的最大距离为2||2PC =,故B 错误; 直线系方程(2)10mx m y m --+-=不包含直线10x y +-=(无论m 取何值),而经过1(2P ,1)2的直线只有10x y +-=过(1,0)C ,故C 错误;当1m =时,直线l 为0x y -=,圆C 的圆心坐标为(1,0),半径为1,圆22(1)1y x +-=的圆心坐标为(0,1),半径为1,两圆的圆心关于直线0x y -=对称,半径相等,则当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称,故D 正确.故选:AD .40.22【详解】圆22(1)4x y ++=的圆心为()0,1-,半径为2,则圆心()0,1-到直线的距离为()22011211++=+-,所以()2222222AB =-=,故答案为:2241.21-【详解】令t x y =+,则y x t =-+,t 表示直线在y 轴上的截距,所以x y +的最大值是直线在y 轴上截距的最大值,此时直线与圆相切,则圆心到直线的距离等于半径,即2312td --==,解得21t =-.故答案为:21-42.x =2或3420x y +=-.【详解】圆2220x y x +-=的标准式为:()2211x y -+=,容易验证x =2与圆相切,若切线的斜率存在,则设其方程为:()22220y k x kx y k -=-⇒-+-=,于是圆心到直线的距离2|2|3141k d k k -+==⇒=+,则切线:310342042x y x y -+=⇒-+=.故答案为:x =2或3420x y +=-.43.522+解:因为直线1l :()0kx y k R +=∈恒过定点(0,0)O ,直线2l :220x ky k -+-=恒过定点(2,2)C ,且12l l ⊥,所以两直线的交点A 在以OC 为直径的圆D 上,且圆的方程为22:(1)(1)2D x y -+-=,要求AB 的最大值,转化为在22:(1)(1)2D x y -+-=上找上一点A ,在()()22232x y +++=上找一点B ,使AB 最大,根据题意可知两圆的圆心距为22(12)(13)5+++=,所以AB 的最大值为522+,故答案为:522+44.(1)2m =-;(2)20x y -+=或0x y +=.【详解】解:(1)圆C 的标准方程为:222(1)()124m m x y -++=+,所以,圆心为(1,)2m -由圆心C 在直线y x =上,得2m =-.所以,圆C 的方程为:22(1)(1)2x y -+-=.(2)由题意可知直线l 的斜率存在,设直线l 的方程为:1(1)y k x -=+,即10kx y k -++=,由于直线l 和圆C 相切,得2|2|21k k =+解得:1k =±所以,直线方程为:20x y -+=或0x y +=.45.(1)()()22231x y -+-=;(2)1y x =+.【详解】解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-=(2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并整理,得22(1)4(1)70k x k x +-++=,∴1224(1)1k x x k++=+,12271x x k =+∴()()()212121212241118121k k OM ON x x y y k x x k x x k +⋅=+=++++=+=+ ,即()24141k k k +=+,解得1k =,又当1k =时0∆>,∴1k =,∴直线l 的方程为1y x =+46.(1)圆()22:15C x y +-=的圆心()0,1C ,半径为5,所以圆心()0,1C 到直线l 的距离为22151m m d m m --=<=<+,所以直线l 与圆C 相交,故对m R ∈,直线l 与圆C 总有两个不同交点;(2)当M 与P 不重合时,连接,CM CP ,则CM MP ⊥,所以222CM MP CP +=,设()(),1M x y x ≠,则()()()22221111x y x y +-+-+-=,整理得()222101x y x y x +--+=≠,当M 与P 重合时,1x y ==也满足22210x y x y +--+=,故弦AB 的中点M 的轨迹方程为22210x y x y +--+=;(3)设()()1122,,,A x y B x y ,由12AP PB =,得12AP PB = ,所以()121112x x -=-,即2132x x =-,又()221015mx y m x y -+-=⎧⎪⎨+-=⎪⎩,消去y 得()22221250m x m x m +-+-=,所以212221m x x m +=+,()()4222441516200m m m m ∆=-+-=+>,由2121223221x x m x x m =-⎧⎪⎨+=⎪+⎩得21231m x m +=+,将21231m x m+=+带入()22221250m x m x m +-+-=得1m =±,所以此时直线l 的方程为0x y -=或20x y +-=.47.(1)因为(1,3),(3,1)P Q ---,所以PQ 的中垂线为11(2)2y x +=+上,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩,解得21x y =⎧⎨=⎩,所以圆心为()2,1C ,又半径||5r PC ==,∴圆C 的方程为22(2)(1)25x y -+-=.(2)直线l 的方程可化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩可得3x =,1y =-,∴直线l 过定点(3,1)M -,由22(32)(11)25-+--<可知M 在圆内,∴直线l 与圆C 一定相交.(3)设圆心C 到直线l 的距离为d ,弦长为L ,则2222225L r d d =-=-,∵0||d CM ≤≤,即05d ≤≤,∴4510L ≤≤,即弦长的取值范围是[45,10].48.(1)224x y +=;(2)15±;(3)存在,(1,1)-.(1)由题,设点P 的坐标为(,)x y ,因为||2||PA PB =,即2222(4)2(1)x y x y +-=+-,整理得224x y +=,所以所求曲线E 的轨迹方程为224x y +=.(2)依题意,2OC OD ==,且120COD ∠= ,由圆的性质,可得点O 到边CD 的距离为1,即点(0,0)O 到直线:40l kx y --=的距离为2411k =+,解得15k =±,所以所求直线l 的斜率为15±.(3)依题意,,ON QN OM QM ⊥⊥,则,M N 都在以OQ 为直径的圆F 上,Q 是直线:4l y x =-上的动点,设(,4)Q t t -,则圆F 的圆心为4(,)22t t -,且经过坐标原点,即圆的方程为22(4)0x y tx t y +---=,又因为,M N 在曲线22:4E x y +=上,由22224(4)0x y x y tx t y ⎧+=⎨+---=⎩,可得(4)40tx t y +--=,即直线MN 的方程为(4)40tx t y +--=,由t R ∈且()440t x y y +--=,可得0440x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,所以直线MN 过定点(1,1)-.。
最新人教版高中数学必修二《直线与圆的位置关系》(含答案解析)一、选择题(每小题5分,共40分)1.如果a2+b2=c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是( )A.相交B.相切C.相离D.相交或相切2.设直线过点(a,0),其斜率为-1,且与圆x2+y2=2相切,则a的值为( )A.±B.±2C.±2D.±43.直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为( )A.1B.2C.4D.44.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为( )A.4B.2C.D.5.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是( )A.y=xB.y=-xC.y=xD.y=-x6.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C 截得的弦长为2时,a等于( )A. B.2-C.-1D.+17.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )A.1B.2C.D.38.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角α的取值范围是( )A.0°<α<30°B.0°<α≤60°C.0°≤α≤30°D.0°≤α≤60°二、填空题(每小题5分,共10分)9.过点A(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=________.10.已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= .三、解答题(每小题10分,共20分)11.已知圆的方程为(x-1)2+(y-1)2=1,P点坐标为(2,3),求圆的过P 点的切线方程以及切线长.12.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直时,l必过圆心C.(2)当|PQ|=2时,求直线l的方程.参考答案与解析1选C.圆的半径r=1,圆心(0,0)到直线ax+by+c=0的距离d===>1.2选B.因为切线的方程是y=-(x-a),即x+y-a=0,所以=,a=±2.3选C.由(x-1)2+(y-2)2=5得圆心(1,2),半径r=,圆心到直线x+2y-5+=0的距离d==1,在半径、弦心距、半弦长组成的直角三角形中,弦长l=2=2=4.4选A.根据题意,知点P在圆上,所以切线l的斜率k=-=-=.所以直线l的方程为y-4=(x+2).即4x-3y+20=0.又直线m与l平行,所以直线m的方程为4x-3y=0.故直线l与m间的距离为d==4.5选C.设切线方程为y=kx,圆的方程化为(x+2)2+y2=1,而圆心(-2,0)到直线y=kx 的距离为1,所以=1.所以k=±.又因为切点在第三象限,所以k=.6选C.因为圆的半径为2,且截得弦长的一半为,所以圆心到直线的距离为1,即=1,解得a=±-1,因为a>0,所以a=-1.7选C.设圆心为C(3,0),P为直线上一动点,过P向圆引切线,切点设为N,所以(PN)min=()min=,又(PC)min==2,所以(PN)min=.8选D.设过点P与圆相切的直线方程为y+1=k(x+),则圆心到该直线的距离d= =1,解得k1=0,k2=,画出图形可得直线l的倾斜角的取值范围是0°≤α≤60°.9点A(1,)在圆(x-2)2+y2=4内,当劣弧所对的圆心角最小时,l垂直于过点A(1,)和圆心M(2,0)的直线.所以k=-=-=.答案:10取AB的中点E,连接OE,过点C作BD的垂线,垂足为F,圆心到直线的距离d= ,所以在Rt△OBE中,BE2=OB2-d2=3,所以d==3,得m=-,又在△CDF中,△FCD=30°,所以CD==4.答案:411如图,此圆的圆心C为(1,1),CA=CB=1,则切线长|PA|===2.(1)若切线的斜率存在,可设切线的方程为y-3=k(x-2),即kx-y-2k+3=0,则圆心到切线的距离d==1,解得k=,故切线的方程为3x-4y+6=0.(2)若切线的斜率不存在,切线方程为x=2,此时直线也与圆相切.综上所述,过P点的切线的方程为3x-4y+6=0和x=2.12(1)因为l与m垂直,且k m=-,所以k l=3,故直线l的方程为y=3(x+1),即3x-y+3=0.因为圆心坐标为(0,3)满足直线l的方程,所以当l与m垂直时,l必过圆心C.(2)当直线l与x轴垂直时,易知x=-1符合题意.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),即kx-y+k=0,因为|PQ|=2,所以|CM|==1,则由|CM|==1,得k=,所以直线l:4x-3y+4=0.故直线l的方程为x=-1或4x-3y+4=0.。
2.5.1直线与圆的位置关系 -A 基础练一、选择题1.(2020·全国高二课时练习)直线y=x+1与圆x 2+y 2=1的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离2.(2020山东泰安实验中学高二期中)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A 或B .C .-D .-3.直线y=kx+3被圆x 2+y 2-6y=0所截得的弦长是 ( )A.6B.3C.2√6D.84.(2020福建莆田一中高二期中)已知圆22(1)(1)2x y a ++-=-截直线20x y ++=所得弦的长度为4,则实数a =( )A .-2B .-4C .-6D .-85.(多选题)(2020辽宁盘锦二中高二期中)在同一直角坐标系中,直线y=ax+a 2与圆(x+a )2+y 2=a 2的位置不可能为( )6.(多选题)(2020山东泰安一中高二期中)若过点A (3,0)的直线l 与圆(x -1)2+y 2=1有公共点,则直线l 的斜率可能是( )A.-1B.-√33C.13D.√2二、填空题7.(2020福建三明二中高二期中)过原点且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为______. 8.过点P (3,5)引圆(x -1)2+(y -1)2=4的切线,则切线长为 .9.(2020·浙江下城杭州高级中学高二期中)圆22230x y y ++-=的半径为______.若直线y x b =+与圆22230x y y ++-=交于两点,则b 的取值范围是______.10.(2020山西师大附中高二期中)如下图所示,一座圆拱桥,当水面在某位置时,拱顶离水面2 m,水面宽12 m,当水面下降1 m 后,水面宽为 m .三、解答题11.(2020·江西赣州三中高二期中)已知圆()22:15C x y +-=,直线():10l mx y m m R -+-=∈. (1)判断直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A,B 两点,若直线l 的倾斜角为120°,求弦AB 的长.12.已知两点O (0,0),A (6,0),圆C 以线段OA 为直径,(1)求圆C 的方程;(2)若直线l 1的方程为x -2y+4=0,直线l 2平行于l 1,且被圆C 截得的弦MN 的长是4,求直线l 2的方程.。
高中数学专题:直线和圆的位置关系引入若直线1:1:22=+=+y x C by ax l 与圆有两个不同交点,则点P (a ,b )与圆C 的位置关系是()A.点在圆上B.点在圆内C.点在圆外D.不能确定重难点易错点解析题1题面:a 为何值时,直线:0l x y a +-=与圆22:2C x y +=:(1)相交;(2)相切;(3)相离?题2题面:求直线012=--y x 被圆01222=--+y y x 所截得的弦长.金题精讲题1题面:(1)过点(3,4)P 作圆2225x y +=的切线,求切线的方程;(2)过点(7,1)P 作圆2225x y +=的切线,求切线的方程;(3)过点(5,3)P 作圆2225x y +=的切线,求切线的方程.题2题面:P 为圆122=+y x 上的动点,求点P 到直线01043=--y x 的距离的最小值.题3题面:求与圆22860x y x y +++=相切,且在两坐标轴上截距相等的直线方程.题4题面:从点(,3)P a 向圆22(2)(2)1x y +++=作切线,则切线长的最小值是().A.4B.C.5D.211题5题面:已知两圆04026,010102222=--++=--+y x y x y x y x ,求(1)它们的公共弦所在直线的方程;(2)公共弦长.题6题面:已知圆221:60C x y y +-=,圆222:((1)1C x y -+-=.(1)求证:圆1C 与圆2C 外切,x 轴是它们的一条外公切线;(2)求切点间的两弧与x 轴所围成的图形的面积.题7题面:已知与直线5x =-相切的动圆P 同时与圆221x y +=外切,求动圆圆心P 的轨迹方程.思维拓展题1题面:若点P (a ,b )在圆外,则直线1:1:22=+=+y x C by ax l 与圆的位置关系是.巩固练习一题1已知动直线ℓ:y =kx +5和圆C :(x -1)2+y 2=1,试问k 为何值时,直线ℓ与⊙C 相离?相切?相交?题2求直线x y 3=被圆x 2+y 2-4y =0所截得的弦长.题3过点A (-1,4)作圆C :(x -2)2+(y -3)2=1的切线l ,求切线l 的方程.题4已知P 是圆x 2+y 2=1上的动点,则P 点到直线l :x +y −22=0的距离的最小值为.题5已知圆C :x 2+y 2+2x -4y +3=0.若不经过坐标原点的直线l 与圆C 相切,且直线l 在两坐标轴上的截距相等,求直线l 的方程.题6从点P (3,m )向圆C :(x +2)2+(y +2)2=1引切线,则切线长的最小值为.题7已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.题8已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?题9已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,动圆圆心M的轨迹方程是.题10点M(x0,y)是⊙C:(x-a)2+(y-b)2=r2(r>0)内且不为圆心的一点,则曲线(x0-a)(x-a)+(y-b)(y-b)=r2与⊙C的位置关系是()A.相离B.相交C.相切D.内含巩固练习二题11已知直线y=-2x+m,圆x2+y2+2y=0.(1)m为何值时,直线与圆相交?(2)m为何值时,直线与圆相切?(3)m为何值时,直线与圆相离?题12已知直线l:2x+3y+1=0被圆C:x2+y2=r2所截得的弦长为d,则下列直线中被圆C 截得的弦长同样为d的直线是().A.2x+4y-1=0B.4x+3y-1=0C.2x-3y-1=0D.3x+2y=0题13过点M(2,1)作圆x2+y2=5的切线,求切线方程.题14已知点P(x,y)是圆C:(x+2)2+y2=1上任意一点.求P点到直线3x+4y+12=0的距离的最大值和最小值.题15求与圆x 2+(y -2)2=4相切且在两坐标轴上截距相等的直线方程.题16从直线x -y +3=0上的点向圆(x +2)2+(y +2)2=1引切线,则切线长的最小值是.题17若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.题18已知圆C 1:x 2+y 2+2x +6y +9=0和圆C 2:x 2+y 2−4x +2y −4=0(1)判断两圆的位置关系;(2)求两圆的公共弦所在直线的方程;(3)求两圆公切线所在直线的方程.题19已知圆1C 的圆心在坐标原点O ,且恰好与直线1:l 0x y --=相切.(Ⅰ)求圆的标准方程;(Ⅱ)设点0,0()A x y 为圆上任意一点,AN x ⊥轴于N ,若动点Q 满足OQ mOA nON =+,(其中1,,0,m n m n m +=≠为常数),试求动点Q 的轨迹方程2C .题20点M (x 0,y 0)是圆x 2+y 2=a 2(a >0)内不为圆心的一点,则直线x 0x +y 0y =a 2与该圆的位置关系是().A.相切B.相交C.相离D.相切或相交参考答案重难点易错点解析题1答案:当22a -<<时,直线与圆相交;当2a =±时,直线与圆相切;当2a >或2a <-时,直线与圆相离.题2答案:2305.金题精讲题1答案:(1)34250x y +-=;(2)34250x y +-=或43250x y --=;(3)815850x y +-=或5x =.题2答案:1.题3答案:430x y +=,70x y ++±=.题4答案:B .题5答案:(1)250x y +-=;(2).题6答案:(1)证明略;(2)116π-.题7答案:y 2=12x +36.思维拓展题1答案:相交.巩固练习一详解题1答案:当512->k 时,直线ℓ与⊙C 相离;当512-=k 时,直线ℓ与⊙C 相切;当512-<k 时,直线ℓ与⊙C 相交.详解:∵圆C (x -1)2+y 2=1的圆心坐标为(1,0),半径为1直线ℓ:y =kx +5的方程可化为kx -y +5=0,则圆心C 到直线ℓ的距离d =.当1d =>时,即512->k 时,直线ℓ与⊙C 相离;当1d ==时,即512-=k 时,直线ℓ与⊙C 相切;当1d =<时,即512-<k 时,直线ℓ与⊙C 相交.答案:32.详解:由圆的方程x 2+y 2-4y =0可得,圆心坐标为(0,2),半径R =2圆心到直线x y 3=的距离d =1由半弦长,弦心距,半径构成直角三角形,满足勾股定理可得:l ==为:32.题2答案:y =4或3x +4y -13=0详解:设方程为y -4=k (x +1),即kx -y +k +4=0∴1d +==,∴4k 2+3k =0∴k =0或43-=k .∴切线l 的方程为y =4或3x +4y -13=0题3答案:1.详解:由于圆心O (0,0)到直线l :x +y −22=0的距离|2d ==,且圆的半径等于1,故圆上的点P 到直线的最小距离为d -r =2-1=1.题4答案:x +y +1=0或x +y -3=0.详解:圆C 的方程可化为(x +1)2+(y -2)2=2,即圆心的坐标为(-1,2),半径为2,因为直线l 在两坐标轴上的截距相等且不经过坐标原点,所以可设直线l 的方程为x +y +m =0,于是有d ==m =1或m =-3,因此直线l 的方程为x +y +1=0或x +y -3=0.题5答案:62.详解:由题意,切线长最小时,|PC |最小∵圆C :(x +2)2+(y +2)2=1的圆心(-2,-2)到直线x =3的距离为3+2=5∴|PC |最小值为5,∴切线长的最小值为621-522=.故答案为:62.题6答案:公共弦所在直线方程为3x -4y +6=0,弦长为524.详解:两圆的方程作差得6x -8y +12=0,即3x -4y +6=0,∵圆C 1:(x +1)2+(y -3)2=9,故其圆心为(-1,3),r =3圆到弦所在直线的距离为95d ==,弦长的一半是5122581-9=,故弦长为524.综上,公共弦所在直线方程为3x -4y +6=0,弦长为524.题7答案:(1)111025+=m ;(2)1110-25=m .详解:(1)由已知可得两个圆的方程分别为(x -1)2+(y -3)2=11和(x -5)2+(y -6)2=61-m ,两圆的圆心距53-61-5d 22=+=)()(,+,由两圆外切得5+=,可得111025+=m ;(2)两圆的圆心距53-61-5d 22=+=)()(,两圆的半径之差为m -61-11,即5-61-11=m (舍去)或5--61-11=m ,解得1110-25=m .题8答案:x2=-12y.详解:由题意动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为:x2=-12y.故答案为:x2=-12y.题9答案:A.详解:∵点M(x0,y)是⊙C:(x-a)2+(y-b)2=r2(r>0)内且不为圆心的一点,∴0<(x0-a)2+(y-b)2<r2,圆心(a,b)到直线(x0-a)(x-a)+(y-b)(y-b)=r2的距离为22rd rr=>=,∴圆和直线是相离的位置关系,故选A.巩固练习二详解题1答案:(1)1--m<1-+时,直线与圆相交;(2)m=1--m=1-+时,直线与圆相切;(3)m<1--m>1-+时,直线与圆相离.详解:由y=−2x+m和x2+y2+2y=0,得5x2-4(m+1)x+m2+2m=0.△=16(m+1)2-20(m2+2m)=-4[(m+1)2-5],当△>0时,(m+1)2-5<0,∴1--m<1-+当△=0时,m=1--m=1-+当△<0时,m<1--或m>1-+故5-1-<m<1-+m=1--或m=1-+m<1--或m>1-+题2答案:C.详解:∵圆x 2+y 2=r 2的圆心O (0,0)到直线l :2x +3y +1=0的距离m =1313,又直线l :2x +3y +1=0被圆C :x 2+y 2=r 2所截得的弦长为d ,∴弦心距1313,弦长之半2d与圆半径r 组成的直角三角形,即222)1313()2(+=d r ,∵圆心O (0,0)到直线2x +4y -1=0的距离1313105421221≠=+=m ,故A 与题意不符;同理可得圆心O (0,0)到直线4x +3y -1=0的距离13132≠m ,故B 与题意不符;圆心O (0,0)到直线2x -3y -1=0的距离13133=m 符合题意;而圆心O (0,0)到直线3x +2y =0的距离13134≠m 故D 与题意不符;故选C.题3答案:2x +y -5=0.详解:由圆x 2+y 2=5,得到圆心A 的坐标为(0,0),圆的半径5=r ,而|AM |=r ==+514,所以M 在圆上,则过M 作圆的切线与AM 所在的直线垂直,又M(2,1),得到AM 所在直线的斜率为21,所以切线的斜率为-2,则切线方程为:y -1=-2(x -2)即2x +y -5=0.题4答案:最大值为115,最小值为15.详解:圆心C (-2,0)到直线3x +4y +12=0的距离为d =|3×(-2)+4×0+12|32+42=65.∴P 点到直线3x +4y +12=0的距离的最大值为d +r =65+1=115,最小值为d -r =65-1=15.题5答案:y =0或x +y -222±=0.详解:设两坐标轴上截距相等(在坐标轴上截距不为0)的直线l 方程为x +y =a ,则由题意得:x 2+(y −2)2=4和x +y =a,消去y 得:2x 2+(4-2a )x +a 2-4a =0,∵l 与圆x 2+(y -2)2=4相切,∴△=(4-2a )2-4×2(a 2-4a )=0,解得a =222±,∴l 的方程为:x +y -222±=0,当坐标轴上截距都为0时,y =0与该圆相切;故答案为:y =0或x +y -222±=0.题6答案:214.详解:如图设从直线x -y +3=0上的点P 向圆C :(x +2)2+(y +2)2=1引切线PD ,切点为D ,则|CD |=1,在Rt △PDC 中,要使切线长PD 最小,只需圆心C 到直线上点P 的距离最小,∵点C (-2,-2)到直线x -y +3=0的距离CP ′最小为22|223|32211d ==+,∴切线长PD 的最小值为214129'22=-=-CD C p .故答案为214.题7答案:4.详解:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △OO 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4.答案:4题8答案:(1)相交;(2)6x +4y +13=0;(3)4y =-和2512y +=x .详解:(1)圆C 1:x 2+y 2+2x +6y +9=0化成标准形式:(x +1)2+(y +3)2=1∴圆心C 1(-1,-3),半径r 1=1同理,得到圆C 2:x 2+y 2−4x +2y −4=0的圆心C 2(2,-1),半径r 2=3∵|r 1-r 2|=2,r 1+r 2=4,圆心距12C C =∴|r 1-r 2|≤C 1C 2≤r 1+r 2,得两圆的位置关系是相交;(2)∵圆C 1:x 2+y 2+2x +6y +9=0,圆C 2:x 2+y 2−4x +2y −4=0∴圆C 1和圆C 2的方程两边对应相减,得6x +4y +13=0,即为两圆公共弦所在直线方程.(3)过C 1作y 轴的平行线,交圆C 1于D 点,过C 2作y 轴的平行线,交圆C 2于C 点,可得D (-1,-4),C (2,-4)∴直线DC 方程为y =-4,且DC 是两圆的一条公切线直线DC 交直线C 1C 2于点A ,则过A 点与圆C 2相切的直线必定与圆C 1也相切设切点为B ,因此直线AB 是两圆的另一条公切线,求得C 1C 2方程:3732y -=x ,可得A (-2.5,-4),设直线AB 方程为y +4=k (x +2.5),即kx -y +2.5k -4=0∴点C 2到直线AB的距离为3d ==,解之得512(k =0舍去),因此直线AB 的方程为2512y +=x ,综上所述,两圆公切线所在直线的方程为4y =-和2512y +=x .题9答案:(1)224x y +=;(2)222144x y m +=详解:(Ⅰ)设圆的半径为r ,圆心到直线1l 距离为d,则2d ==所以圆1C 的方程为224x y +=(Ⅱ)设动点(,)Q x y ,0,0()A x y ,AN x ⊥轴于N ,0(,0)N x 由题意,000(,)(,)(,0)x y m x y n x =+,所以000()x m n x x y my =+=⎧⎨=⎩即:001x xy y m =⎧⎪⎨=⎪⎩,将1(,)A x y m ,代入224x y +=,得222144x y m +=题10答案:C.详解:由已知得2200x y +<a 2,且2200x y +≠0,又∵圆心到直线的距离d2a ,∴直线与圆相离.。
1.已知直线和圆有两个交点,则的取值范围是() A. B.C. D.2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是()A.2a B.2|a| C.|a| D.4|a|3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是()A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D.x-4y-3=04.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1或-1 B.2或-2 C.1 D.-1 5.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为()A.17或-23 B.23或-17 C.7或-13 D.-7或13 6.若P(x,y)在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于()A.-3+2 B.-3+ C.-3-2 D.3-2 7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是()A.相切 B.相交 C.相离 D.内含8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01.9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是()A. B.2 C.1 D.10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是()A.相交B.外切 C.内切 D.相交或外切11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是()A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=112.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a 的值为()A.0 B.1 C. 2 D.213.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是()A.与圆C1重合 B.与圆C1同心圆C.过P1且与圆C1同心相同的圆 D.过P2且与圆C1同心相同的圆14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(m R),证明直线与圆相交;(2) 求直线被圆C截得的弦长最小时,求直线的方程.19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.参考答案:经典例题:解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切∴|CC1|=r+r1,又∵圆C与圆C2内切,∴|CC2|=r2-r (由题意r2>r),∴|CC1|+|CC2|=r1+r2,即 , 化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.当堂练习:1.D;2.B;3.A;4.D;5.D;6.A;7.B;8.D;9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,直线过定点A(3,1),(3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7 =0圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被 y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1. 又因为P(a,b)到直线x-2y=0的距离为,所以d==,即|a-2b|=1, 解得a-2b=1,由此得,于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,由, 所求圆的方程为x2+y2+2x-10y+21=0.。
高中数学-《直线与圆的位置关系》单元测试题高中数学-《直线与圆的位置关系》单元测试题班级:__________姓名:__________成绩:__________ 一.选择题(每题5分,共12题,共60分)1.直线3x + 4y + 12 = 0 与圆(x + 1)^2 + (y + 1)^2 = 9的位置关系是A。
过圆心 B。
相切 C。
相离 D。
相交2.直线l将圆x^2 + y^2 - 2x - 4y = 0 平分,且与直线x + 2y = 0 垂直,则直线l的方程为A。
y = 2x B。
y = 2x - 2 C。
y = x + 1 D。
y = x - 13.若圆C半径为1,圆心在第一象限,且与直线4x - 3y = 0 和x轴都相切,则该圆的标准方程是A。
(x - 2)^2 + (y - 1)^2 = 1 B。
(x - 2)^2 + (y + 1)^2 = 1 C。
(x + 2)^2 + (y - 1)^2 = 1 D。
(x - 3)^2 + (y - 1)^2 = 14.若直线ax + by = 1与圆x^2 + y^2 = 1相交,则点P(a,b)的位置是A。
在圆上 B。
在圆外 C。
在圆内 D。
都有可能5.由直线y = x + 1上的一点向圆(x - 3)^2 + y^2 = 1引切线,则切线长的最小值为A。
1 B。
2 C。
3 D。
46.圆x^2 + y^2 + 2x + 4y - 3 = 0 上到直线l:x + y + 1 = 0的距离为2的点有A。
1个 B。
2个 C。
3个 D。
4个7.两圆x^2 + y^2 - 6x = 0 和x^2 + y^2 + 8y + 12 = 0 的位置关系是A。
相离 B。
外切 C。
相交 D。
内切8.两圆x + y = r,(x-3)+(y+1)=r外切,则正实数r的值是A。
10 B。
5 C。
2 D。
229.半径为6的圆与x轴相切,且与圆x+(y-3)^2=1内切,则此圆的方程是A。
高中数学直线与圆的位置关系一、单选题1.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 42.从点P(m,3)向圆C:(x+2)2+(y+2)2=1引切线,则切线长的最小值为()A. 2√6B. √26C. 4+√2D. 53.圆x2+y2−4x+2y+1=0与圆x2+y2+4x−4y−1=0的公切线有()A. 1条B. 2条C. 3条D. 4条4.过点P(−2,4)作圆O:(x−2)2+(y−1)2=25的切线l,直线m:ax−3y=0与直线l平行,则直线l与m的距离为()A. 4B. 2C. 85D. 1255.已知圆C:x2−6x+y2+2ay+7+a2=0关于直线3x+y−1=0对称,则a=()A. 4B. 6C. 8D. 106.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A. 1条B. 2条C. 3条D. 4条7.设O为原点直线y=kx+2与圆x2+y2=4相交于A,B两点,当▵ABO面积最大值时,k=()A. ±√22B. ±1C. ±√2D. ±28.圆C1:(x+1)2+(y+2)2=4与圆C2:(x−1)2+(y+1)2=9的位置关系是()A. 内切B. 相交C. 外切D. 相离9.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. √2B. 2−√2C. 1D. √2−110.若点P(1,1)为圆C:x2+y2−6x=0的弦MN的中点,则弦MN所在的直线方程为()A. 2x+y−3=0B. x−2y+1=0C. x+2y−3=0D. 2x−y−1=011. 已知圆C 的圆心为原点O ,且与直线x +y +4√2=0相切.点P 在直线x =8上,过点P 引圆C 的两条切线PA ,PB ,切点分别为A ,B ,如图所示,则直线AB 恒过定点的坐标为( )A. (2,0)B. (0,2)C. (1,0)D. (0,1)12. 若圆C 的半径为1,圆心在第一象限,且与直线4x −3y =0和x 轴都相切,则该圆的标准方程是( )A. (x −2)2+(y −1)2=1B. (x −2)2+(y +1)2=1C. (x +2)2+(y −1)2=1D. (x −3)2+(y −1)2=1二、多选题(本大题共2小题,共10.0分) 13. 已知圆M:x 2+y 2−4x −1=0,点P (x,y )是圆M 上的动点,则下列说法正确的有( )A. 圆M 关于直线x +3y −2=0对称B. 直线x +y =0与M 的相交弦长为√3C. t =y x+3的最大值为12D. x 2+y 2的最小值为9−4√514. 已知A (−2,0),B (2,0),若圆(x −2a +1)2+(y −2a −2)2=1上存在点M 满足MA →⋅MB →=0,实数a 可以是( ) A. −1 B. −0.5 C. 0D. 1三、单空题15. 已知点P 是直线y =x 上一个动点,过点P 作圆(x +2)2+(y −2)2=1的切线,切点为T ,则线段PT 长度的最小值为 .16. 若过点P(1,√3)作圆O:x 2+y 2=1的两条切线,切点分别为A 和B ,则|AB |= .17. 与直线y =x +3平行且与圆(x −2)2+(y −3)2=8相切的直线的方程为________________________.18.已知坐标原点为O,过点P(2,6)作直线2mx−(4m+n)y+2n=0(m,n不同时为零)的垂线,垂足为M,则|OM|的取值范围是______.19.若P(2,1)是圆(x−1)2+y2=25的弦AB的中点,则直线AB的方程为.20.已知直线x−√3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为______.21.已知点P在直线x−y+4=0上,由点P向圆x 2+y 2=4作两条切线,切点分别为A,B,则∠APB的最大值为__________.四、多空题(本大题共1小题,共5.0分)22.已知圆C1:x2+y2=4与圆C2:x2+y2−8x+6y+m=0外切,则m=(1),此时直线l:x+y=0被圆C2所截的弦长为(2).五、解答题23.已知点M(3,1),圆O1:(x−1)2+(y−2)2=4.(1)若直线ax−y+4=0与圆O1相交于A,B两点,且弦AB的长为2√3,求a的值;(2)求过点M的圆O1的切线方程.24.已知圆C1:x2+y2−2x=0和圆C2:x2+y2−6x−4y+4=0相交于A,B两点.(1)求公共弦AB的垂直平分线方程.(2)求ΔABC2的面积。
一、单选题1. 若圆上至少有三个不同点到直线:的距离为,则直线的倾斜角的取值范围是( )A.B.C.D.2. 直线与圆相交于不同的,两点其中,是实数,且是坐标原点,则点与点距离的取值范围为()A.B.C.D.3. 已知动直线与圆相交于A,B两点,圆下列说法:①与有且只有一个公共点;②线段AB的长度为定值;③线段AB的中点轨迹为.其中正确的个数是()A.0 B.1 C.2 D.34. 在中,,,,点在该三角形的内切圆上运动,当最大时,则的值为()A.B.C.D.5. 过点且与圆相切的直线方程为()A.B.C.D.6. 与圆相切,且在轴上的截距相等的直线有A.3条B.4条C.5条D.6条二、多选题7. 已知直线与直线平行,且与圆相切,则直线的方程是()A.B.C.D.8. 设圆上的点关于直线的对称点仍在圆上,且圆与直线相交的弦长为,则圆的方程为()A.B.C.D.三、填空题9. 当直线:()被圆:截得的弦最短时,实数的值为______.10. 直线与圆的位置关系是_______.11. 已知直线,若直线与圆在第一象限内的部分有公共点,则的取值范围是__________.12. 直线被圆截得的弦长为,则_______四、解答题13. 已知直线和圆,(1)当为何值时,截得的弦长为2;(2)若直线和圆交于两点,此时,求的值.14. 已知圆和定点,动点、在圆上.(1)过点作圆的切线,求切线方程;(2)若满足,设直线与直线相交于点.①求证:直线过定点;②求证:.15. 已知圆心在x轴上的圆C与直线切于点,圆.(1)求圆C的标准方程;(2)已知,圆P与x轴相交于两点(点M在点N的右侧),过点M任作一条倾斜角不为0的直线与圆C相交于两点.问:是否存在实数a,使得若存在,求出实数a的值,若不存在,请说明理由.16. 已知圆O:与直线相切.(1)求圆O的方程;(2)若过点作两条斜率分别为,的直线交圆O于B、C两点,且,求证:直线BC恒过定点.并求出该定点的坐标.。
高中数学直线与圆精选题目(附答案)一、两直线的位置关系1.求直线斜率的基本方法(1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α.(2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1x 2-x 1.2.判断两直线平行的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2.(2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法(1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2.1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.②解①②组成的方程组得⎩⎨⎧a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即a b=1-a .③又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=-(-b ).④由③④联立,解得⎩⎨⎧a =2,b =-2或⎩⎨⎧a =23,b =2.经检验此时的l 1与l 2不重合,故所求值为 ⎩⎨⎧a =2,b =-2或⎩⎨⎧a =23 ,b =2.注:已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0(1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去.(2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43C .2D .3解析:选D 由2a -6=0得a =3.故选D.3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( )或0 C .0D .-2解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =32.故选A. 二、直线方程1.直线方程的五种形式2.常见的直线系方程(1)经过两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都不能得到A2x+B2y+C2=0,因此它不能表示直线l2.(2)平行直线系方程:与直线Ax+By+C=0(A,B不同时为0)平行的直线系方程是Ax+By+λ=0(λ≠C).(3)垂直直线系方程:与直线Ax+By+C=0(A,B不同时为0)垂直的直线系方程是Bx-Ay+λ=0.4.过点A(3,-1)作直线l交x轴于点B,交直线l1:y=2x于点C,若|BC|=2|AB|,求直线l的方程.[解] 当直线l的斜率不存在时,直线l:x=3,∴B(3,0),C(3,6).此时|BC|=6,|AB|=1,|BC|≠2|AB|,∴直线l的斜率存在.设直线l的方程为y+1=k(x-3),显然k≠0且k≠2.令y=0,得x=3+1 k ,∴B ⎝ ⎛⎭⎪⎫3+1k ,0,由⎩⎨⎧y =2x ,y +1=kx -3,得点C 的横坐标x C =3k +1k -2. ∵|BC |=2|AB |,∴|x B -x C |=2|x A -x B |, ∴⎪⎪⎪⎪⎪⎪3k +1k -2-1k -3=2⎪⎪⎪⎪⎪⎪1k , ∴3k +1k -2-1k -3=2k 或3k +1k -2-1k -3=-2k, 解得k =-32或k =14.∴所求直线l 的方程为3x +2y -7=0或x -4y -7=0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解:(1)直接法:直接选取适当的直线方程的形式,写出结果;(2)待定系数法:先以直线满足的某个条件为基础设出直线方程,再由直线满足的另一个条件求出待定系数,从而求得方程.5.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,求直线l 的方程.解:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行(否则d 1=0或d 2=0,不符合题意).设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13,d 2=|m +13|13,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 6.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.三、圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2 (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(3)若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程时可用相应的圆系方程加以求解:①过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ为参数,λ≠-1),该方程不包括圆C 2;②过圆C :x 2+y 2+Dx +Ey +F =0与直线l :Ax +By +C =0交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0(λ为参数,λ∈R).7.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,0),B (2,0),C (0,-4),经过这三个点的圆记为M .(1)求BC 边的中线AD 所在直线的一般式方程; (2)求圆M 的方程.[解] (1)法一:由B (2,0),C (0,-4),知BC 的中点D 的坐标为(1,-2).又A (-3,0),所以直线AD 的方程为y -0-2-0=x +31+3,即中线AD 所在直线的一般式方程为x +2y +3=0. 法二:由题意,得|AB |=|AC |=5, 则△ABC 是等腰三角形, 所以AD ⊥BC .因为直线BC 的斜率k BC =2, 所以直线AD 的斜率k AD =-12,由直线的点斜式方程,得y -0=-12(x +3),所以直线AD 的一般式方程为x +2y +3=0. (2)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.将A (-3,0),B (2,0),C (0,-4)三点的坐标分别代入方程,得⎩⎨⎧9-3D +F =0,4+2D +F =0,16-4E +F =0,解得⎩⎪⎨⎪⎧D =1,E =52,F =-6.所以圆M 的方程是x 2+y 2+x +52y -6=0.注:利用待定系数法求圆的方程(1)若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.(2)若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,从而求出D ,E ,F 的值.8.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.9.已知圆C 经过点A (2,-3),B (-2,-5),且圆心在直线l :x -2y -3=0上,求圆C 的方程.解:设圆C 的方程为(x -a )2+(y -b )2=r 2.由题意,得⎩⎨⎧2-a2+-3-b 2=r 2,-2-a 2+-5-b2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10.所以圆C 的方程为(x +1)2+(y +2)2=10.10.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.解:联立两圆的方程得方程组 ⎩⎨⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线的方程为4x +3y -2=0. 再由⎩⎨⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0解得两圆交点坐标为(-1,2),(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径长为125+12+-6-22=5.∴圆C 的方程为(x -2)2+(y +2)2=25.四、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离.2.过圆外一点(x 0,y 0)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y-y0=k(x-x0),化成一般式kx-y+y-kx0=0,利用圆心到直线的距离等于半径长,解出k;②当切线斜率存在时,设切线方程为y-y0=k(x-x0),与圆的方程(x-a)2+(y-b)2=r2联立,化为关于x的一元二次方程,利用判别式为0,求出k.当切线斜率不存在时,可通过数形结合思想,在平面直角坐标系中作出其图象,求出切线的方程.3.圆中弦长的求法(1)直接求出直线与圆或圆与圆的交点坐标,再利用两点间的距离公式求解.(2)利用圆的弦长公式l=1+k2|x1-x2|=1+k2·x1+x22-4x1x2(其中x1,x2为两交点的横坐标).(3)利用垂径定理:分别以圆心到直线的距离d、圆的半径r与弦长的一半l2为线段长的三条线段构成直角三角形,故有l=2r2-d2.4.圆与圆的位置关系:(1)利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系.(2)若圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交.则两圆方程相减后得到的新方程:(D1-D2)x+(E1-E2)y+(F1-F2)=0表示的是两圆公共弦所在直线的方程.11.(1)直线x+y-2=0与圆(x-1)2+(y-2)2=1相交于A,B两点,则|AB|=( )(2)若直线x-my+1=0与圆x2+y2-2x=0相切,则m的值为( )A.1 B.±1C.± 3(3)已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).①若l与圆C相切,求l的方程;②若l与圆C相交于P,Q两点,且|PQ|=22,求此时直线l的方程.[解析] (1)∵圆心(1,2)到直线x+y-2=0的距离d=22,∴|AB|=212-⎝ ⎛⎭⎪⎫222=2,故选D.(2)由x 2+y 2-2x =0,得圆心坐标为(1,0),半径为1,因为直线与圆相切,所以圆心到直线的距离等于半径,即|1-0+1|1+m 2=1,解得m =± 3. 答案:(1)D (2)C(3)解:①若直线l 的斜率不存在,则直线l :x =1,符合题意. 若直线l 的斜率存在,设直线l 的方程为y =k (x -1), 即kx -y -k =0.由题意知,圆心(3,4)到直线l 的距离等于2,即|3k -4-k |k 2+1=2,解得k =34,此时直线l 的方程为3x -4y -3=0.综上可得,所求直线l 的方程是x =1或3x -4y -3=0.②由直线l 与圆C 相交可知,直线l 的斜率必定存在,且不为0,设直线l 的方程为k 0x -y -k 0=0,圆心(3,4)到直线l 的距离为d ,因为|PQ |=24-d 2=22,所以d =2, 即|3k 0-4-k 0|k 20+1=2,解得k 0=1或k 0=7,所以所求直线l 的方程为x -y -1=0或7x -y -7=0. 注:研究直线与圆位置关系综合问题时易忽视直线斜率k 不存在情形,要注意作出图形进行判断.12.由直线y =x +1上的一点向圆x 2-6x +y 2+8=0引切线,则切线长的最小值为( )A .1B .22D .3解析:选C 切线长的最小值在直线y =x +1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d =|3-0+1|2=22,圆的半径为1,故切线长的最小值为d 2-r 2=8-1=7.13.P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形PACB 面积的最小值是( )B .22D .23解析:选C 圆的标准方程为(x -1)2+(y -1)2=1,圆心C (1,1),半径r =1.根据对称性可知四边形PACB 的面积等于2S △APC =2×12×|PA |×r =|PA |=|PC |2-r 2=|PC |2-1.要使四边形PACB 的面积最小,则只需|PC |最小,最小值为圆心C 到直线l :3x -4y +11=0的距离d =|3-4+11|32+42=105=2,所以四边形PACB 面积的最小值为4-1= 3.14.已知圆C :x 2+y 2-2x +4y -4=0.问是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 满足:以AB 为直径的圆经过原点.解:假设存在且设l :y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则过圆心C 垂直弦AB 的直线为y +2=-x +1,解方程组⎩⎨⎧y =x +m ,y +2=-x +1得AB 的中点N 的坐标为⎝⎛⎭⎪⎫-m +12,m -12, 由于以AB 为直径的圆过原点,所以|AN |=|ON |. 又|AN |=|CA |2-|CN |2= 9-2×⎝⎛⎭⎪⎫m +322, |ON |=⎝⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122.所以9-2×⎝⎛⎭⎪⎫3+m 22=⎝ ⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122, 解得m =1或m =-4.所以存在直线l ,其方程为x -y +1=0和x -y -4=0,并可以检验,这时l 与圆是相交于两点的.。
课时分层作业(十六) 直线与圆的位置关系(建议用时:40分钟)一、选择题1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是() A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心C[易知直线过定点(0,1)且点(0,1)在圆内,但是直线不过圆心(0,0).]2.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12 B.2或-12C.-2或-12 D.2或12D[由圆x2+y2-2x-2y+1=0知圆心坐标为(1,1),半径为1,所以|3×1+4×1-b|32+42=1,解得b=2或b=12.]3.如果直线ax+by=4与圆x2+y2=4有两个不同的交点,则点P(a,b)与圆的位置关系是()A.P在圆外B.P在圆上C.P在圆内D.不能确定A[直线ax+by=4与圆x2+y2=4的圆心之间的距离为d=|4|a2+b2.又直线与圆有两个不同的交点,所以d<r,即4a2+b2<2,∴a2+b2>4,∴点P(a,b)在圆外.]4.直线l与圆x2+y2+2x-4y+a=0(a<3)相交于A、B两点,若弦AB的中点C(-2,3),则直线l的方程为()A.x-y+5=0 B.x+y-1=0C .x -y -5=0D .x +y -3=0A [由圆的一般方程可得圆心O (-1,2),由圆的性质易知O (-1,2),C (-2,3)的连线与弦AB 垂直,故有k AB ×k OC =-1⇒k AB =1,故直线AB 的方程为y -3=x +2,即x -y +5=0.]5.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( )A .-1或 3B .1或3C .-2或6D .0或4D [由弦长公式l =2r 2-d 2,可知圆心到直线的距离d =2,即|a -2|12+(-1)2=2,解得a =0或a =4.] 二、填空题6.若直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E ,F 两点,则△ECF 的面积为.25 [圆心C (2,-3)到直线x -2y -3=0的距离为d =55=5,又知圆C 的半径长为3,∴|EF |=232-(5)2=4,∴S △ECF =12·|EF |·d =12×4×5=25.]7.直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值X 围是. 1≤b <2[曲线C 的方程可化为x 2+y 2=1(y ≥0),易知曲线的图象为以(0,0)为圆心,1为半径的圆的上半部分,如图所示,直线y =x +b 是平行于y =x 的直线,由图知直线夹在l 1与l 2之间,含l 2,不含l 1,故1≤b <2.]8.过点P (-1,2)且与圆C :x 2+y 2=5相切的直线方程是.x -2y +5=0 [点P (-1,2)是圆x 2+y 2=5上的点, 圆心为C (0,0),则k PC =2-1=-2,所以k =12,y -2=12(x +1).故所求切线方程是x -2y +5=0.] 三、解答题9.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切?(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程. [解] 圆C 方程可化为x 2+(y -4)2=4,此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34,即当a =-34时,直线l 与圆C 相切.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,解得a =-7或a =-1,故所求方程为:7x -y +14=0或x -y +2=0.10.已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点.(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. [解] (1)设圆A 的半径为r ,∵圆A 与直线l 1:x +2y +7=0相切,∴r =|-1+4+7|5=25,∴圆A 的方程为(x +1)2+(y -2)2=20. (2)当直线l 与x 轴垂直时, 则直线l 的方程x =-2,此时有|MN |=219,即x =-2符合题意. 当直线l 与x 轴不垂直时,设直线l 的斜率为k , 则直线l 的方程为y =k (x +2), 即kx -y +2k =0,∵Q 是MN 的中点,∴AQ ⊥MN , ∴|AQ |2+⎝ ⎛⎭⎪⎫12|MN |2=r 2,又∵|MN |=219,r =25,∴|AQ |=20-19=1,解方程|AQ |=|k -2|k 2+1=1,得k =34,∴此时直线l 的方程为y -0=34(x +2), 即3x -4y +6=0.综上所述,直线l 的方程为x =-2或3x -4y +6=0.11.(多选题)圆C :x 2+y 2+2x -4y +m 2=0与直线2x -4y +m 2=0的位置关系是( )A .相交B .相切C .相离D .无法判断BC [由⎩⎪⎨⎪⎧x 2+y 2+2x -4y +m 2=0,①2x -4y +m 2=0,②①-②得,x 2+y 2=0,∴x =y =0.代入②得,m 2=0,即当m =0时,方程组有一个解⎩⎪⎨⎪⎧x =0,y =0.而当m ≠0时,方程组无解,∴当m =0时直线l 与圆C 相切;当m ≠0时,直线与C 相离.]12.若直线ax +by -3=0和圆x 2+y 2+4x -1=0相切于点P (-1,2),则ab 的值为( )A .-3B .-2C .2D .3C [圆的标准方程为(x +2)2+y 2=5,直线与圆相切,则圆心到直线的距离为5,所以|-2a -3|a 2+b2=5,整理得a 2-12a +5b 2-9=0,又直线过P (-1,2), 代入得2b -a -3=0,两式联立,得a =1,b =2,所以ab =2.]13.(一题两空)已知直线l :2mx -y -8m -3=0,则直线过定点,该直线被圆C :x 2+y 2-6x +12y +20=0,截得最短弦长为.(4,-3) 215[将直线l 变形得2m (x -4)=y +3,即直线l 恒过定点P (4,-3),圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3-(-6)4-3=3,所以直线l 的斜率为-13, 则2m =-13,所以m =-16.在Rt △APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.]14.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点有个. 3 [圆的方程可化为(x +1)2+(y +2)2=8, 所以弦心距为d =|-1-2+1|2=2.又圆的半径为22,所以到直线x +y +1=0的距离为2的点有3个.]15.(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程;(2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.[解] (1)设圆C 的方程为(x -a )2+(y -b )2=r 2. ∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25,∴|2a +b +15|22+1=r =25,即|2a +b +15|=10,①|2a +b -5|22+1=r =25,即|2a +b -5|=10,② 又∵过圆心和切点的直线与过切点的切线垂直, ∴b -1a -2=12,③由①②③解得⎩⎪⎨⎪⎧a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20. (2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |, ∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。
高中数学学习材料马鸣风萧萧*整理制作圆的方程及直线与圆的位置关系典题探究例1.若直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则点P (a ,b )与圆C 的位置关系是 ( )A .点在圆上B .点在圆内C .点在圆外D .不能确定 答案:C例2.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆:⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ,(θ为参数)的位置关系是________.例3.已知直线l 1:ax +y +2a =0,直线l 2:ax -y +3a =0.若l 1⊥l 2,则a =________.例4.点P (a,3)到直线4x -3y +1=0的距离等于4,且在不等式2x +y <4表示的平面区域内,则P 点的坐标为__________.演练方阵A 档(巩固专练)1. 过点P (1,2),且方向向量v =(-1,1)的直线的方程为 ( )A .x -y -3=0B .x +y +3=0C .x +y -3=0D .x -y +3=02.将直线l 1:y =2x 绕原点逆时针旋转60°得直线l 2,则直线l 2到直线l 3:x +2y -3=0的角为 ( )A .30°B .60°C .120°D .150°3.设A 、B 为x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程x -y +1=0,则直线PB 的方程为 ( )A .2x +y -7=0B .2x -y -1=0C .x -2y +4=0D .x +y -5=04.过两点(-1,1)和(0,3)的直线在x 轴上的截距为( )A .-32 B.32C .3D .-35.直线x +a 2y +6=0和(a -2)x +3ay +2a =0无公共点,则a 的值是 ( ) A .3 B .0 C .-1 D .0或-16.两直线2x -my +4=0和2mx +3y -6=0的交点在第二象限,则m 的取值范围是( )A .-32≤m ≤2B .-32<m <2C .-32≤m <2D .-32<m ≤27.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0,(a 为常数)所表示的平面区域的面积等于2,则a 的值为 ( )A .-5B .1C .2D .38.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 39.与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是 ( )A .(x +1)2+(y +1)2=2B .(x +1)2+(y +1)2=4C .(x -1)2+(y +1)2=2D .(x -1)2+(y +1)=410.已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为 ( )A .2B .-2C .2或-2 D.6或- 6B 档(提升精练)1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3)2.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则圆C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=14.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( ) A .2 B .1+ 2 C .2+22D .1+2 25.若点P(1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0 D .2x -y -1=0[答案] D[解析] 圆心C(3,0),k CP =-12,由k CP ·k MN =-1,得k MN =2,所以MN 所在直线方程是2x -y -1=0,故选D.6.圆心在曲线y =3x (x>0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -1)2+(y -3)2=(185)2B .(x -3)2+(y -1)2=(165)2C .(x -2)2+(y -32)2=9D .(x -3)2+(y -3)2=97.已知圆O :x 2+y 2=5和点A(1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于________.8.已知点M(1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.9.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.10.已知圆C :x 2+y 2-4x -6y +12=0,点A(3,5),求:(1)过点A 的圆的切线方程;(2)O 点是坐标原点,连结OA ,OC ,求△AOC 的面积S.C 档(跨越导练)1.已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点M(3,5)的最长弦、最短弦分别为AC 、BD ,则以点A 、B 、C 、D 为顶点的四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 62.以抛物线y 2=20x 的焦点为圆心,且与双曲线x 216-y29=1的两渐近线都相切的圆的方程为( )A .x 2+y 2-20x +64=0 B .x 2+y 2-20x +36=0 C .x 2+y 2-10x +16=0 D .x 2+y 2-10x +9=03.已知A 、B 是圆O :x 2+y 2=16上的两点,且|AB|=6,若以AB 为直径的圆M 恰好经过点C(1,-1),则圆心M 的轨迹方程是________.4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为__________.5.圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于A 、B ,|AB|=3,则该圆的标准方程是________.6.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t∈R,t≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程. 7. 求经过7x +8y =38及3x -2y =0的交点且在两坐标轴上截得的截距相等的直线方程.8.已知直线l 经过点P (3,1),且被两平行直线l 1;x +y +1=0和l 2:x +y +6=0截得的线段之长为5,求直线l 的方程.9.设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且与直线x -y +1=0相交的弦长为22,求圆的方程.10.已知m ∈R,直线l :mx -(m 2+1)y =4m 和圆C :x 2+y 2-8x +4y +16=0.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?圆的方程及直线与圆的位置关系参考答案典题探究例1解析:直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则1a 2+b2<1,a 2+b 2>1,点P (a ,b )在圆C 外部,故选C.例2.答案:相交解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线上,又圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ,即x 2+y 2=9,且22+12<9,(2,1)在圆O 内,则直线l 与圆O : ⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ,(θ为参数)的位置关系是相交,故填相交.例3.答案:±1解析:∵l 1⊥l 2,∴kl 1·kl 2=-1,即(-a )·a =-1,∴a =±1.例4.答案:(-3,3)解析:因|4a -9+1|5=4,∴a =7,a =-3.当a =7时,不满足2x +y <4(舍去),∴a =-3.演练方阵A 档(巩固专练)1、答案:C解析:方向向量为v =(-1,1),则直线的斜率为-1,直线方程为y -2=-(x -1)即x +y -3=0,故选C.2、答案:A解析:记直线l 1的斜率为k 1,直线l 3的斜率为k 3,注意到k 1k 3=-1,l 1⊥l 3,依题意画出示意图,结合图形分析可知,直线l 2到直线l 3的角是30°,选A.3、答案:D解析:因k PA =1,则k PB =-1,又A (-1,0),点P 的横坐标为2,则B (5,0),直线PB 的方程为x +y -5=0,故选D.4、答案:A解析:由两点式,得y -31-3=x -0-1-0,即2x -y +3=0,令y =0,得x =-32,即在x 轴上的截距为-32.5、答案:D解析:当a =0时,两直线方程分别为x +6=0和x =0,显然无公共点;当a ≠0时,-1a2=-a -23a,∴a =-1或a =3.而当a =3时,两直线重合,∴a =0或-1. 6、答案:B解析:由⎩⎪⎨⎪⎧2x -my +4=0,2mx +3y -6=0,解得两直线的交点坐标为(3m -6m 2+3,4m +6m 2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m -6m 2+3<0且4m +6m 2+3>0⇒-32<m <2.7、答案:D解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0所围成的区域如图所示.∵其面积为2,∴|AC |=4,∴C 的坐标为(1,4),代入ax -y +1=0, 得a =3.故选D.8、答案:D解析:∵直线的方程为y =3x ,圆心为(0,2),半径r =2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=2 3.故选D. 9、答案:C解析:圆x 2+y 2+2x -2y =0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x -y -4=0垂直的直线方程为x +y =0,所求的圆的圆心在此直线上,排除A 、B ,圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求的圆的半径为2,故选C.10、答案:C 解析:由|OA →+OB →|=|OA →-OB →|得|OA →+OB →|2=|OA →-OB →|2,OA →·OB →=0,OA →⊥OB →,三角形AOB 为等腰直角三角形,圆心到直线的距离为2,即|a |2=2,a =±2,故选C.B 档(提升精练)1. [答案] D[解析] 将一般式化为标准式(x -2)2+(y +3)2=13. ∴圆心坐标为(2,-3). 2. [答案] A[解析] 动圆圆心C 到定点(0,3)的距离与到定直线y =-1的距离相等,符合抛物线的定义,故选A.3. [答案] A[解析] 设圆心坐标为(0,b),则由题意知-2+b -2=1,解得b =2,故圆的方程为x 2+(y -2)2=1. 4. [答案] B[解析] 圆的方程化为标准形式:(x -1)2+(y -1)2=1, 圆心(1,1)到直线x -y -2=0的距离d =|1-1-2|2=2,所求距离的最大值为2+1,故选B.5. [解析] 圆心C(3,0),k CP =-12,由k CP ·k MN =-1,得k MN =2,所以MN 所在直线方程是2x -y -1=0,故选D.6. [答案] C[解析] 设圆心坐标为(a ,3a)(a>0),则圆心到直线3x +4y +3=0的距离d =|3a +12a +3|5=35(a +4a +1)≥35(4+1)=3,等号当且仅当a =2时成立.此时圆心坐标为(2,32),半径为3,故所求圆的方程为(x -2)2+(y -32)2=9.7. [答案]254[解析] ∵点A(1,2)在⊙O :x 2+y 2=5上, ∴过A 的切线方程为x +2y =5, 令x =0得,y =52,令y =0得,x =5,∴三角形面积为S =12×52×5=254.8. [答案] x +y -1=0[解析] 过点M 的最短的弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C(2,1), ∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-1(x -1),即x +y -1=0.9. [答案] (x +2)2+y 2=210. [解析] (1)⊙C :(x -2)2+(y -3)2=1.当切线的斜率不存在时,过点A 的直线方程为x =3,C(2,3)到直线的距离为1,满足条件.当k 存在时,设直线方程为y -5=k(x -3), 即kx -y +5-3k =0,由直线与圆相切得, |-k +2|k 2+1=1,∴k =34.∴直线方程为x =3或y =34x +114.(2)|AO|=9+25=34, 直线OA :5x -3y =0, 点C 到直线OA 的距离d =134, S =12·d·|AO|=12.C 档(跨越导练)C 组答案 1、[答案] B[解析] 圆的方程:(x -3)2+(y -4)2=25, ∴半径r =5,圆心到最短弦BD 的距离d =1, ∴最短弦长|BD|=46, 又最长弦长|AC|=2r =10,∴四边形的面积S =12×|AC|×|BD|=20 6.2、[答案] C[解析] 抛物线的焦点坐标是(5,0),双曲线的渐近线方程是3x±4y=0,点(5,0)到直线3x±4y=0的距离d =3即为所求圆的半径.故所求圆的方程为(x -5)2+y 2=9,即x 2+y 2-10x +16=0,故选C.3、[答案] (x -1)2+(y +1)2=9[解析] ∵M 是以AB 为直径的圆的圆心,|AB|=6, ∴半径为3,又⊙M 经过点C ,∴|CM|=12|AB|=3,∴点M 的轨迹方程为(x -1)2+(y +1)2=9.4、[答案] (x +1)2+y 2=2[解析] 在直线方程x -y +1=0中,令y =0得,x =-1,∴圆心坐标为(-1,0), 由点到直线的距离公式得圆的半径 R =|-1+0+3|2=2,∴圆的标准方程为(x +1)+y 2=2.5、[答案] (x -1)2+⎝ ⎛⎭⎪⎫y -122=1[解析] 如下图设圆心C(a ,b),由条件知a =1,取弦AB 中点D ,则CD =AC 2-AD 2=12-⎝⎛⎭⎪⎫322=12,即b =12,∴圆方程为(x -1)2+⎝ ⎛⎭⎪⎫y -122=1.6、[解析] (1)证明:∵圆C 过原点O ,∴OC 2=t 2+4t2. 设圆C 的方程是(x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA|·|OB|=12×⎪⎪⎪⎪⎪⎪4t ×|2t|=4,即△OAB 的面积为定值. (2)∵|OM|=|ON|,|CM|=|CN|, ∴OC 垂直平分线段MN. ∵k MN =-2,∴k OC =12.∴直线OC 的方程是y =12x.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t=-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.7、解析:易得交点坐标为(2,3)设所求直线为7x +8y -38+λ(3x -2y )=0, 即(7+3λ)x +(8-2λ)y -38=0,令x =0,y =388-2λ,令y =0,x =387+3λ,由已知,388-2λ=387+3λ,∴λ=15,即所求直线方程为x +y -5=0.又直线方程不含直线3x -2y =0,而当直线过原点时,在两轴上的截距也相等,故3x -2y =0亦为所求.8、分析一:如图,利用点斜式方程,分别与l 1、l 2联立,求得两交点A 、B 的坐标(用k 表示),再利用|AB |=5可求出k 的值,从而求得l 的方程.解析:解法一:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A ′(3,-4)或B ′(3,-9),截得的线段AB 的长|AB |=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧y =k (x -3)+1,x +y +1=0,得 A (3k -2k +1,-4k -1k +1). 解方程组⎩⎪⎨⎪⎧ y =k (x -3)+1,x +y +6=0,得 B (3k -7k +1,-9k -1k +1). 由|AB |=5.得(3k -2k +1-3k -7k +1)2+(-4k -1k +1+9k -1k +1)2=52. 解之,得k =0,直线方程为y =1.综上可知,所求l 的方程为x =3或y =1.9、解析:设所求圆的圆心为(a ,b ),半径为r ,∵点A (2,3)关于直线x +2y =0的对称点A ′仍在这个圆上,∴圆心(a ,b )在直线x +2y =0上,∴a +2b =0, ①(2-a )2+(3-b )2=r 2. ②又直线x -y +1=0截圆所得的弦长为22,∴r 2-(a -b +12)2=(2)2 ③ 解由方程①、②、③组成的方程组得:⎩⎪⎨⎪⎧ b =-3,a =6,r 2=52.或⎩⎪⎨⎪⎧ b =-7,a =14,r 2=244,∴所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.10、解析:(1)直线l 的方程可化为y =m m 2+1x -4m m 2+1, 直线l 的斜率k =mm 2+1,因为|m |≤12(m 2+1), 所以|k |=|m |m 2+1≤12,当且仅当|m |=1时等号成立. 所以,斜率k 的取值范围是[-12,12].(2)不能.由(1)知l 的方程为y =k (x -4),其中|k |≤12.圆C 的圆心为C (4,-2),半径r =2.圆心C 到直线l 的距离d =21+k 2. 由|k |≤12,得d ≥45>1,即d >r 2. 从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于2π3. 所以l 不能将圆C 分割成弧长的比值为12的两段圆弧.。
高中数学例题:直线与圆的位置关系例1.已知P (x 0,y 0)在圆x 2+y 2=R 2的内部,试判断直线x 0x+y 0y=R 2与圆的位置关系.【答案】相离【解析】 ∵点P (x 0,y 0)在圆x 2+y 2=R 2的内部,∴22200x y R +<.又圆心O (0,0)到直线x 0x+y 0y=R 2的距离为2d =22200x y R +<,1R >=,∴2R R R =,即d >R . ∴直线x 0x+y 0y=R 2与圆x 2+y 2=R 2相离.【总结升华】判定直线与圆的位置关系采用几何法比采用代数法的计算量要小得多,因此,我们一般采用几何法来解决直线与圆的位置关系的有关问题.例2.已知直线:430--+=l kx y k 与曲线22:68210+--+=C x y x y .(1)求证:不论k 为何值,直线l 和曲线C 恒有两个交点;(2)求当直线l 被曲线C 所截的线段最短时此线段所在的直线的方程.【答案】(1)略(2)10x y --=【证明】(1) 证法一:将直线l 与曲线C 的方程联立得22430 68210 kx y k x y x y --+=⎧⎨+--+=⎩①②,消去y得(1+k2)x2―2(4k2+k+3)x+2(8k2+4k+3)=0.③∵Δ=4(4k2+k+3)2―8(1―k2)(8k+4k+3)=12k2―8k+12=21812039k⎡⎤⎛⎫-+>⎢⎥⎪⎝⎭⎢⎥⎣⎦,∴方程③有两相异实根,从而,由①②组成的方程组有两组解,即直线l与曲线C恒有两个交点.证法二:将曲线C的方程配方得(x―3)2+(y―4)2=4,它表示以C(3,4)为圆心,2为半径的圆.设圆心C到直线l的距离为d,则222222121211k k kdk k⎛⎫++===+≤++,即d r≤<,∴直线l与曲线C恒有两个交点.证法三:注意到直线l:kx―y―4k+3=0可化为y―3=k(x―4),可知直线l恒过定点A(4,3).∵曲线C是以C(3,4)为圆心,2为半径的圆,(见“证法二”)又42+32-6×4-8×3+21<0,即点A在圆C内,∴直线l与曲线C恒有两个交点.(2)设直线l被曲线C所截的线段为AB,当PQ⊥AB时,||AB最小,直线PQ的斜率43134PQk-==--,所以直线AB的斜率1ABk=,其方程l为:10x y--=【总结升华】证法一抓住了直线与圆的位置关系的代数特征,从而转化为对方程的解的研究,这是研究直线与曲线的位置关系的基本方法;证法二抓住了直线与圆的位置关系的几何特征,从而转化为研究圆心到直线的距离,抓住几何特征对于研究圆的问题特别有效;证法三通过判定直线过圆内一定点,从而使问题获证.由上述三种解法可知,解题的切入点不同,解法就有优劣之分.因此,在解题时,审题要慢,要仔细地分析题意,透彻地理解题意,挖掘其中的隐含条件,从而找到解决问题的捷径.举一反三:【变式1】若直线y=x+b 与曲线3y =有公共点,则b 的值范围是( )A .[1,1-+B .[1-+C .[1-D .[1【答案】C【解析】曲线方程可化简为()()22234(13)x y y -+-=≤≤,即表示圆心为(2,3),半径为2的半圆,依据数形结合,当直线y x b =+与此半圆相切时须满足圆心(2,3)到直线y x b =+距离等于2,解得1b =+或1b =-因为是下半圆,故可得1b =+,当直线过(0,3)时,解得3b =,故13b -≤≤,所以C 正确.【变式2】已知直线l :(2m+1)x+(m+1)y=7m+4,圆C :(x ―1)2+(y ―2)2=25,则m 为任意实数时,l 与C 是否必相交?【答案】相交。
一、单选题1. 直线被圆截得的弦长为,则直线的倾斜角为()A.B.C.D.2. 已知圆,直线与圆交于,两点,则()A.B.C.D.3. 已知直线是圆的对称轴,过点作圆C的两条切线,切点分别为A,B,则三角形PAB的面积等于()A.B.C.D.4. 过点的直线与曲线交于两点,且满足,则直线的斜率为()A.B.C.D.5. 若关于x的方程有两个相异实根,则实数k的取值范围为.A.B.C.D.6. 直线与圆的位置关系是()A.相交B.相切C.相离D.与的值有关二、多选题7. “太极图”是中国传统文化之一,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形,其中黑色阴影区域在y轴右侧部分的边界为一个半圆.则下列命题正确的是()A.黑色阴影区域在轴右侧部分的边界所在圆的方程为B.直线与白色部分有公共点C.点是黑色阴影部分(包括黑白交界处)中一点,则的最大值为4 D.过点作互相垂直的直线、,其中与圆交于点、,与圆交于点、,则四边形面积的最大值是8. 已知直线l:,圆O:,且圆O上至少有三个点到直线l的距离都等于1,则r的值可以是()A.1 B.2 C.3 D.4三、填空题9. 在平面直角坐标系xOy中,已知圆C的半径为,圆心在直线l:y=2x﹣1上,若圆C上存在一点P,使得直线l1:ax﹣y﹣2=0与直线l2:x+ay﹣2=0交于点P,则当实数a变化时,圆心C的横坐标x的取值范围是__.10. 直线被圆所截得的弦长为__________.11. 已知动点到的距离是到的距离的2倍,记动点的轨迹为,直线:与交于,两点,若(点为坐标原点,表示面积),则___________.12. 若经过点的直线与圆相切,则此直线在y轴上的截距是___________.四、解答题13. 已知圆与圆关于直线对称.(1)求圆的标准方程;(2)若点的坐标为为坐标原点,点为圆上的动点,求面积的取值范围.14. 已知三点,,,的外接圆记为圆.(1)求圆的标准方程;(2)若点在圆上运动,求的最大值.15. 已知圆.(1)求过点的圆的切线方程;(2)直线过点且被圆截得的弦长为,求的范围;(3)已知圆的圆心在轴上,与圆相交所得的弦长为,且与相内切,求圆的标准方程.16. 已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.。
直线与圆的位置关系层级一 学业水平达标1.直线3x +4y +12=0与圆C :(x -1)2+(y -1)2=9的位置关系是( ) A .相交并且直线过圆心 B .相交但直线不过圆心 C .相切D .相离解析:选D 圆心C (1,1)到直线的距离d =|3×1+4×1+12|32+42=195,圆C 的半径r =3,则d >r ,所以直线与圆相离.2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A.6 B.62C .1D .5解析:选A 圆的方程可化为(x -2)2+(y +2)2=2,则圆的半径r =2,圆心到直线的距离d =|2+2-5|2=22,所以直线被圆截得的弦长为2r2-d2=2 2-12=6.3.以点(2,-1)为圆心,且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3 B .(x +2)2+(y -1)2=3 C .(x +2)2+(y -1)2=9D .(x -2)2+(y +1)2=9解析:选D 圆心到直线3x -4y +5=0的距离d =|6+4+5|5=3,即圆的半径为3,所以所求圆的方程为(x -2)2+(y +1)2=9.4.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ) A .0或4 B .0或3 C .-2或6D .-1或3解析:选A 由圆的方程,可知圆心坐标为(a,0),半径r =2.又直线被圆截得的弦长为22,所以圆心到直线的距离d = 22-⎝ ⎛⎭⎪⎫2222=2.又d =|a -2|2,所以|a -2|=2,解得a =4或a =0.故选A.5.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 解析:选D 圆心到直线的距离d =|c|a2+b2=12,设弦长为l ,圆的半径为r ,则⎝ ⎛⎭⎪⎫l 22+d 2=r 2,即l =2r2-d2=2.6.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:根据“半径、弦长AB 的一半、圆心到直线的距离”满足勾股定理可建立关于a 的方程,解方程求a .圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以⎝ ⎛⎭⎪⎫|a +a -2|a2+12+12=22,解得a =4±15. 答案:4±157.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为____________________.解析:令y =0得x =-1,所以直线x -y +1=0与x 轴的交点为(-1,0).因为直线x +y +3=0与圆相切,所以圆心到直线的距离等于半径, 即r =|-1+0+3|2=2,所以圆C 的方程为(x +1)2+y 2=2. 答案:(x +1)2+y 2=28.点M ,N 在圆x 2+y 2+kx +2y +4=0上,且点M ,N 关于直线x -y +1=0对称,则该圆的半径是________.解析:由题知,直线x -y +1=0过圆心⎝ ⎛⎭⎪⎫-k 2,-1, 即-k2+1+1=0,∴k =4.∴r =16+4-162=1. 答案:19.一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.解:因为圆与y 轴相切,且圆心在直线x -3y =0上, 故设圆的方程为(x -3b )2+(y -b )2=9b 2. 又因为直线y =x 截圆得弦长为27,则有⎝⎛⎭⎪⎫|3b -b|22+(7)2=9b 2,解得b =±1,故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.10.设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为22,求圆的方程.解:设所求圆的方程为(x -a )2+(y -b )2=r 2,则圆心为(a ,b ),半径长为r .∵点A (2,3)关于直线x +2y =0的对称点A ′仍在这个圆上,∴圆心(a ,b )在直线x +2y =0上.∴a +2b =0,① 且(2-a )2+(3-b )2=r 2.②又∵直线x -y +1=0与圆相交的弦长为22, ∴r 2-d 2=r 2-⎝ ⎛⎭⎪⎫|a -b +1|22=(2)2.③解由方程①②③组成的方程组, 得{ a =6,b =-3,r2=52或{ a =14,b =-7,r2=244.∴所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(x +7)2=244.层级二 应试能力达标1.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=1的位置关系是( ) A .相交 B .相切C .相离D .无法确定,与m 的取值有关解析:选A 圆心到直线的距离d =|-1-m +1|m2+1=|m|m2+1<1=r ,故选A.2.直线x +7y -5=0截圆x 2+y 2=1所得的两段弧长之差的绝对值是( ) A.π4 B.π2 C .πD.3π2解析:选C 圆心到直线的距离d =|0+0-5|1+49=22.又圆的半径r =1,∴直线x +7y -5=0被圆x 2+y 2=1截得的弦长为2,∴直线截圆所得的劣弧所对的圆心角为90°,∴劣弧是整个圆周的14,∴直线截圆所得的两段弧长之差的绝对值为整个圆周长的一半,即12×2πr =π. 3.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为C (-2,3),则直线l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=0解析:选A 由圆的一般方程可得圆心为M (-1,2).由圆的性质易知M (-1,2)与C (-2,3)的连线与弦AB 垂直,故有k AB ×k MC =-1⇒k AB =1,故直线AB 的方程为y -3=x +2,整理得x -y +5=0.4.与圆C :x 2+y 2-4x +2=0相切,且在x ,y 轴上的截距相等的直线共有( ) A .1条 B .2条 C .3条D .4条解析:选C 圆C 的方程可化为(x -2)2+y 2=2.可分为两种情况讨论:(1)直线在x ,y 轴上的截距均为0,易知直线斜率必存在,设直线方程为y =kx ,则|2k|1+k2=2,解得k =±1;(2)直线在x ,y 轴上的截距均不为0,则可设直线方程为x a +ya =1(a ≠0),即x +y -a =0(a ≠0),则|2-a|2=2,解得a =4(a =0舍去).因此满足条件的直线共有3条.5.过直线x +y +4=0与圆x 2+y 2+4x -2y -4=0的交点且与y =x 相切的圆的方程为________________.解析:设所求圆的方程为x 2+y 2+4x -2y -4+λ(x +y +4)=0.联立方程组错误!得x 2+(1+λ)x +2(λ-1)=0.因为圆与y =x 相切,所以Δ=0,即(1+λ)2-8(λ-1)=0,则λ=3,故所求圆的方程为x 2+y 2+7x +y +8=0.答案:x 2+y 2+7x +y +8=06.过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________.解析:圆的方程化为标准方程为(x -3)2+(y -4)2=5,示意图如图所示.则圆心为O ′(3,4),r =5.切线长|OP |=|OO′|2-|O′P|2=25. ∴|PQ |=2·|OP|·|O′P||OO′|=2×25×55=4.答案:47.已知点A (1,a ),圆O :x 2+y 2=4.(1)若过点A 的圆O 的切线只有一条,求实数a 的值及切线方程;(2)若过点A 且在两坐标轴上截距相等的直线被圆O 截得的弦长为23,求实数a 的值. 解:(1)由于过点A 的圆O 的切线只有一条,则点A 在圆上,故12+a 2=4,∴a =±3. 当a =3时,A (1,3),切线方程为x +3y -4=0;当a =-3时,A (1,-3),切线方程为x -3y -4=0. (2)设直线方程为x +y =b .∵直线过点A ,∴1+a =b ,即a =b -1.① 又圆心到直线的距离d =|b|2,∴⎝ ⎛⎭⎪⎫|b|22+⎝ ⎛⎭⎪⎫2322=4,② 由①②,得{ a =2-1,b =2或{ a =-2-1,b =- 2.8.已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. 解:(1)证明:直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交.(2)圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =错误!=3, 所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt △APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC|2-|PC|2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.。
A组基础对点练
1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是() A.相切B.相交
C.相离D.不确定
解析:由点M在圆外,得a2+b2>1,∴圆心O到直线ax+by=1的距离d=
1
a2+b2
<1
=r,则直线与圆O相交,选B.
答案:B
2.过点(-2,3)的直线l与圆x2+y2+2x-4y=0相交于A,B两点,则|AB|取得最小值时l的方程为()
A.x-y+5=0 B.x+y-1=0
C.x-y-5=0 D.2x+y+1=0
解析:由题意得圆的标准方程为(x+1)2+(y-2)2=5,则圆心C(-1,2).过圆心与点(-
2,3)的直线l1的斜率为k=3-2
-2-(-1)
=-1.当直线l与l1垂直时,|AB|取得最小值,故直线l 的斜率为1,所以直线l的方程为y-3=x-(-2),即x-y+5=0.
答案:A
3.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()
A.6-2 2 B.52-4
C.17-1
D.17
解析:圆C1关于x轴对称的圆C1′的圆心为C1′(2,-3),半径不变,圆C2的圆心为(3,4),半径r=3,|PM|+|PN|的最小值为圆C1′和圆C2的圆心距减去两圆的半径,所以|PM|+|PN|的最小值为(3-2)2+(4+3)2-1-3=52-4.故选B.
答案:B
4.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________.解析:因为点(1,0)关于直线y=x对称的点的坐标为(0,1),所以所求圆的圆心为(0,1),半径为1,于是圆C的标准方程为x2+(y-1)2=1.
答案:x2+(y-1)2=1
5.(2018·滨州模拟)在平面直角坐标系xOy中,以点(2,1)为圆心且与直线mx+y-2m=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________.
解析:直线mx+y-2m=0过定点(2,0),则以点(2,1)为圆心且与直线mx+y-2m=0(m ∈R)相切的所有圆中,半径最大的圆的半径为1,∴半径最大的圆的标准方程为(x-2)2+(y -1)2=1.
答案:(x-2)2+(y-1)2=1
6.已知矩形ABCD的对角线交于点P(2,0),边AB所在的直线方程为x+y-2=0,点(-1,1)在边AD所在的直线上.
(1)求矩形ABCD的外接圆方程;
(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的外接圆相交,并求最短弦长.
解析:(1)依题意得AB⊥AD,∵k AB=-1,
∴k AD=1,
∴直线AD的方程为y-1=x+1,即y=x+2.
解{x+y-2=0,x-y+2=0,得{x=0,y=2,即A(0,2).
矩形ABCD的外接圆是以P(2,0)为圆心,
|AP|=22为半径的圆,方程为(x-2)2+y2=8.
(2)直线l的方程可整理为(x+y-5)+k(y-2x+4)=0,k∈R,
∴{x+y-5=0,y-2x+4=0,
解得{x=3,y=2,
∴直线l过定点M(3,2).
又∵点M(3,2)在圆内,∴直线l与圆相交.
∵圆心P与定点M的距离d=5,
最短弦长为28-5=2 3.
B组能力提升练
1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是() A.[-3,-1]B.[-1,3]
C.[-3,1]D.(-∞,-3]∪[1,+∞)
解析:欲使直线x-y+1=0与圆(x-a)2+y2=2有公共点,只需使圆心到直线的距离小
于等于圆的半径2即可,即|a-0+1|
12+(-1)2
≤2,化简得|a+1|≤2,解得-3≤a≤1.
答案:C
2.已知⊙M的圆心在抛物线x2=4y上,且⊙M与y轴及抛物线的准线都相切,则⊙M 的方程是()
A.x2+y2±4x-2y+1=0
B.x2+y2±4x-2y-1=0
C.x2+y2±4x-2y+4=0
D.x2+y2±4x-2y-4=0
解析:抛物线x2=4y的准线为y=-1,设圆心M的坐标为(x0,y0)(y0>0),则|x0|=y0+1,
又x 20=4y 0,所以联立{ |x 0|=y 0+1,x 20=4y 0,解得{ x 0=±2,y 0=1,因此圆M 的方程为(x ±2)2+(y -1)2=22,展开整理得x 2+y 2±4x -2y +1=0,故选A.
答案:A
3.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )
A .内切
B .相交
C .外切
D .相离
解析:由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =
a 2,所以2 a 2-a 22
=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,故两圆相交.
答案:B
4.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切
线,若a ,b ∈R 且ab ≠0,则1a 2+1b
2的最小值为( ) A .2
B .4
C .8
D .9
解析:圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以
圆C 1与圆C 2相内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b 2=⎝⎛⎭
⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2
b 2≥5+2 b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b 2,且4a 2+b 2=1,即a 2=16
,b 2=13时等号成立.所以1a 2+1b
2的最小值为9. 答案:D
5.(2018·银川一中检测)过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是________.
解析:验证得M (1,2)在圆内,当∠ACB 最小时,直线l 与CM 垂直,又圆心为(3,4),则k CM =4-23-1
=1,则k l =-1,故直线l 的方程为y -2=-(x -1),整理得x +y -3=0. 答案:x +y -3=0
6.圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =________.
解析:由题意知,圆的标准方程为x 2+(y +1)2=4.较短弧所对圆心角是90°,所以圆心
(0,-1)到直线x+y-k=0的距离为
2
2r= 2.即
|1+k|
2
=2,解得k=1或-3.
答案:1或-3。