不等式选讲之不等式证明与数学归纳法晚练专题练习(一)带答案新人教版高中数学名师一点通
- 格式:doc
- 大小:166.50 KB
- 文档页数:4
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;
2.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人
得分 二、解答题
3.选修4—5:不等式选讲
已知不等式222|2|23a x y z -++≤对满足1x y z ++=
的一切实数x ,y ,z 都成立,求实数a 的取值范围.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.
4.选修4—5:不等式选讲。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z ++≤++.评卷人得分 二、解答题3.选修4—5:不等式选讲设函数()|21|f x x =-,()|4|g x x =-,且()1f x ≤,()2g y ≤. (1)解不等式()()5f x g x +≤;(2)求证:|23|3x y -+≤.4.已知a ,b ,c 都是正数,且236a b c ++=,求12131a b c +++++的最大值.5.已知0,0,a b >>且21a b +=,求2224S ab a b =--的最大值.6.已知对于任意非零实数m ,不等式|)32||1(||||1||12|+--≥-+-x x m m m 恒成立,求实数x 的取值范围.7.设a ∈R 且2,a ≠-比较22a +与2a -的大小.2.(不等式选讲选做题)8.已知实数,0m n >. (Ⅰ)求证:222()a b a b m n m n +++≥;(Ⅱ)求函数291((0,))122y x x x =+∈-的最小值.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.证明:由柯西不等式得……………5分则,即…………10分解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z ++++≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z ++≤++…………10分 评卷人得分 二、解答题3. (1)解:|21||4|5x x -+-≤ 则121245x x x ⎧<⎪⎨⎪-+-⎩≤或者1422145x x x ⎧⎪⎨⎪-+-⎩≤≤≤或者 4<x 2x -1+x -4≤5ìíïîï, 解不等式组得12x <≤0或者122x ≤≤或者x φ∈. 所以不等式的解集为[0,2]. ……………………………………5分(2)证明:因为|21|1x -≤,|4|2y -≤,则|23||(21)(4)||21||4|123x y x y x y --=----+-+=≤≤,故|23|3x y --≤. ……………………………………10分4.5.0,0,21,a b a b >>+= ∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分 且1222a b ab =+≥,即24ab ≤,18ab ≤, ……………………………………………………5分 ∴2224S ab a b =--2(14)ab ab =--241ab ab =+-212-≤, 当且仅当11,42a b ==时,等号成立.…………………………………………………………………10分6.选修4-5:不等式选讲 解:211123m m x x m-+---+≤恒成立, ………………4分 211m mm-+-=11211m m -+-≥,∴只需1231x x --+≤, 综上x 的取值范围为(,3-∞-⋃-+∞. ………………10分 7. 22a +-(2a -)=22a a+,………………………………………………3分 当2a >-且0a ≠时,∵202a a >+,∴22a +>2a -. ………………6分 当0a =时, ∵ 202a a=+,∴22a +=2a -. …………………………7分 当2a <-时,∵ 202a a <+,∴22a +<2a -.………………………… 10分8.(选修4—5:不等式选讲)证明:(Ⅰ)因为,0m n >,利用柯西不等式,得222()()()a b m n a b m n+++≥, 所以222()a b a b m n m n+++≥. ……………………………………………………………………5分(Ⅱ)由(Ⅰ),函数2222923(23)25122122(12)y x x x x x x +=+=+=--+-≥, 所以函数291((0,))122y x x x =+∈-的最小值为25,当且仅当15x =时取得.……………10分。
高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.若,,x y z 为正实数,则222xy yz x y z +++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4 - 5:不等式选讲(本小题满分10分)已知x ,y ,z 均为正数.求证:111x y z yz zx xy x y z++++≥.4.选修4—5:不等式选讲已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.5.设正数a ,b ,c 满足1a b c ++=,求111323232a b c +++++的最小值.6.对于实数y x ,,若,12,11≤-≤-y x 求1+-y x 的最大值.7.已知12,n a a a ⋅⋅⋅都是正数,且12n a a a ⋅⋅⋅⋅=1,求证:12(2)(2)(2)3n n a a a ++⋅⋅⋅+≥8.设f (x )= x 2-x + l ,实数a 满足| x -a |<l ,求证:|f (x )-f (a )|<2(| a |+1).【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.2.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3.4. 选修4—5:不等式选讲证明:左边-右边=2222()(1)1(1)[(1)1]y y x y x y y yx y x -+--+=--++………4分 =(1)(1)(1)y xy x ---, ………………………………………………………6分 ∵1x ≥,1y ≥,∴0,0,0111y xy x ---≤≥≥. ………………………………………………8分 从而左边-右边≤0,∴22221x x y xy y x y ++++≤. ………………………………………………10分5.因为a ,b ,c 均为正数,且1a b c ++=,所以(32)(32)(32)9a b c +++++=.于是 ()[]111(32)(32)(32)323232a b c a b c ++++++++++ 33133(32)(32)(32)9(32)(32)(32)a b c a b c ⋅+++=+++≥, 当且仅当13a b c ===时,等号成立. …………………………………8分 即1111323232a b c +++++≥,故111323232a b c +++++的最小值为1.…………10分6.解法一:1+-y x =|)2()1(|---y x …………………………5′ 221≤-+-≤y x …………………………9′(当且仅当3,2==y x 或x=0,y=1时取等号)…………………………10′ 解法二:∵11≤-x , ∴20≤≤x …………………………3′∵,12≤-y ∴31≤≤y …………………………6′∴13-≤-≤-y∴212≤+-≤-y x …………………………9′∴1+-y x 的最大值为2. …………………………10′7.因为1a 是正数,所以31112113a a a +=++≥,……………………………5分 同理32113(2,3,)j j ja a a j n +=++=≥, 将上述不等式两边相乘,得31212(2)(2)(2)3n n n a a a a a a +++⋅⋅⋅⋅≥, 因为121n a a a ⋅⋅⋅=,所以12(2)(2)(2)3n n a a a +++≥.………………………10分 8.2()1f x x x =-+,22()()-=--+f x f a x x a a1=-⋅+-x a x a ……………………………………………………………2分 1<+-x a , 又1()21+-=-+-x a x a a …………………………………………… 6分 21≤-+-x a a ……………………………………………8分a a.…………………………………10分<++=+1212(1)。
高中不等式证明练习题及参考答案高中不等式证明练习题及参考答案不等式证明是可以作文练习题经常出现的,这类的练习题是的呢?下面就是店铺给大家整理的不等式证明练习题内容,希望大家喜欢。
不等式证明练习题解答(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2=11+6√2≥18楼上的,用基本不等式要考虑等号时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z则原不等式等价于:x^2+y^2+z^2>=xy+yz+zx<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0<=>(x-y)^2+(y-z)^2+(z-x)^2>=0含有绝对值的不等式练习。
1.实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是 [-1, 1] ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是(0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:222
1x y z ++=,2314x y z ++=,则x y z ++=_______.
2.2 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211
x --≤的解集为_________ 评卷人
得分 二、解答题
3.(选修4—5:不等式证明选讲)(本小题满分10分)
已知,,a b c 均为正数,证明:2222111()63a b c a b c
+++++≥. 【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.
4.选修4—5:不等式选讲
已知:2a x ∈≥,R .
求证:|1|||x a x a -++-≥3.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.2 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人得分 二、解答题3.选修4—5:不等式选讲已知不等式222|2|23a x y z -++≤对满足1x y z ++= 的一切实数x ,y ,z 都成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.4.已知关于x 的不等式11ax ax a -+-≥(0a >).(1)当1a =时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.5.设1a ,2a ,3a 均为正数,且m a a a m ,a a a 9111:321321≥++=++求证6.设d c b a ,,,都是正数,且22b a x +=,22d c y +=. 求证:))((bc ad bd ac xy ++≥.7.证明:+01nn C C +122n n C C +233n n C C 1-+n n n n C nC 2)1(+=n n . 8.证明:对于任意实数,x y ,有4421()2x y xy x y +≥+【参考答案】***试卷处理标记,请不要删除 评卷人得分 一、填空题1.31472.[]0,4评卷人得分 二、解答题3. 略 4.(选修4-5:不等式选讲)(1)当1a =时,得211x -≥, 即112x -≥, 解得3122x x ≥≤或, ∴不等式的解集为13(,][,)22-∞+∞. ………………………………………………………5分 (2)∵11,ax ax a a -+-≥- ∴原不等式解集为R 等价于1 1.a -≥ ∴2,0.a a ≥≤或 ∵0a >,∴ 2.a ≥ ∴实数a 的取值范围为),2[+∞. …………………………………………10分 5.6.7.8.。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.已知正数,,x y z 满足2221x y z ++=,则12z S xyz
+=
的最小值为________
2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.(选修4-5:不等式选讲)
设R x y ∈,,z ,且满足:222++z 1x y =,2314x y ++=z ,求证:
3147
x y z ++=.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.已知正数,,x y z 满足2221x y z ++=,则12z S xyz+=的最小值为________2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证: 因为|x +5y |=|3(x +y )-2(x -y )|. ………………………………………5分由绝对值不等式性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|=3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. ………………………………………10分4.(选修4—5:不等式证明选讲)(本小题满分10分)已知,,a b c 均为正数,证明:2222111()63a b c a b c+++++≥. 5.已知正数a ,b ,c 满足1abc =,求证:(2)(2)(2)27a b c +++≥.6.已知对于任意非零实数m ,不等式|)32||1(||||1||12|+--≥-+-x x m m m 恒成立,求实数x 的取值范围.7.已知a 、b 、c 为正数,且a +b +c =3,求313131a b c +++++的最大值.8.设a 、b 、c 均为实数,求证:a 21+b 21+c21≥c b +1+a c +1+b a +1.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.42.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3. 4. (选修4-5:不等式选讲)证法一:因为a b c ,,均为正数,由均值不等式得22223()a b c abc ++≥3,………………………2分因为13111()abc a b c -++≥3,所以223111(()abc a b c-++)≥9 .…………………………………5分 故22222233111(()()a b c abc abc a b c-++++++)≥39. 又32233()9()22763abc abc -+=≥,所以原不等式成立.…………………………………10分证法二:因为a b c ,,均为正数,由基本不等式得222a b ab +≥,222b c bc +≥,222c a ca +≥.所以2a b ++++≥.……………………………………………………………………2分同理2211a b ++++≥,…………………………………………………………………5分所以2222111333(63a b c ab bc ca a b c ab bc ca++++++++++)≥≥. 所以原不等式成立.………………………………………………………………………………10分5.选修4—5:不等式选讲本小题主要考查均值不等式等基础知识,考查推理论证能力.满分10分. 证明:(2)(2)(2)a b c +++(11)(11)(11)a b c =++++++ …………………………………………4分 333333a b c ⋅⋅⋅⋅⋅≥ 327abc =⋅27=(当且仅当1a b c ===时等号成立). ……………………………………………10分6.选修4-5:不等式选讲 解:211123m m x x m-+---+≤恒成立, ………………4分 211m mm-+-=11211m m -+-≥,∴只需1231x x --+≤, 综上x 的取值范围为(,3-∞-⋃-+∞. ………………10分7.运用柯西不等式2(313131)a b c +++++2(131131131)a b c =⋅++⋅++⋅+ …………………2分 222222(111)[(31)(31)(31)]a b c ≤+++++++ ……………………………………8分=3[3(a+b+c )+3]=36 所以3131316a b c +++++≤,当且仅当a =b =c =1时等号成立,故所求式子的最大值是6. (10)分8.证明: ∵a 、b 、c 均为实数, ∴21(a 21+b 21)≥ab21≥b a +1,当a =b 时等号成立;……………………4分 21(b 21+c 21)≥bc21≥c b +1,当b =c 时等号成立;……………………6分 21(c 21+a 21)≥ca21≥a c +1.……………………8分 三个不等式相加即得a 21+b 21+c21≥c b +1+a c +1+b a +1, 当且仅当a =b =c 时等号成立. ……………………10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.已知正数,,x y z 满足2221x y z ++=,则12zS xyz+=的最小值为________2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z++≤++.评卷人得分二、解答题3.(本小题满分10分,不等式选讲) 已知:1a b c ++=,,,0a b c >. (1)求证:127abc ≤;(2)求证:2223a b c abc ++≥.[必做题]第22题,第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.4.1 .(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))不等式选讲:设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值. 5.设0x y <<,求证:2222()()()()x y x y x y x y +->-+.6.已知实数,,x y z 满足2x y z ++=,求22223x y z ++的最小值;7.证明:+01nn C C +122n n C C +233n n C C 1-+n n nnC nC 2)1(+=n n . 8.若2294 132y x y x +=+求,的最小值,并求相应的x 、y 的值。
【参考答案】***试卷处理标记,请不要删除评卷人得分一、填空题1.42.证明:由柯西不等式得……………5分则,即…………10分 解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z++++≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z++≤++…………10分 评卷人得分二、解答题3. 证明:(1)33a b c abc ++≥⋅,而1a b c ++=127abc ⇒≤,当且仅当13a b c ===时取“=”. ………………5分 (2)柯西不等式222211()33a b c a b c ++≥++=,由(1)知313abc ≤ 2223a b c abc ∴++≥,当且仅当a b c ==时取“=”. ………………10分4.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3 5. 2222()()()()x y x y x y x y +---+ ………………2分222()[()]x y x y x y =-+-+()(2)x y xy =--, ………………8分∵ x y <, ∴ 0x y -<, 又0x <,0y <, ∴20xy -<,∴ ()(2)0x y xy -->, ………………12分 ∴ 2222()()()()x y x y x y x y +->-+. ………………14分 6.由柯西不等式可知:222222211()(2)(3)()()123x y z x y z ⎡⎤⎡⎤++++⋅++⎢⎥⎣⎦⎣⎦≤…………………………………………5分 故222242311x y z ++≥,当且仅当2311123x y z==,即:6412,,111111x y z ===22223x y z ++取得最小值为2411…………………………………………10分 7.8.(D )解:由柯西不等式()()()132119422222=+≥++y x y x219422≥+∴x x 当且仅当 y x y x 321312=⋅=⋅即时取等号 …………………………………………8分由⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧=+=6141 132,32y x y x y x 得 (10)分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.若,,x y z 为正实数,则222xy yz x y z+++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人 得分二、解答题3.(选修4-5:不等式选讲)设R x y ∈,,z ,且满足:222++z 1x y =,2314x y ++=z ,求证:3147x y z ++=.[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内.4.选修4—5:不等式选讲(本小题满分10分)设实数a ,b 满足a ≠b ,求证:4422a b ab a b +>+().5.已知实数,,a b c 满足a b c >>,且2221,1a b c a b c ++=++=,求证:413a b <+<6.设*n ∈N ,求证:12(21)n n n n n C C C n +++-≤.7.已知实数,,x y z 满足2x y z ++=,求22223x y z ++的最小值;8.已知,,,a b x y R +∈且11a b >,x y >。
求证:x y x a y b >++本题三种方法:作差比较;分析法;或构造函数()x f x x a=+皆可。
【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2. 评卷人得分 二、解答题3. 解:设x y z R ∈,,,且满足:222x +y+z 1=,2314x y z ++=,求证: 3147x y z ++=. 证:222222214(23)(123)(x +y +z )14x y z =+≤+=++,∴123x y z ==,∴3,2z x y x ==,又2314x y z ++=, ∴123,,141414x y z ===,∴3147x y z ++=.…………………………………………10分 4. 选修4—5:不等式选讲证明:作差得442233()()()a b ab a b a a b b b a ++=-+-- …………………… 1分=33()()a b a b --=222()()a b a ab b -++ …………………… 4分 =2223()[()]24ba b a b -++. …………………… 6分 因为a ≠b ,所以a ,b 不同时为0,故223()024ba b ++>,2()0a b ->, 所以2223()[()]24b a b a b -++>,即有44a b a b a b+>+(). …………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.5.因为a +b =1-c ,ab =222()()2a b a b +-+=c 2-c , ………………………3分所以a ,b 是方程x 2-(1-c )x +c 2-c =0的两个不等实根,则△=(1-c )2-4(c 2-c )>0,得-13<c <1, ………………………5分 而(c -a )(c -b )=c 2-(a +b )c +ab >0,即c 2-(1-c )c +c 2-c >0,得c <0,或c >23, …………………………8分 又因为a b c >>,所以0c <.所以-13<c <0,即1<a +b <43. …………10分6.选修4-5:不等式选讲证明:由柯西不等式,得12212(C C C )(111)(C C C )n n n n n n n n +++++++++≤ …………………………………5分((11)1)(21)n n n n =+-=-. ∴12C C C (21)n n n n n n +++-≤.…………………………………………………10分7.略8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.若,,x y z 为正实数,则222xy yzx y z +++的最大值是22.提示:2222112222x y y z xy yz +++≥+. 2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z++≤++.评卷人得分二、解答题3.选修4-5:不等式选讲 解不等式211x x +--≤.综上所述,不等式211x x +--≤的解集为(],0-∞. …………………………10分4.解关于x 的不等式 ()2||60x x a a a -≤> .5.已知0m ab >∈R ,,,求证:()22211a mb a mb mm++≤++.6.证明:+01nn C C +122n n C C +233n n C C 1-+n n n nC nC 2)1(+=n n . 7.已知,,x y z 均为实数. (Ⅰ)若1x y z ++=,求证:31323333x y z +++++≤;(5分)(Ⅱ)若236x y z ++=,求222x y z ++的最小值.(5分)8.设a ∈R 且2,a ≠-比较22a+与2a -的大小.1.(不等式选讲选做题)【参考答案】***试卷处理标记,请不要删除评卷人得分一、填空题1.2.证明:由柯西不等式得……………5分则,即…………10分 解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z++++≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z ++≤++ (10)评卷人得分二、解答题3.含绝对值不等式的解法、分段函数 4.选修4-5:不等式选讲解:当x a ≥时,原不等式化为22,60,x a x ax a ≥⎧⎨--≤⎩ 解得3a x a ≤≤.……………4分 当x a <时,原不等式化为22,60,x a x ax a <⎧⎨-+-≤⎩解得x a <.……………8分 故原不等式的解集为(],3a -∞ . ……………10分 5.因为0m >,所以10m +>,所以要证()22211a mba mb mm++≤++,即证222()(1)()a mb m a mb +≤++,即证22(2)0m a ab b -+≥,即证2()0a b -≥,而2()0a b -≥显然成立,故()22211a mba mb mm++≤++…10分 6.7.(1)证明:因为2222(313233)(111)(313233)27x y z x y z +++++≤+++++++= 所以313233x y z +++++≤33 …………5分 (2)解:因为(12+22+32)(x 2 + y 2 + z 2)≥(x + 2y +3z )2=36 …………8分 即14(x 2 + y 2 + z 2)≥36,所以x 2 + y 2 + z 2的最小值为187…………10分 8.22a+-(2a -)=22a a +,………………………………………………3分当2a >-且0a ≠时,∵202a a>+,∴22a+>2a -. ………………6分当0a=时, ∵22aa=+,∴22a+=2a-.…………………………7分当2a<-时,∵22aa<+,∴22a+<2a-.…………………………10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 2.若,,x y z 为正实数,则222xy yzx y z+++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人得分二、解答题3.选修4—5:不等式选讲已知不等式222|2|23a x y z -++≤对满足1x y z ++= 的一切实数x ,y ,z 都成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 4.选修4—5:不等式选讲已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.5.(汇编年高考辽宁卷(文))选修4-5:不等式选讲 已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值. 6.2.(汇编年高考课标Ⅰ卷(文))选修4—5:不等式选讲 已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集; (Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围 7.已知,,x y z ∈R ,且234x y z --=,求222x y z ++的最小值.8.已知实数a,b,c ∈R,a+b+c=1,求4a+4b+4c 2的最小值,并求出取最小值时a,b,c 的值。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.已知正数,,x y z 满足2221x y z ++=,则12z S xyz+=的最小值为________2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.[选修4-5:不等式选讲](本小题满分10分)已知a 、b 、c 均为正实数,且a +b +c =1,求111a b c +++++的最大值.4.(选修4—5:不等式证明选讲)(本小题满分10分) 已知,,a b c 均为正数,证明:2222111()63a b c a b c+++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.5.选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证: 因为|x +5y |=|3(x +y )-2(x -y )|. ………………………………………5分由绝对值不等式性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|=3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. ………………………………………10分6.1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥. 7.设123,,a a a 均为正数, 且123a a a m ++=, 求证:12233111192a a a a a a m ++≥+++.8.设a ∈R 且2,a ≠-比较22a +与2a -的大小.2.(不等式选讲选做题)【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.42.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3. 解:因 a 、b 、c >0,故(111a b c +++++)2 = (111111a b c +⋅++⋅++⋅)2≤((a +1)+(b +1)+(c +1))(1+1+1)=12,························································3分 于是111a b c +++++≤23, 当且仅当111a b c +=+=+,即a =b =c =13时,取“=”. 所以,111a b c +++++的最大值为23.··········································10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答..,解答时应写出文字说明、证明过程或演算步骤.4.5.6.7.证明: 因为122331111()a a a a a a +++++122331[()()()]a a a a a a ⋅+++++ 31223311113a a a a a a ≥⋅⋅+++·31223313()()()a a a a a a +⋅+⋅+=9……………………………… 6分 当且仅当1233m a a a ===时等号成立, 则由122331111()a a a a a a +++++29m ⋅≥, 知12233111192a a a a a a m++≥+++………………………………………………………………… 10分(注: 此题也可以用柯西不等式证明) 8. 22a +-(2a -)=22a a+,………………………………………………3分 当2a >-且0a ≠时,∵202a a >+,∴22a +>2a -. ………………6分 当0a =时, ∵ 202a a=+,∴22a +=2a -. …………………………7分 当2a <-时,∵ 202a a <+,∴22a +<2a -.………………………… 10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人得分 二、解答题3.选修4—5:不等式选讲已知不等式222|2|23a x y z -++≤对满足1x y z ++=的一切实数x ,y ,z 都成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.4.选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证: 因为|x +5y |=|3(x +y )-2(x -y )|. ………………………………………5分由绝对值不等式性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|=3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. ………………………………………10分5.设,,a b c 均为正实数,求证:111111222a b c b c c a a b +++++++≥.6.已知,,a b c 为实数,且2,a b c ++=求证:222112497a b c ++≥7.已知实数,,x y z 满足2x y z ++=,求22223x y z ++的最小值;8.已知,,a b c 为正数,且满足22cos sin a b c θθ+<, 求证:22cos sin a b c θθ+<.(选修4—5:不等式选讲)【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2.[]0,4 评卷人得分二、解答题3. 略4.5.选修4-5:不等式选讲解: ∵,,a b c 均为正实数,∴b a ab b a +≥≥⎪⎭⎫ ⎝⎛+121212121,当b a =时等号成立; 则cb bc c b +≥≥⎪⎭⎫ ⎝⎛+121212121,当c b =时等号成立; ac ca a c +≥≥⎪⎭⎫ ⎝⎛+121212121,当a c =时等号成立;三个不等式相加得, ba a c cbc b a +++++≥++111212121,当且仅当c b a ==时等号成立.……………10分.6.7.略8.(不等式证明选讲)由柯西不等式可得22cos sin a b θθ+ 11222222[(cos )(sin )](cos sin )a b θθθθ≤++………………………………(6分)1222(cos sin ).a b c θθ=+<……………………………………………………(10分) (其它证法酌情给分。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________
2.2 .(汇编年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______. 评卷人
得分 二、解答题
3.(汇编年高考课标Ⅱ卷(文))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:
(Ⅰ)13ab bc ca ++≤; (Ⅱ)222
1a b c b c a
++≥.。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.已知x y z 、、均为正数,求证:222
3111111()3x y z x y z ++≤++.
2.考察下列一组不等式:33224433
252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题 3.设123,,a a a 均为正数, 且123a a a m ++=, 求证: 12233111192a a a a a a m
++≥+++.
4.已知关于x 的不等式|1|||2x x a ---<恒成立,求实数a 的取值范围.
5.已知x 、y 是正实数,求证:
31132x y x y +++≥.
6.已知a 、b 、c 是正实数,求证:a 2b 2+b 2c 2+c 2a 2≥b a +c b +a c
.
7.已知关于x 的不等式11ax ax a -+-≥(0a >).
(1)当1a =时,求此不等式的解集;
(2)若此不等式的解集为R ,求实数a 的取值范围.
8.已知,,,a b x y R +∈且
11a b >,x y >。
求证:x y x a y b >++
本题三种方法:作差比较;分析法;或构造函数()x f x x a
=
+皆可。
【参考答案】***试卷处理标记,请不要删除
评卷人
得分 一、填空题 1.证明:由柯西不等式得……………5分则,即…………10分
解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z +++
+≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z ++≤++…………10分
2.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分
二、解答题
3.证明: 因为122331
111()a a a a a a +++++122331[()()()]a a a a a a ⋅+++++ 3122331
1113a a a a a a ≥⋅⋅+++·31223313()()()a a a a a a +⋅+⋅+=9……………………………… 6分
当且仅当1233m a a a ===时等号成立, 则由122331
111
()a a a a a a +++++29m ⋅≥, 知12233111192a a a a a a m
++≥+++………………………………………………………………… 10分
(注: 此题也可以用柯西不等式证明)
4.选修4-5:不等式选讲
解:∵|1||||(1)()||1|
x x a x x a a ------=-≤恒成立, ……………………5分
∴要使关于x 的不等式|1|||2x x a ---<恒成立,当且仅当|1|2a -<, ……8分 即13a -<<.所以实数a 的取值范围为(13)-,. ……………………10分
5.证:∵ x 、y 是正实数,∴112x y xy
+≥.…………………………………(4分) ∴3322332x y x y xy
xy ++≥⋅⋅⋅=.………………………………(10分) 6.证明:由⎝⎛⎭⎫a b -b c 2+ ⎝⎛⎭⎫b c -c a 2+ ⎝⎛⎭
⎫c a -a b 2≥0,得 2(a 2b 2+b 2c 2+c 2a 2)-2(a b +b c +c a )≥0,∴a 2b 2+b 2c 2+c 2a 2≥b a +c b +a c
.……………………10分
7.(选修4-5:不等式选讲)
(1)当1a =时,得211x -≥, 即112x -≥
, 解得3122x x ≥≤或, ∴不等式
的解集为13(,][,)22
-∞+∞. ………………………………………………………5分 (2)∵11,ax ax a a -+-≥- ∴原不等式解集为R 等价于1 1.a -≥ ∴2,0.a a ≥≤或 ∵0a >,∴ 2.a ≥ ∴实数a 的取值范围为
),2[+∞. …………………………………………10分
8.。