数学分析(华东师大版)上第一章1-2_ppt课件
- 格式:ppt
- 大小:990.50 KB
- 文档页数:28
一、有界集二、确界三、确界的存在性定理四、非正常确界*点击以上标题可直接前往对应内容记号与术语(;){|||}:U a x x a a δδδ=-<点的邻域;(;){|0||}:U a x x a a δδδ=<-<点的空心邻域;(;){|0}:U a x x a a δδδ+=≤-<点的右邻域;(;){|0}:U a x a x a δδδ-=≤-<点的左邻域;(;){|||}:U M x x M M ∞=>∞的邻域;(;){|}:U M x x M M +∞=>+∞的邻域;(;){|}:U M x x M M -∞=<-∞的邻域;.;max :S S 数集的最大值min :S S 数集的最小值后退前进目录退出定义1有界集R,.S S 设⊂≠∅(1)R,,,M x S x M M 若使得则称为∃∈∀∈≤,.S S 的一个上界称为有上界的数集(2)R,,,L x S x L L 若使得则称为∃∈∀∈≥,.S S 的一个下界称为有下界的数集.S 则称为有界集(3),S 若既有上界又有下界:0,,||.M x S x M ∃>∀∈≤其充要条件为使有(1),,S S '若不是有上界的数集则称无上界00R,,.M x S x M ∀∈∃∈>使得(2),,S S '若不是有下界的数集则称无下界00R,,.L x S x L ∀∈∃∈<使得(3),,S S '若不是有界的数集则称无界集000,,||.M x S x M ∀>∃∈>使得即即即[]102[]1,M x M M +=>+>取证取L = 1,{2|N },.nS n +=∈证明数集无上界有下界例1例22+31N .2n S n n ⎧⎫-=∈⎨⎬⎩⎭证明数集有界证2+31N ,2n n n -∀∈.S 因此有界,,2L x S x n ≥∈=∀则故S 有下界.因此S 无上界.,1,<∈∀M R M 若;210M x >=取,若1≥M 233122n n n ≤+111,22≤+=定义2确界:R . R,满足若设∈≠⊂η∅S S .sup ,S S =ηη记为的上确界是则称;,)i (η≤∈∀x S x ,,(ii)0S x ∈∃<∀ηα0,x α>使得若数集S 有上界, 则必有无穷多个上界, 而其中最小的一个具有重要的作用. 确界. 确界.最小的上界称为上同样,若S 有下界,则最大的下界称为下定义3R,.R :S S ξ设若满足⊂≠∅∈(i),;x S x ξ∀∈≥00(ii),,;x S x βξβ∀>∃∈<.inf ,S S =ξξ记为的下确界是则称00,.x S x εξε∀>∃∈<+0,(ii)下确界定义中的亦可换成注2注1由定义,下确界是最大的下界.注4(ii)显然,条件亦可换成:00,.x S x εηε∀>∃∈>-0,注3 条件(i) 说明是的一个上界, S η比小的数都不是的上界,从而是最小的上界S ηη界,条件(ii )说明即上确界是最小的上界.证先证sup S =1.;111,i)(≤-=∈∀n x S x .,211000αα>∈-=≤x S x ,则取若(ii) 1.α<设例3 11,1,2,,S x x n n ⎧⎫==-=⎨⎬⎩⎭设证明.0inf 1sup ==S S ,.1sup =S 因此,00,10,,,n αεα若令由阿基米德性>=->∃01.n ε使得<00011,1.x S x n εα取则=-∈>-=.0inf =S 因此.0inf =S 再证00(ii)0,0,.x S x αα∀>∃=∈<;011,)i (≥-=∈∀nx S x 以下确界原理作为公理,不予证明.虽然我们定义了上确界, 但并没有证明上确界的存在性, 不一定有最小值, 例如(0, ∞) 无最小值.这是由于上界集是无限集, 而无限数集确界存在性定理定理1.1(确界原理)设若有上界则必有上确界⊂≠∅S S S SR,.,;若有下界则必有下确界,.S S.,,y x B y A x ≤∈∀∈∀有:.,满足为非空数集设B A 例4.inf sup B A ≤且证明:数集A 有上确界,数集B 有下确界,由定义, 上确界sup A 是最小的上界, 因此, 任意证由假设, B 中任一数y 都是A 的上界, A 中的任界, B 有下确界.y ∈B ; sup A ≤y . 而inf B 是最大的下界, 因此sup A ≤inf B.一数x 都是B 的下界. 因此由确界原理, A 有上确这样, sup A 又是B 的一个下界,例5,R 中非空有上界的数集是设S (i)R,{|},a S a x a x S ∈+=+∈若定义则sup {}sup ;S a S a +=+=∈(ii)>0,{|},b bS bx x S 若定义则sup {}sup .bS b S =⋅证,)i (a S a x +∈+∀,S x ∈其中必有,sup S x ≤于是.sup a S a x +≤+,,00S x ∈∃>∀ε对于使,sup 0ε->S x 从而,0a S a x +∈+且,)(sup 0ε-+>+a S a x 因此.sup )sup(a S a S +=+,)ii (bS bx ∈∀其中,S x ∈必有,sup S x ≤于是.sup S b bx ≤0,0,b εεε'∀>=>令则存在,0S x ∈使0sup ,x S ε'>-因此0sup sup .bx b S b b S εε'>-=-这就证明了.sup }sup{S b bS =非正常确界;R,)i (.1+∞<<∞-∈∀a a 规定supN ,inf{2|N }.nn +=+∞-∈=-∞2. 推广的确界原理: 非空数集必有上、下确界..sup ,)ii (+∞=S S 记无上界若.inf ,-∞=S S 记无下界若例2 设数集1R ,.A B x A x +⎧⎫⊂=∈⎨⎬⎩⎭求证:sup inf 0.A B 的充要条件是=+∞=例1,M ε1令=001,,.x B x M εε=∃∈<令于是0001,.y A y M x 且=∈>证设sup .A 若=+∞,0.x B x ∀∈>显然0,ε∀>于是0001,.y B y x ε=∈<且因此inf 0.B =sup .A 因此=+∞反之,若inf 0,B =则0,M ∀>求证:sup inf 0.A B 的充要条件是=+∞=sup ,A =+∞则由于00,.x A x M ∃∈>复习思考题2. 1212,,S S S S ⊂和都是数集且21sup sup S S 和比较.inf inf 21的大小和及S S .sup S a =其中形式一定为,),[∞+a 1. 数集S 有上界,则S 的所有上界组成的集合是否3. 在上确界的定义中,00(ii),,x S x αηα使∀<∃∈>能否改为00(ii ),,?x S x αηα'∀<∃∈≥使或改为00(ii ),,?x S x αηα使''∀≤∃∈≥。