大容量电弧炉负荷对电网的影响及其防范措施
- 格式:pdf
- 大小:85.72 KB
- 文档页数:2
电弧炉对电能质量的影响作者:王晓霏童伟来源:《城市建设理论研究》2013年第29期摘要:介绍了电弧炉对电网和电能质量的影响,提出了治理方案,对SVC装置的设计、应用进行了阐述,对治理前后电能质量进行了比较、总结关键词:电弧炉电能质量改进技术 SVC中图分类号: TF748.41 文献标识码: A1 前言在电力系统中,供电的质量指标、电网运行的安全可靠性和经济性是最根本的问题。
近年来,随着冶金工业的飞速发展,大量具有冲击性负荷的电弧炉、轧钢机等不断投入电网,电弧炉在正常生产时会对电网造成高次谐波、电压闪变、电压波动、三相电压及电流不平衡、功率因数低等不利影响,而且电能质量超过国家标准的规定指标。
针对电弧炉对电网电能质量污染问题,莱芜供电公司2011年针对莱芜某钢铁厂电弧炉用电系统进行治理,采用了新型的SVC装置,取得了良好效果。
2 电弧炉对电网的干扰2.1 高次谐波交流电弧炉在炼钢过程中其电流会产生非正弦畸变和各次谐波,对电网造成干扰。
其主要原因有:(1)电弧的电阻值不恒定,并且在交流电弧的半个周期中电弧电阻也在变动,这造成电弧电流的非正弦畸变;(2) 交流电的正负半周换相,石墨电极和钢交替作阴极和阳极,因不同材料的发射电子能力不一样,故使电流的正负两个半周的波形不对称,造成偶次谐波;(3) 三相电弧不均衡,导致三次谐波;(4) 供电系统连接的各种谐波源导致各种谐波的形成,如静补装置中的整流器等。
电弧炉的谐波电流成份主要为2~7 次,其中2、3次最大,其平均值可达基波分量的5%~10% ,谐波电流流入电网,使电压波形发生畸变,引起电气设备发热、振动以及保护误动作等。
国标《电能质量·公用电网谐波》( GBPT14549-93) 对综合电压畸变率、谐波电流注入量均作了具体规定,为抑制电弧炉产生的谐波提供了依据和标准。
2.2 电压波动与闪变超高功率电弧炉在运行中经常产生突然的、强烈的电流冲击,导致电网电压的快速波动,频率为0.1~30Hz,这类干扰称之为“闪烁”或“闪变”(Fluctuation)。
电弧炉对电网的影响及补偿措施1.引言大功率电弧炉接于容量较小的电网会对电网和其他负载产生不利影响,主要表现在:—无功冲击及闪变—三相负荷不平衡—产生谐波电流本文结合交流或直流电弧炉的工作特性对上述问题进行讨论,并提出解决方案。
2.电弧炉的负载特性用于冶炼的电弧炉在其给定的物理范围内工作时,负载电流会发生变形。
物理范围可以用圆图来表示(图1)图1中首先将电弧阻抗看作纯阻性,在电弧截断时电阻值无限大,在短路时电阻值为零。
在每个电流过零点,交流电弧须重新燃弧,但当功率因数大于0.9时,会导致电弧截断,并一直维持到输入能量与冷却能量不在平衡。
用于冶炼的电弧炉一般有三个特征工作阶段:—开始融化阶段,固体炉料熔化,能量需求很大。
—初精练及加热阶段。
—精练期,此阶段输入能量只需平衡热损耗。
在废刚冶炼时电弧炉的工作特性为:—在开始熔化时电弧频繁出现截断和重新燃弧。
—在全熔化期出现电弧波动,并导致电流急剧变化。
—发生塌料导致短路。
电弧炉在熔化期出现的电弧截断及短路现象,只有通过统计学方法进行评价。
需注意的是各项不平衡电流、各项断续电流和半波不平衡电流,会导致电网在不同时间和不同相位产生的有功功率和无功功率值发生变化。
调制电流使电网电压出现闪变效应,同时产生谐波电流注入电网,使电网电压发生畸变。
在电网阻抗上产生的电压降或电压改变可以分解为两个分量,即纵向电压降(导致电压幅值的变化)和横向电压降(导致电压相位变化)。
因为在电网阻抗中阻性分量大约占感性分量的1/10或以下,所以电压量值的改变主要由无功功率的变化引起。
有功功率的变化只影响电压的相位(见图2)。
在一个电网中,电压的改变会影响所有接于这个电网的负载,因此电弧炉对电网的影响可以称为电网的环境污染,必须采取技术措施进行抑制。
当电弧炉功率大于电网短路功率的1/80时,通常需要考虑对电网的影响问题。
3.补偿任务简单来讲,补偿的任务就是减少或抑制电弧炉对电网的影响。
当然,这也和其它领域的环境保护一样,具有一定的难度,同时需要付出相应的费用。
超高功率电弧炉对电网的干扰及防护摘要:超高功率电弧炉在正常生产时会对电网造成高次谐波、电压闪变、电压波动、三相电压及电流不平衡、功率因数低等不利影响,而且超过电能质量各项指标国家标准。
本文逐项进行定性分析,并对几种常见型式的SVC装置作比较,无源与有源滤波的应用和技术发展作了阐述,以形成一个完整的概念和防护方法。
关键词:超高功率电弧炉高次谐波电压闪变电压波动现代炼钢电弧炉的基本功能是将尽可能多的电功率输入到熔池内,以获得高的生产率和低的物料、能量消耗以及好的环保指标。
炼钢电弧炉按其吨钢平均变压器额定容量,或单位炉膛面积平均变压器额定容量分为普通功率(RP)、高功率(HP)和超高功率(UHP)三种。
超高功率电弧炉概念自70年代提出,目标在于极大地提高电弧炉炼钢的生产率和降低成本,开创了电弧炉炼钢技术发展新纪元。
但由于生产时对电网影响与干扰是多方面的,实践中也发现了涉及到电能质量的所有方面。
由于超高功率电弧炉的变压器功率水平高,变压器容量高达数十兆伏安,在炼钢过程中对电网造成严重的冲击和干扰,这些“公害”必须加以控制和治理。
1对电网的干扰1.1功率因数低电弧炉从电网获得电能,其中一部分转化为有用的热能,而另一部分则为无功能量。
为了使电弧能稳定燃烧,电弧炉的功率因数不能取得太高。
因电弧炉负载是高感性的,电弧炉的接入使供电电网的功率因数恶化。
超高功率电弧炉运行在熔化期时,功率因数甚至低到0.1,这样引起母线电压严重降低。
电压降低又相应降低电弧炉的有功功率,使熔化期延长,生产率下降。
1.2电压闪烁和波动超高功率电弧炉是供电电网的很大的负载,而且在运行中经常产生突然的、强烈的电压冲击,导致电网电压的快速波动,频率为0.1~30Hz。
频率在1~10Hz之间的电压波动会引起照明白炽灯和电视画面的闪烁,使人们感到烦躁,这类干扰称之为“闪烁”或“闪变”。
强烈的闪烁会造成电机转动不稳定,电子装置误动作甚至损坏,也会使电网供电的用户(包括电弧炉本身)的实际功率减少,闪烁是对电网的一种公害。
超高功率电弧炉对电网的干扰及防护(3)3.1SVC装置近些年来发展起来的SVC装置是一种快速调节无功功率的装置,已成功地用于电力、冶金、采矿和电气化铁道等冲击性负荷的补偿上,它可使所需无功功率作随机调整,从而保持在电弧炉等冲击性负荷连接点的系统水平的恒定。
Qi=QD+QL-QC式中;Qi——系统公共连接点的无功功率,kvar;QD——负荷所需的无功功率,kvar;QL——可调(可控)电抗器吸收的无功功率,kvar;QC——电容器补偿装置发出的无功功率,kvar。
当负荷产生冲击无功ΔQD时,将引起ΔQi=ΔQD+ΔQL-ΔQC式中ΔQC=0,欲保持Qi不变,即ΔQi=0,则ΔQD=-ΔQL,即SVC装置中感性无功功率随冲击负荷无功功率作随机调整,此时电压水平能保持恒定不变。
SVC由可控支路和固定(或可变)电容器支路并联而成,主要有四种型式:3.1.1可控硅阀控制空芯电抗器型(TCR型),它用可控硅阀控制线性电抗器实现快速连续的无功功率调节,它具有反应时间快(5~20ms)、运行可靠、无级补偿、分相调节、能平衡有功、适用范围广、价格便宜等优点。
TCR装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而在电弧炉系统中采用最广泛,但这种装置采用了先进的电子和光导纤维技术,对维护人员要专门培训提高维护水平。
3.1.2可控硅阀控制高阻抗变压器型(TCT型),优点与TCR型差不多,但高阻抗变压器制造复杂,谐波分量也略大一些。
由于有油,要求一级放火,只宜布置在一层平面或户外,容量在30Mvar以上时价格较贵,而不能得到广泛采用。
3.1.3可控硅开关控制电容器型(TSC型),分相调节、直接补偿,装置本身不产生谐波,损耗小,但是它是有级调节,综合价格比较高。
3.1.4自饱和电抗器型(SSR型),维护较简单、运行可靠、过载能力强、响应速度快,降低闪变效果好,但其噪声大、原材料消耗大,补偿不对称电炉负荷自身产生较大谐波电流,无平衡有功负荷能力。
电弧炉负荷及其对电能质量的影响分析为了了解电弧炉对电能质量和电能效率影响的产生原因,需要对电弧炉设备的特殊性做一下简单介绍。
1.1 电弧炉分类和工作原理电弧炉是利用电弧能来冶炼金属的一种电炉。
工业上应用的电弧炉可分为三类:第一类是直接加热式,电弧发生在专用电极棒和被熔炼的炉料之间,炉料直接受到电弧热。
主要用于炼钢,其次也用于熔炼铁、铜、耐火材料、精炼钢液等。
第二类是间接加热式,电弧发生在两根专用电极棒之间,炉料受到电弧的辐射热,用于熔炼铜、铜合金等。
这种炉子噪声大,熔炼质量差,已逐渐被其它炉类所取代。
第三类称为矿热炉,是以高电阻率的矿石为原料,在工作过程中电极的下部一般是埋在炉料里面的。
其加热原理是:既利用电流通过炉料时,炉料电阻产生的热量,同时也利用了电极和炉料间的电弧产生的热量。
所以又称为电弧电阻炉。
1.2 电弧炉的组成设备∙炉用变压器电弧炼钢用变压器应能按冶炼要求单独进行电压电流的调节,并能承受工作短路电流的冲击。
电炉变压器额定电压的选择要考虑许多因素。
若一次侧电压取高些,则系统电抗小,短路容量大,可减少闪变,但须增加配电装置费用。
若二次电压高些,则功率因素较高,电效率较高,但电弧长,炉墙损耗快,综合效率变低。
一般电炉变压器二次侧均为低电压(几十至几百伏),大电流(几千至几万安)。
为保证各个熔炼阶段对电功率的不同需要,变压器二次电压要能在50% ~70%的范围内调整,因此都设计成多级可调形式。
调整方法有变换、有载调压分接开关等。
变压器容量小于10MVA者,可进行无载切换;容量在10MVA 以上者,一般应是有载调压方式。
也有三相分别设置分接头装置,各相分别进行调整,可以保障炉内三相热能平衡。
与普通电力变压器相比,电炉专用变压器有以下特点:a.有较大的过负荷能力;b.有较高的机械强度;c.有较大的短路阻抗;d.有几个二次电压等级;e.有较大的变压比;f.二次电压低而电流大。
电炉变压器和电弧炉的容量比一般为0.4~1.2MVA/t。
电炉等冲击负荷对电网的影响研究的开题报告
一、选题背景
随着电子产品和新兴行业的迅速发展,电力需求量逐年增加。
电网负荷变化和冲击负荷的突发性特征对电网运行口径有着广泛的影响。
工业用电最常使用的设备之一
是电炉,由于其操作频繁且在电炉启动和停止时会产生大量的负载突变,因此电炉等
工业设备冲击负荷对电网的影响不容忽视。
为了保证电网的稳定性、安全性和经济性,研究电炉等工业设备对电网影响的机理和规律具有很大的现实意义。
二、研究目的
本研究旨在探讨电炉等冲击负荷对电网的影响研究,具体包括:电炉负载特性的分析,工作周期内电炉负荷变化和突变特性的研究,电炉等负载突发变化对电网的影
响机理的分析。
三、研究方法
本研究将采用实验方法和模拟模型相结合的方法,通过实验研究电炉的负载特性以及工作周期内负载的变化和突变特性。
然后,基于采集到的实验数据,开发电炉的
数学模型和仿真模型,并运用该模型进行电炉对电网进行仿真实验。
最终,通过实验
与仿真研究,探究电炉等冲击负荷对电网的影响机理。
四、预期结果
本研究将全面分析电炉等冲击负荷对电网的影响,揭示其机理和规律,从而为工业用电的规划和电网的建设提供科学依据。
同时,本研究也将为电力系统的稳定性评
估和控制提供参考。
预期成果包括电炉负载特性研究报告、电炉仿真模型、以及电炉
等冲击负荷对电网的影响机理研究报告等。
五、研究意义
本研究的结果将对电力工程、电力管理和电力系统稳定性分析等方面有所贡献,有助于更好地理解工业用电产品对电网稳定性的影响,以及制定相关的电网稳定性策
略和规划。
电弧炉负荷对石嘴山地区电网的影响及防范措施
左群峰
【期刊名称】《宁夏电力》
【年(卷),期】2008(000)C00
【摘要】结合石嘴山地区电网现状、电弧炉冲击性负荷的特点、运行工况及地区电弧炉负荷客户的电能质量测试情况,对电弧炉性质的负荷引起电压波动、闪变的规律和对电网的运行、设备及安全的影响进行了分析。
同时提出了具体的防范措施和建议。
【总页数】6页(P32-37)
【作者】左群峰
【作者单位】宁夏石嘴山供电局,石嘴山市753000
【正文语种】中文
【中图分类】TM714
【相关文献】
1.AVC系统对地区电网安全的影响及防范措施 [J], 刘欣
2.电动汽车多因素负荷对湖南某地区电网的影响研究 [J], 陈芳;王艳;尹自力;刘娟;
3.大容量电弧炉负荷对电网的影响及其防范措施 [J], 李俊;彭涨;谢良德
4.电弧炉负荷对石嘴山地区电网的影响及防范措施 [J], 左群峰
5.AVC系统对地区电网安全的影响及防范措施 [J], 徐志静;罗斌
因版权原因,仅展示原文概要,查看原文内容请购买。
超高功率电弧炉对电网的干扰及防护(一)摘要:超高功率电弧炉在正常生产时会对电网造成高次谐波、电压闪变、电压波动、三相电压及电流不平衡、功率因数低等不利影响,而且超过电能质量各项指标国家标准。
本文逐项进行定性分析,并对几种常见型式的SVC装置作比较,无源与有源滤波的应用和技术发展作了阐述,以形成一个完整的概念和防护方法。
关键词:超高功率电弧炉高次谐波电压闪变电压波动现代炼钢电弧炉的基本功能是将尽可能多的电功率输入到熔池内,以获得高的生产率和低的物料、能量消耗以及好的环保指标。
炼钢电弧炉按其吨钢平均变压器额定容量,或单位炉膛面积平均变压器额定容量分为普通功率(RP)、高功率(HP)和超高功率(UHP)三种。
超高功率电弧炉概念自70年代提出,目标在于极大地提高电弧炉炼钢的生产率和降低成本,开创了电弧炉炼钢技术发展新纪元。
但由于生产时对电网影响与干扰是多方面的,实践中也发现了涉及到电能质量的所有方面。
由于超高功率电弧炉的变压器功率水平高,变压器容量高达数十兆伏安,在炼钢过程中对电网造成严重的冲击和干扰,这些“公害”必须加以控制和治理。
1对电网的干扰1.1功率因数低电弧炉从电网获得电能,其中一部分转化为有用的热能,而另一部分则为无功能量。
为了使电弧能稳定燃烧,电弧炉的功率因数不能取得太高。
因电弧炉负载是高感性的,电弧炉的接入使供电电网的功率因数恶化。
超高功率电弧炉运行在熔化期时,功率因数甚至低到0.1,这样引起母线电压严重降低。
电压降低又相应降低电弧炉的有功功率,使熔化期延长,生产率下降。
1.2电压闪烁和波动超高功率电弧炉是供电电网的很大的负载,而且在运行中经常产生突然的、强烈的电压冲击,导致电网电压的快速波动,频率为0.1~30Hz。
频率在1~10Hz之间的电压波动会引起照明白炽灯和电视画面的闪烁,使人们感到烦躁,这类干扰称之为“闪烁”或“闪变”。
强烈的闪烁会造成电机转动不稳定,电子装置误动作甚至损坏,也会使电网供电的用户(包括电弧炉本身)的实际功率减少,闪烁是对电网的一种公害。
大容量电弧炉对电网干扰的抑制方法研究1炼钢电弧炉对电网的干扰分析电弧波动是对电网产生干扰的根源。
电弧炉在运行时电弧电流受电磁力作用、电极移动以及对流气体的影响变化剧烈,并且具有很大的随机性,特别在起炉、废钢熔化、打洞塌落、短接废钢、气体喷出时尤为严重。
剧烈的电弧电流变化,产生剧烈的无功、有功冲击,以100t交流电弧炉为例,最大的无功冲击可达到150 Mvar。
电弧炉炼钢时产生以下现象:(1)由于电弧电阻的非线性和瞬变性产生高次谐波;(2)交流电弧炉运行时由于三相电弧不对称,产生负序电流;(3)在剧烈的无功、有功冲击电流作用下,供电系统产生剧烈的电压波动和闪变。
电弧炉在熔化期产生高次谐波、负序电流,从而引起电网电压波动和闪变。
世界各国对高次谐波、负序电流注入电网的量,以及电压波动、闪变的限制值都有明确规定,以保证电网的供电质量。
我国于1990年制订了标准,对电网的公害加以限制。
目前,对于电弧炉产生的高次谐波采用滤波器可以有效地加以抑制。
但对于电弧炉引起的电压波动、闪变的抑制从技术上来说比较因难,需从多方面综合考虑加以抑制。
2炼钢电弧炉引起的电压波动、闪变的抑制方法2.1改进炼钢工艺、优化电弧炉设计参数(1)废钢料预热电弧炉炼钢时产生大量的高温烟气可用于预热废钢料。
电弧炉安装废钢预热装置后,可将废钢料在装炉前预热到700℃左右。
在高温下,一部分不导电的杂质被除掉,废钢变软且电阻率变大,熔化期电弧相对稳定,引起的电压波动和闪变相对降低。
根据国外实测的数据,利用这种方法可降低电压波动和闪变约5%左右,效果比较明显,是一种经济、实用的方法。
(2)破碎工艺大块的废钢在电弧炉内不易熔化,而且容易短接电极造成短路使电弧不稳定,增大了无功冲击、增加了冶炼时间、降低了效率。
因此,现代炼钢工艺都逐步采用废钢破碎和净化技术来降低生产成本,同时也降低了熔化期的电压波动和闪变。
(3)喷吹辅助燃料欧洲一些国家的钢铁企业在熔化期喷入重油或天然气等辅助燃料,以此降低炼钢综合成本。
钢铁厂电弧炉、轧机对电网产生一系列不良影响与解决方案不良影响电弧炉电弧炉做为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响。
其中主要是:∙导致电网严重三相不平衡,产生负序电流。
∙产生高次谐波,其中普遍存在如24次偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更趋复杂化。
∙存在严重的电压闪变。
∙功率因数低。
轧机轧机及其他工业对称负载在工作中所产生的无功冲击会对电网造成如下影响:∙引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率。
∙使功率因数降低。
∙负载的传动装置中会产生有害高次谐波,主要是以5、7、11、13次为代表的奇次谐波及旁频,会使电网电压产生严重畸变。
解决方案:彻底解决上述问题的唯一方法是安装具有快速响应速度的动态无功补偿器(SVC)。
SVC系统响应小于lOms,完全可以满足严格的技术要求,向电弧炉快速提供无功电流并且稳定母线电网电压,增加冶金有功功率的输出,提高生产效率,并且最大限度地降低闪变的影响。
SVC具有的分相补偿功能可以消除电弧炉造成的三相不平衡,滤波装置可以消除有害的高次谐波并通过向系统提供容性无功来提高功率因数。
SVC 系统可以完美地解决上述问题,保持母线电压平稳,无谐波干扰,功率因数接近1。
世界各国目前普遍采用TCR型静止型动态无功补偿装置(SVC),用以消除无功冲击,滤除高次谐波,平衡三相电网。
TCR型SVC工作原理SCV如图接入系统中,电容器提供固定的容性无功Qc,补偿电抗器通过的电流决定了补偿电抗器输出感性无功QTCR的大小,感性无功和容性无功相抵消,只要能做到系统无功Qn=Qv(系统所需)-Qc+Q TCR=常数(或0),则能实现电网功率因数=常数,电压几乎不波动,关键是准确控制晶闸管的触发角,得到所需的流过补偿电抗器的电流,晶闸管变流装置和控制系统能够实现这个功能,采集母线的无功电流值和电压值,合成无功值,和所设定的恒无功值(可能是0)进行比较,计算得触发角大小,通过晶闸管触发装置使晶闸管流过所需电流。
提高电弧炉生产率和降低电耗的措施引言电弧炉是一种重要的冶炼设备,广泛应用于冶金、钢铁和有色金属行业,其生产效率和能源消耗对企业的经济效益和资源利用具有重要影响。
因此,提高电弧炉生产率和降低电耗是冶金行业中的重要课题。
本文将探讨一些可行的措施和技术,以提高电弧炉的生产效率并降低电耗。
1. 优化电弧炉操作参数电弧炉操作参数的优化对提高生产率和降低电耗至关重要。
以下是一些可采取的措施:1.1 电弧炉负荷控制合理控制电弧炉的负荷是提高生产效率和降低电耗的关键。
通过合理控制电弧炉的进料量和排渣量,可以保持电弧炉的稳定运行,并提高冶炼效率。
1.2 电弧炉温度控制有效控制电弧炉的温度对于保证冶炼过程的稳定性和效率至关重要。
通过优化电弧炉的温度控制系统,并及时调整控制参数,可以实现更精确的温度控制,从而提高生产效率和降低能耗。
2. 优化电弧炉炉料电弧炉炉料的合理选择和优化也是提高生产效率和降低电耗的重要方面。
以下措施可以实施:2.1 优化炉料配比通过选择合适的炉料配比,可以提高电弧炉的冶炼效率。
合理的炉料配比可以提高炉料的熔化性能和反应速度,从而提高电弧炉的生产率。
2.2 选择高质量原料选择高质量的原料是提高电弧炉生产率和降低电耗的关键。
高质量的原料具有较高的反应活性和较低的杂质含量,可以提高冶炼效率并降低能源消耗。
3. 引入先进技术引入先进的技术和设备也是提高电弧炉生产率和降低电耗的重要手段。
以下是一些可行的措施:3.1 炉膛保温技术改进改进电弧炉的炉膛保温技术可以有效减少能源损失,提高能量利用率。
通过采用新型保温材料和隔热结构,降低炉膛的散热损失,可以减少电耗并提高冶炼效率。
3.2 自动化控制系统引入先进的自动化控制系统可以提高电弧炉的生产自动化程度,减少人工操作,提高生产效率和生产一致性。
自动化控制系统可以实现对电弧炉操作参数的实时监测和调整,提高设备利用率并降低电耗。
3.3 能耗监测和管理系统建立完善的电弧炉能耗监测和管理系统可以帮助企业实时监测电耗情况,并及时发现和解决问题。
电弧炉对电网及自身的影响和抑制方案1 引言现代大型功率炼钢电弧炉,由于其容量大,是用电大户,对电网的影响具有举足轻重的作用。
它具有功率因数低,无功波动负荷大且急剧变动,产生有害的高次谐波电流,三相负荷严重不平衡产生负序电流等对电网不利的因素,使得电网电能质量恶化,危及发配电和大量用户,也影响电炉自身的产量、质量,使电耗、电极消耗增大,从而成为电网的主要公害之一。
现在有关大型电弧炉对电网公害抑制的研究也正在深入开展,有必要对其不利影响和抑制对策作一概述性的分析。
2大型电弧炉对电网的影响2.1引起电网电压急剧波动大型电弧炉在熔化期电弧长度急剧变化,引起无功负荷急剧波动,其工作短路功率为电炉变压器额定功率的两倍左右,其最大波动无功为电炉变压器额定功率的1.5倍左右(具体倍数取决于短网阻抗、电炉变压器阻抗、供电系统阻抗之和的大小,总阻抗大则工作短路倍数小,反之则大)。
无功的急剧波动,引起电网电压的急剧波动,其波动频率一般为1~15Hz,使灯光和电视机屏幕产生闪烁,使人视觉疲劳而感到烦躁,此外还影响到晶闸管设备和精密仪表等的稳定运行,甚至产生质量事故。
国标GB12326-2000《电能质量电压允许波动和闪变》规定了电力系统公共供电点各级电压等级的电压波动和闪变允许值。
2.2使电网电压波形产生畸变电弧炉在熔化期,电弧电流是不规则的,且急剧变化,其电流波形不是正弦波,可分解为2次和2次以上的各次谐波电流,主要为2~7次,其中2次和3次最大,其平均值可达基波分量的5%~10%,最大可达15%~30%;4~7次平均值为2%~6%,最大值可达6%~15%。
而电网中的铁磁元件也产生高次谐波,以3次和5次谐波电流较大,其中3次分量最大,而电炉刚好也是3次谐波电流很大,这对电网是极为不利的。
谐波电流流入电网,使其电压波形发生畸变,引起电气设备发热、振动,增加损耗,干扰通信,使电力电缆局部放电绝缘损坏,电容器过载损坏等,国家标准GB/T14549-1993《电能质量公用电网谐波》规定了电压波形畸变率限值。
减轻对电网冲击的高阻抗电弧炉收藏此信息推荐给好友2009-7-7 来源:机电商情网1 引言自从电弧炉诞生那天起,人们便开始研究用什么办法能获得最大的电弧功率。
众所周知,电弧功率决定了它的生产率,而电弧功率又正比例于电压和电极电流。
在过去的许多年来,一直是依靠加大电极电流来提高电弧功率的。
但是,由此产生的弊端是必须配置巨大截面的二次载流导体和开发价格昂贵的、特制的超大直径硅电极来满足传输大电流的要求。
在这种冶炼操作模式中,由于采用短电弧冶炼,使得电极同炉料频繁接触,经常产生短路,对供电电网的冲击非常严重,造成电网电压波动和闪变,并产生大量高次谐波;另外它还导致电极折断率非常高,经常需要接电极,既影响了生产,也增加了炼钢成本。
短电弧操作的另一负面效应是在电极穿井期间,运行电抗非常高,导致平均功率降低,电弧功率减少,冶炼时间加长。
如果采用高电压,低电流操作,可以减少电极消耗和电能消耗。
可是采用高电压,低电流操作,由于主电路电抗值小,导致短路电流倍数过高,高压开关频繁跳闸,功率因数过高,电弧燃烧不稳定。
综合上述,可得出一条重要结论:那就是如果将电弧炉主电路由低阻抗改造成高阻抗,即在主电路串联一只电抗器,则上述弊端便可迎刃而解。
也就是说:附加电抗能使电弧燃烧稳定,电极电流减少,电压波动降低,谐波发生量减少,提高二次电压,可使电弧功率加大,电效率提高,并依靠泡沫渣完全包围覆盖电弧,因而也提高了炉衬寿命。
这种在电弧炉主电路串有大电抗器的,并有较高二次电压的电弧炉被称为高阻抗电弧炉。
2 高阻抗电弧炉的理论依据自从附加电抗器的高阻抗电弧炉概念在十几年前被首次提出以来,现已在电弧炉操作实践中被炼钢厂普遍接受,并已在国内外迅速推广,已收到了明显的经济效益。
因此,高电弧电压,长电弧冶炼,低电极电流操作模式是已有的超高功率电弧炉进一步发展和提高的必由之路。
提高变压器二次电压来增加电弧电压和电弧长度,以及增加炉子总电抗来降低电极电流和提高电效率的优越性,可用式(1)-(6)说明。