2012广东高考数学(理科)试卷A卷(pdf版)
- 格式:pdf
- 大小:185.39 KB
- 文档页数:4
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 . 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6}3 若向量BA=(2,3),C A=(4,7),则BC=A (-2,-4)B (3,4)C (6,10D (-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)(12)xD.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-1 6,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是A. 49 B. 13C. 29D. 198.对任意两个非零的平面向量α和β,定义。
若平面向量a,b满足|a|≥|b|>0,a与b的夹角,且a·b和b·a都在集合中,则A.12 B.1 C. 32D. 52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 的展开式中x³的系数为______。
(用数字作答)11.已知递增的等差数列{a n}满足a1=1,a3=22a-4,则a n=____。
12.曲线y=x3-x+3在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。
(二)选做题(14 - 15题,考生只能从中选做一题)14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。
2012广东高考数学试题(高清版含详细答案)一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-= A . 65i + B .65i - C .65i -+ D .65i -- 【答案】D2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =, 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6} 【答案】C3. 若向量(2,3)BA = ,(4,7)CA =,则BCA .(2,4)--B .(3,4)C .(6,10)D .(6,10)-- 【答案】A4. 下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+ B.y = C .1()2xy = D .1y x x=+【答案】A5. 已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1 【答案】B6. 某几何体的三视图如图1所示,它的体积为A .12πB .45πC .57πD .81π 【答案】C7. 从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A .49 B .13 C .29 D .19【答案】D8. 对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅ 。
若平面向量,a b 满足||||0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合{|}2∈nn Z 中,则a b = A .12 B. 1 C. 32 D. 52【解析】:因为||cos cos ||θθ⋅==≥>⋅ a b a a b b b b ,||cos cos 1||θθ⋅==≤<⋅ b a b b a a a a 且a b 和b a 都在集合{|}2∈nn Z 中 所以,||1cos ||2θ== b b a a ,||1||2cos θ=b a ,所以2||cos 2cos 2||θθ==< a a b b所以22≤< a b ,故有1= a b 【答案】B二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
2012广东高考数学〔理科〕参考答案 选择题答案:1-8: DCAAB CDC填空题答案: 9. 1,2⎛⎤-∞- ⎥⎝⎦ 10. 2011. 21n -12. 21y x =+ 13. 8f14. ()1,115. 解答题16.〔1〕15ω= 〔2〕代入得62cos 25πα⎛⎫+=- ⎪⎝⎭3sin 5α⇒= 162cos 17β=8cos 17β⇒= ∵ ,0,2παβ⎡⎤∈⎢⎥⎣⎦∴ 415cos ,sin 517αβ== ∴ ()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=- 17.〔1〕由300.006100.01100.054101x ⨯+⨯+⨯+=得0.018x =〔2〕由题意知道:不低于80分的学生有12人,90分以上的学生有3人 随机变量ξ的可能取值有0,1,2()292126011C P C ξ=== ()11932129122C C P C ξ===()232121222C P C ξ=== ∴ 69110121122222E ξ=⨯+⨯+⨯= 18.〔1〕∵ PA ABCD ⊥平面∴ PA BD ⊥∵ PC BDE ⊥平面∴ PC BD ⊥∴ BD PAC ⊥平面〔2〕设AC 与BD 交点为O ,连OE∵ PC BDE ⊥平面∴ PC OE ⊥又∵ BO PAC ⊥平面∴ PC BO ⊥∴ PC BOE ⊥平面∴ PC BE ⊥∴ BEO ∠为二面角B PC A --的平面角∵ BD PAC ⊥平面∴ BD AC ⊥∴ ABCD 四边形为正方形∴BO =在PAC ∆中,133OE PA OE OC AC ==⇒= ∴ tan 3BO BEO OE∠== ∴ 二面角B PC A --的平面角的正切值为3 19.〔1〕在11221n n n S a ++=-+中令1n =得:212221S a =-+令2n =得:323221S a =-+解得:2123a a =+,31613a a =+又()21325a a a +=+解得11a =〔2〕由11221n n n S a ++=-+212221n n n S a +++=-+得12132n n n a a +++=+又121,5a a ==也满足12132a a =+所以132n n n a a n N *+=+∈对成立∴ ()11+232n n n n a a ++=+∴ 23n n n a +=∴ 32n n n a =-〔3〕〔法一〕∵()()123211323233232...23n n n n n n n n a -----=-=-+⨯+⨯++≥∴ 1113n n a -≤ ∴21123111311111113...1 (1333213)n n n a a a a -⎛⎫⎛⎫⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭+++≤++++=<- 〔法二〕∵1111322322n n n n n n a a ++++=->⨯-=∴ 11112n na a +<⋅ 当2n ≥时,321112a a <⋅ 431112a a <⋅541112a a <⋅ ………11112n n a a -<⋅ 累乘得: 221112n n a a -⎛⎫<⋅ ⎪⎝⎭ ∴212311*********...1...5252552n n a a a a -⎛⎫+++≤++⨯++⨯<< ⎪⎝⎭20.〔1〕由e =223a b =,椭圆方程为22233x y b += 椭圆上的点到点Q 的距离d ==)b y b =-≤≤当①1b -≤-即1b ≥,max 3d ==得1b =当②1b ->-即1b <,max 3d ==得1b =〔舍〕∴ 1b =∴ 椭圆方程为2213x y += 〔2〕11sin sin 22AOB S OA OB AOB AOB ∆=⋅∠=∠ 当90AOB ∠=,AOB S ∆取最大值12, 点O 到直线l距离2d == ∴222m n +=又∵2213m n += 解得:2231,22m n ==所以点M 的坐标为22222222⎛⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭或或或 AOB ∆的面积为1221.〔1〕记()()()223161h x x a x a a =-++<()()()291483139a a a a ∆=+-=--① 当0∆<,即113a <<,()0,D =+∞ ② 当103a <≤,D ⎛⎫=⋃+∞ ⎪ ⎪⎝⎭⎝⎭③ 当0a ≤,D ⎫=+∞⎪⎪⎝⎭ 〔2〕由()()266160=1f x x a x a x a '=-++=得,得① 当113a <<,()D f x a 在内有一个极大值点,有一个极小值点1 ② 当103a <≤,∵()()12316=310h a a a =-++-≤ ()()222316=30h a a a a a a a =-++->∴ 1,D a D ∉∈∴ ()D f x a 在内有一个极大值点③ 当0a ≤,则a D ∉又∵()()12316=310h a a a =-++-<∴ ()D f x 在内有无极值点理科数学试卷评析——汪治平1.整体分析:试卷难度偏易,题型较正统,解答题考查了常见六大板块:三角函数、概率统计、立体几何、数列、解析几何、函数与导数。
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题1.(复数)设i 为虚数单位,则复数56ii-=( ) A.65i +B.65i -C.65i -+D.65i --2.(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( ) A.UB.{}1,3,5C.{}3,5,6D.{}2,4,63.(向量)若向量()2,3BA = ,()4,7CA = ,则BC =( )A.()2,4--B.()2,4C.()6,10D.()6,10--4.(函数)下列函数中,在区间()0,+∞上为增函数的是( ) A.()ln 2y x =+B.y =C.12xy ⎛⎫= ⎪⎝⎭D.1y x x=+5.已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A.12B.11C.3D.1-6.(立体几何)某几何体的三视图如图1所示,它的体积为( )A.12πB.45πC.57πD.81π7.(概率)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.198.对任意两个非零的平面向量α和β,定义⋅=⋅ αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且 a b 和 b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b ( )A.12B.1C.32D.52二、填空题(一)必做题(9—13题)9.(不等式)不等式21x x +-≤的解集为__________________.10.(二项式定理)621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为_________.(用数字作答)11.(数列)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =______________. 12.曲线33y x x =-+在点()1,3处的切线方程为___________________.13.(算法)执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为______. (二)选做题(14—15题)14.(坐标系与参数方程)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩t 为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲)如图3,圆O 的半径为1,A 、B 、C是圆周上的三点,满足30ABC ∠=︒,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =__________.三、解答题16.(三角函数)(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.17.(概率统计)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(立体几何)(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(Ⅰ)证明:BD ⊥平面PAC ;(Ⅱ)若1PA =,2AD =,求二面角B PC A --的正切值.19.设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a 、25a +、3a 成等差数列.(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1211132n a a a +++< .20.(解析几何)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e 且椭圆C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且O A B ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.21.(不等式、导数)(本小题满分14分)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = . (Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点.2012广东高考理科数学答案一、选择题. 1.解析:D.56i65i i-=--. 2.解析:C.{}3,5,6U C M =.3.解析:A.()2,4BC BA CA =-=--.4.解析:A.()ln 2y x =+在()2,-+∞上是增函数.5.解析:B.画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11.6.解析:C.该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.7.解析:D.两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为51459=. 8.解析:C.⋅==⋅ a a b a b b b b 1cos 2k θ=,= b b a a 2cos 2kθ=,两式相乘,可得212cos 4k k θ=.因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以1k 、2k 都是正整数,于是2121cos 124k k θ<=<,即1224k k <<,所以123k k =.而0≥>a b ,所以13k =,21k =,于是32=a b . 二、填空题9.解析:1,2⎛⎤-∞- ⎥⎝⎦.2x x +-的几何意义是x 到2-的距离与x 到0的距离的差,画出数轴,先找出临界“21x x +-=的解为12x =-”,然后可得解集为1,2⎛⎤-∞- ⎥⎝⎦.10.解析:20.621x x ⎛⎫+ ⎪⎝⎭的展开式通项为()621231661kk k k k k T C x C x x --+⎛⎫== ⎪⎝⎭,令1233k -=,解得3k =,所以621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为3620C =.11.解析:21n -.设公差为d (0d >),则有()21214d d +=+-,解得2d =,所以21n a n =-.12.解析:210x y -+=.21|3112x y ='=⨯-=,所以切线方程为()321y x -=-,即210x y -+=.13.解析:8.第一次循环,()11221s =⨯⨯=,4i =,2k =;第二次循环,()12442s =⨯⨯=,6i =,3k =;第三次循环,()14683s =⨯⨯=,8i =,4k =.此时退出循环,输出s 的值为8.14.解析:()1,1.法1:曲线1C 的普通方程是2y x =(0y ≥),曲线2C 的普通方程是222x y +=,联立解得11x y =⎧⎨=⎩,所以交点坐标为()1,1.法2:联立t θθ⎧=⎪=22sin θθ=,即22cos 20θθ+-=,解得cosθ=cos θ=(舍去),所以11t =⎧⎪=,交点坐标为()1,1.15.连接OA ,则60AOC ∠=︒,90OAP ∠=︒,因为1OA =,所以PA =三、解答题16.解析:(Ⅰ)210T ππω==,所以15ω=. (Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s i n 5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4c o s i n 5α=,15sin 17β,所以()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-.17.解析:(Ⅰ)由()0.00630.010.054101x ⨯+++⨯=,解得0.018x =.(Ⅱ)分数在[)80,90、[]90,100的人数分别是500.018109⨯⨯=人、500.006103⨯⨯=人.所以ξ的取值为0、1、2.()023921236606611C C P C ξ====,()113921227916622C C P C ξ====,()20392123126622C C P C ξ====,所以ξ的数学期望是691111012112222222E ξ=⨯+⨯+⨯==. 18.解析:(Ⅰ)因为PC ⊥平面BDE ,BD ⊂平面BDE ,所以PC BD ⊥.又因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥.而PC PA P = ,PC ⊂平面PAC ,PA ⊂平面PAC ,所以BD ⊥平面PAC .(Ⅱ)由(Ⅰ)可知BD ⊥平面PAC ,而AC ⊂平面PAC ,所以BD AC ⊥,而A B C D 为矩形,所以ABCD 为正方形,于是2AB AD ==.法1:以A 点为原点,AB 、AD 、AP 为x 轴、y 轴、z 轴,建立空间直角坐标系A BDP -.则()0,0,1P 、()2,2,0C 、()2,0,0B 、()0,2,0D ,于是()0,2,0BC =,()2,0,1PB =-.设平面PBC 的一个法向量为=1n (),,x y z ,则0BC PB ⎧⋅=⎪⎨⋅=⎪⎩11n n ,从而2020y x z =⎧⎨-=⎩,令1x =,得()1,0,2=1n .而平面PAC 的一个法向量为=2n ()2,2,0BD =-.所以二面角B P C A --的余弦值为cos ,⋅<>==121212=n n n n n n ,于是二面角B PC A --的正切值为3.法2:设AC 与BD 交于点O ,连接OE .因为PC ⊥平面BDE ,OE ⊂平面BDE ,BE ⊂平面BDE ,所以PC OE ⊥,PC BE ⊥,于是OEB ∠就是二面角B PC A --的平面角.又因为BD ⊥平面PAC ,OE ⊂平面PAC ,所以OEB ∆是直角三角形.由OEC ∆∽PAC ∆可得OE PAOC PC=,而2AB AD ==,所以AC =,OC =1PA =,所以3PC =,于是133PA OE OC PC =⨯==,而OB =B PC A --的正切值为3OBOE=. 19.解析:(Ⅰ)由()()12123213232725a a a a a a a a ⎧=-⎪+=-⎨⎪+=+⎩,解得11a =.(Ⅱ)由11221n n n S a ++=-+可得1221n n n S a -=-+(2n ≥),两式相减,可得122n n n n a a a +=--,即132n n n a a +=+,即()11232n nn n a a +++=+,所以数列{}2n na +(2n ≥)是一个以24a +为首项,3为公比的等比数列.由1223a a =-可得,25a =,所以2293n n n a -+=⨯,即32n n n a =-(2n ≥),当1n =时,11a =,也满足该式子,所以数列{}n a 的通项公式是32n n n a =-.(Ⅲ)因为1113323222n n n n n ----=⋅≥⋅=,所以1323n n n --≥,所以1113n n a -≤,于是112111111131331113323213nnn n a a a -⎛⎫- ⎪⎡⎤⎛⎫⎝⎭+++≤+++==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- .点评:上述证法实质上是证明了一个加强命题1211131123nn a a a ⎡⎤⎛⎫+++≤-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,该加强命题的思考过程如下.考虑构造一个公比为q 的等比数列{}n b ,其前n 项和为()111n n b q T q-=-,希望能得到()1121111312nn b q a a a q -+++≤<- ,考虑到()11111n b q b q q -<--,所以令1312b q =-即可.由n a 的通项公式的形式可大胆尝试令13q =,则11b =,于是113n n b -=,此时只需证明1113n n n b a -≤=就可以了.当然,q 的选取并不唯一,也可令12q =,此时134b =,132n n b +=,与选取13q =不同的地方在于,当1n =时,1n n b a >,当2n ≥时,1n nb a <,所以此时我们不能从第一项就开始放缩,应该保留前几项,之后的再放缩,下面给出其证法.当1n =时,11312a =<;当2n =时,121113152a a +=+<;当3n =时,12311111315192a a a ++=++<. 当4n ≥时,1n nb a <,所以 31231132211111113311151951916212n n a a a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+++<+++<+++<- .综上所述,命题获证.下面再给出1211132n a a a +++< 的两个证法. 法1:(数学归纳法) ①当1n =时,左边111a ==,右边32=,命题成立. ②假设当n k =(2k ≥,k ∈N )时成立,即113322ki ii =<-∑成立.为了证明当1n k =+时命题也成立,我们首先证明不等式:1111132332i i i i++<⋅--(1i ≥,i ∈N ). 要证1111132332i i i i++<⋅--,只需证1111132332i i i i+++<--⋅,只需证11132332i i i i +++->-⋅,只需证1232i i +->-⋅,只需证23->-,该式子明显成立,所以1111132332i i i i++<⋅--. 于是当1n k =+时,111211111113311323232332322k k k i i i i i ii i i ++====+<+<+⨯=----∑∑∑,所以命题在1n k =+时也成立.综合①②,由数学归纳法可得,对一切正整数n ,有1211132n a a a +++< . 备注:不少人认为当不等式的一边是常数的时候是不能用数学归纳法的,其实这是一个错误的认识.法2:(裂项相消法)(南海中学钱耀周提供)当1n =时,11312a =<显然成立.当2n =时,121113152a a +=+<显然成立. 当3n ≥时,()32122nn n n n a =-=+-12211122222n n n n n n n C C C --=+⋅+⋅++⋅+- ()12211221222221n n n n n n C C C C n n --=+⋅+⋅++⋅>⋅=- ,又因为()252221a =>⨯⨯-,所以()21n a n n >-(2n ≥),所以()111112121n a n n n n ⎛⎫<=- ⎪--⎝⎭(2n ≥),所以 123111111111111311112234122n a a a a n n n ⎛⎫⎛⎫++++<+-+-++-=+-< ⎪ ⎪-⎝⎭⎝⎭ . 综上所述,命题获证.20.解析:(Ⅰ)因为e =2223c a =,于是223a b =.设椭圆C 上任一点(),P x y ,则()()2222222222122443y PQ x y a y y y b b ⎛⎫=+-=-+-=--++ ⎪⎝⎭(b y b -≤≤).当01b <<时,2PQ 在y b =-时取到最大值,且最大值为244b b ++,由2449b b ++=解得1b =,与假设01b <<不符合,舍去.当1b ≥时,2PQ 在1y =-时取到最大值,且最大值为236b +,由2369b +=解得21b =.于是23a =,椭圆C 的方程是2213x y +=.(Ⅱ)圆心到直线l的距离为d =,弦长AB =OAB ∆的面积为12S AB d =⋅=,于是()2222211124S d d d ⎛⎫=-=--+ ⎪⎝⎭.而(),M m n 是椭圆上的点,所以2213m n +=,即2233m n =-,于是22221132d m n n ==+-,而11n -≤≤,所以201n ≤≤,21323n ≤-≤,所以2113d ≤≤,于是当212d =时,2S 取到最大值14,此时S 取到最大值12,此时212n =,232m =.综上所述,椭圆上存在四个点⎝⎭、⎛ ⎝⎭、⎝⎭、⎛ ⎝⎭,使得直线与圆相交于不同的两点A 、B ,且OAB ∆的面积最大,且最大值为12. 21.解析:(Ⅰ)考虑不等式()223160x a x a -++>的解.因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况:①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞.②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ .③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则1x =2x =,于是{}12B x x x x x =<>或.当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中1x =2x =.(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当113a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得所以()f x 在D 内有极大值点1,极小值点a .②当13a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根113m a ==,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点.综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.。
2012年普通高等学校招生全国统一考试(广东卷)语文本试卷共8也,24小题,满分150分,考试用时150分钟。
注意事项:1.答卷前,笔或签字笔将自己的号,座位B铅笔将试卷类型()应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂现在他的题组好对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、本大题4小题每小题共12分1.下列词语中加点的字,每对读音都不相同的一组是A.桅杆/宫闱聒噪/恬静模具/模范B.清雅/菁华旖旎/绮丽处所/惩处C.歧视/跻身橄榄/鸟瞰角斗/角色D.赝品/鹰犬殉情/徇私参谋/参差2.下面语段中划线的词语,使用不恰当的一项是[来源:学科网]随着科学技术的进步,特别是最近400年的突飞猛进,大自然在一般人的心目中似乎已泾渭分明,不再神秘。
人们不再敬畏自然,凭借手中的科学技术,肆意改变环境。
人们渐生狂妄,争相掠夺自然、破坏自然,把一个本不算大的地球折腾个底朝天。
人类在发展中堕落,在违背自然中自掘坟墓。
忤逆自然的人类将无法在大自然里颐养天年。
A.泾渭分明B.肆意C.忤逆D.颐养天年3.下列句子中,没有语病的一项是A.中国科学院最近研究复习,退缩,湖泊的面积性增大,引起了B.长江中的江豚被誉为“水中大熊猫”,是国家二级保护动物,也是《华盛顿公约》确定的全球濒危物种之一,再不加以保护,15年后将会灭绝。
C.专家认为,我国人均饮茶量每天不足10克,加之大部分农药不溶于水,茶叶中即使有少量的农药残留,泡出的茶汤中也会农药含量极低,对人体健康影响不大。
数学试卷 第1页(共42页)数学试卷 第2页(共42页)数学试卷 第3页(共42页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =,(4,7)CA =,则BC = ( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββ.若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则=a b ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______.10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩(t为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++<.20.(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a b>>)的离心率e=且椭圆C上的点到点(0,2)Q的距离的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C上,是否存在点(,)M m n,使得直线l:1mx ny+=与圆O:221x y+=相交于不同的两点A、B,且OAB△的面积最大?若存在,求出点M的坐标及对应的OAB△的面积;若不存在,请说明理由.21.(本小题满分14分)设1a<,集合{|0}A x x=∈>R,2{|23(1)60}B x x a x a=∈-++>R,D A B=.(Ⅰ)求集合D(用区间表示);(Ⅱ)求函数32()23(1)6f x x a xax=-++在D内的极值点.数学试卷第4页(共42页)数学试卷第5页(共42页)数学试卷第6页(共42页)3 / 142012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析【答案】A【解析】(2,BC BA AC BA CA =+=-=-【提示】由向量(2,3)BA =,向量(4,7)CA =,知(2,AB =-,(4,7)AC =--,再由BC AC AB =-能求数学试卷 第10页(共42页) 数学试卷 第11页(共42页)数学试卷 第12页(共42页)||cos ||a b θ,||cos ||y b a θ,x ,,所以24cos ,所以cos θ5 / 143||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =, 则||cos 333||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即数学试卷 第16页(共42页) 数学试卷 第17页(共42页)数学试卷 第18页(共42页)60,所以60,因为直线是直角三角形,最后利用三角函数在直角三角形中的定义,结合题tan603=7 / 14(Ⅰ)10T =π=65f ⎛-= ⎝3sin 5α∴=16517f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于数学试卷 第22页(共42页) 数学试卷 第23页(共42页)数学试卷 第24页(共42页)PAPC P =,PAC ; ACBD O =,连结,OE ,BE ⊥BE ,所以(2,DB=-的一个法向量,(0,2,0)BC=,(2,0,1)BP=-设平面PBC的法向量为(,,)n x y z=202n BC yn BP x⎧==⎪⎨=-⎪⎩2,取(1,0,2)n=,的平面角为θ,2||||8510DB nDB n==所以二面角B PC A--的正切值为3.9 / 14数学试卷 第28页(共42页) 数学试卷 第29页(共42页)数学试卷 第30页(共42页)(Ⅰ)2n n S a +=17a a =⎧⎪-⇒⎨133n -,所以时,111a =1221122222n n n n n n n C C --++⋯++-122-1-1222222n n n n n n C C C +++>1)-数学试卷 第34页(共42页) 数学1||||sin 2OA OB AOB ∠的距离2d =,即12)(,)x +∞,2x <,所以2(,Ax B +∞=2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a AB a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=1<时,0∆<,则()0g x >恒成立,A B =(0,+∞综上所述,当0a ≤时,33a ⎫⎛++⎪⎪ ⎭⎝2)(,)x +∞的变化情况如下表:a极值即可.【考点】导数的运算,利用导数求函数的极值,解含参的一元二次不等式,集合的基本运算数学试卷第40页(共42页)数学。
2012年广东高考数学(理科)试题及详解一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(复数)设i 为虚数单位,则复数56ii-=( ) A.65i +B.65i -C.65i -+D.65i --2.(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( ) A.UB.{}1,3,5C.{}3,5,6D.{}2,4,63.(向量)若向量()2,3BA =,()4,7CA =,则BC =( ) A.()2,4--B.()2,4C.()6,10D.()6,10--4.(函数)下列函数中,在区间()0,+∞上为增函数的是( ) A.()ln 2y x =+B.y =C.12xy ⎛⎫= ⎪⎝⎭D.1y x x=+5.已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )6.某几何体的三视图如图1所示,它的体积为( ) A.12π B.45π C.57π D.81πA.4 B.1C.2 D.18.对任意两个非零的平面向量α和β,定义=⋅αβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b ( )A.1B.1C.3 D.5 ==⋅b b =b a π⎫12=. 小题,每小题(一)必做题(9~13题)9.(不等式)不等式21x x +-≤的解集为__________________.10.(二项式定理)621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为_________.(用数字作答)11.(数列)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =______________.12.曲线33y x x =-+在点()1,3处的切线方程为___________________.则输出s 的值为______.只计前一题的得分)14.(坐标系与参数方程)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨⎪⎩t 为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=︒,过点A 作圆O 的切线与OC 的延长线交于点,则__________.算步骤 .16.(三角函数)(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.17.(概率统计)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(立体几何)(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE . (Ⅰ)证明:BD ⊥平面PAC ;(Ⅱ)若1PA =,2AD =,求二面角B PC A --的正切值.PA P =,BD ⊥平面PAC (Ⅱ)由(Ⅰ)可知所以BD AC ⊥设平面PBC 的一个法向量为n 0BC PB ⋅=⋅=,从而2020y x z =⎧⎨-=⎩,10BDE ,B PC A --的平面角.19. (数列) (本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a 、25a +、3a 成等差数列.(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1211132n a a a +++<. 1133n a -⎝+≤+++=2a +≤+≤a的通项公式的形式可大胆尝试令+<a+<a2(数学归纳法)2a +<不少人认为当不等式的一边是常数的时候是不能用数学归纳法的,()21⨯-,所以223412a n n +<+-+-++-+ ⎪ -⎝⎭⎝综上所述,命题获证.20.(解析几何)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =椭圆C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且O A B ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.21.(不等式、导数)(本小题满分14分)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B =.(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点. ()1,+∞.有两根,设为()2,x +∞)+∞. 113a <<时,()1,+∞;)()120,,x x +∞)()1,+∞,此时10,3⎛⎫ ⎪⎝⎭()2,x +∞a =,列表可得。
2012广东高考理科数学参考答案9.12x x ⎧⎫≤-⎨⎬⎩⎭| 10.20(36C ) 11.21n a n =- 12.21y x =+(或写成210x y -+=) 13.8 14.(1,1) 152218.(0)cos 1cos 1422cos 0011()2cos cos 12cos cos 22()232b b b a a b b a a a a an b a n Z b a b a a b a b a b a b n a b n Z a b πθθθθθθθθ∈<<<<⋅≥>∴<≤<*==<⋅⎧⎫*∈∈⎨⎬⎩⎭∴*===*=<*<⎧⎫*∈∈⎨⎬⎩⎭∴*= ,, ,0 | ,,=2,1 | 16.(1)21105T ππωω==⇒=17.(1)0.018x = (2)0.522222222222222(2)0l n13m+n>1O l111 S=222111m+n m+nn123111m+n m+n2mmd ABOAB d ABmmn=+=∴===∆==≤=-=⎧⎧=+=⎪⎪⎨⎪=-=⎪⎩当时,直线与圆并无两个交点, ,原点到直线的距离, 的面积 当且仅当时取“” 解得222222Mm m mn n n⎧⎧⎧=-==-⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪==-=-⎪⎪⎪⎪⎩⎩⎩⎩,, 从而点法二.∵对△OAB来说,边OA和OB的长都为1,△OAB为等腰三角形,要使△OAB的面积最大,sin∠OAB也应最大,从而假设存在点M(m,n)使∠OAB=90o.因此O l2d==点到直线的距离,即22m+n=22222n122223m+n22222M22222222m m m m mn n n n⎧⎧⎧⎧⎧==-==-⎪⎪⎪⎪+=⎪⎪⎪⎪⎪⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪====-=-⎩⎪⎪⎪⎪⎩⎩⎩⎩ 解得,,或 从而点的坐标为(,-,---点评:法二比法一简单,学生也容易想到.21.(1)设2()22(1)6g x x a x a=-++,对于方程()0g x=,229(1)489309a a a a∆=+-=-+1033a a∆===解得或1a<∴①当113a<<时,0∆<,D=(0,+∞)②当13a≤,0∆≥,方程()0g x=的根3(1)4ax+=Ⅰ当13a<≤时,12123(1)260ax xx x a+⎧+=>⎪⎨⎪⋅=>⎩,故D=(0+∞)Ⅱ当0a≤时,D=(3(1)4a++∞)综合①②得,当0a≤时,D=(3(1)4a++∞),当13a<≤时,D=(0∪+∞)当113a<<时,D=(0,+∞)(2)2()66(1)6f x x a x a'=-++解()0f x '=得x a =或1x = ∵1a <≥1得1a <≥1得13a ≥;a >得01a <<.∴①当0a ≤≥1,由(1)知1a D D ∉∉,,从而()f x 在D 内无极值.②当103a <≤≤1,由(1)知1a D D ∈∉,∵当0x a <<时,()0f x '>;当3(1)4a a x +<<时,()0f x '<∴()f x 在x a =处取得极大值③当113a <<时,D =(0,+∞),故1a D D ∈∈,∵当0x a <<时,()0f x '>;当1a x <<时,()0f x '<; 当1x >时,()0f x '>∴()f x 在x a =处取得极大值,在1x =处取得极小值.综合①②③当0a ≤时,()f x 在D 内无极值点; 当103a <≤时,()f x 在D 内的极大值点为x a =; 当113a <<时,()f x 在D 内的极大值点为x a =,()f x 在D 内的极小值点为1x =.。
雨雨湖湛江学生论坛 女生上得最多的校园论坛
广东 2012 年高考理科数学试卷 A 及答案
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
雨雨湖湛江学生论坛 女生上得最多的校园论坛
。
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析的元素即得{3,5,6UM =【提示】给出全集和子集,根据集合的基本运算求解子集的补集【答案】A【解析】(2,BC BA AC BA CA =+=-=-由向量(2,3)BA =向量(4,7)CA =知(2,AB =-,(4,7)AC =--再由BC AC AB =-能求出【考点】向量的线性运算,向量的坐标运算||cos ||a b θ,||cos ||y b a θ,x ,,所以4cos Z ,所以cos3||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =,则||cos 33322||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即可.1x 解得x 无解;1x 解得2x ≤1,解得2x ≤-12x ⎫≤-⎬⎭.可先将不等式左边变形为分段函数的形式,60,所以根据同弧所对的圆周角等于圆心角的一半,60,因为直线是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中=tan603【解析】(Ⅰ)10T =π=(Ⅱ)由(Ⅰ)得()f x =65f ⎛-= ⎝3sin 5α∴=16517f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于PA PC P=,PAC;=,连结AC BD O BDE,OE,BE⊥BE,--B PC A所以(0,0,1)P ,(0,2,0),所以(2,DB =-的一个法向量,(0,2,0)BC =,(2,0,1)BP =-的法向量为(,,)n x y z =22n BC y n BP x z ⎧==⎪⎨=-+⎪⎩,取(1,0,2)n =, PC A -的平面角为21||||8510DB n DB n ==,sin 所以二面角B PC A --的正切值为3.【答案】(Ⅰ)2n n S a +=12337a a a a =⎧⎪⇒=⎨⎪=⎩133n -,所以1a 1221122222n n n n n n n C C --++⋯++-122-1-1222222n n n n n n C C C +++>522(21)=>⨯⨯-,1||||sin 2OA OB AOB ∠的距离22d =,即21m 2)(,)x +∞,2x <,所以2(,A x B +∞=2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a A B a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=A B =(0,+∞综上所述,当0a ≤时,33a ⎛⎫⎛++⎪ ⎪ ⎭⎝1),令(f '2)(,)x +∞的变化情况如下表:a。
正视图侧视图俯视图第6题图.2012年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56i i-=( )A.65i + B .65i - C .65i -+ D .65i --【解析】D ;()5656566511i ii i i i--+===----,故选D .2.设集合{1,23,4,5,6}U =,,{1,2,4}M =,则M U =ð( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}【解析】C ;送分题,直接考察补集的概念,{}M 3,5,6U =ð,故选C .3.若向量(2,3)B A = ,(4,7)C A = ,则BC =( )A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--【解析】A ;考察向量的运算法则,()()()2,34,72,4BC BA AC =+=+--=--,故选A . 4.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+B .y =C .1(2xy =D .1y x x=+【解析】A ;函数ln(2)y x =+的图像可由函数ln y x =的图像向左平移2个单位得到,显然满足题意.5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( ) A .12 B .11 C .3 D .1- 【解析】B ;画出可行域如图所示,将“三角”区域的角点代入比较可知,当3,2x y ==时,3z x y =+取得最大值为11. 6.某几何体的三视图如图所示,它的体积为( )A .12πB .45πC .57πD .81π 【解析】C ;三视图对应的实物图为“上部分为圆锥,下部分为圆柱”的几何体,易得圆锥的高为4,所以2213435573V πππ=⋅⋅⋅+⋅⋅=.7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是( ) A .49B .13C .29D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b和b a都在集合|2nn Z ⎧⎫∈⎨⎬⎩⎭中,则a b = ( ) A .12B .1C .32D .52【解析】C ;因为||cos cos 1||b a b b a a a a θθ⋅==≤<⋅,且a b和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,所以12b a = ,||12cos ||b a θ= ,所以2||cos 2cos 2||a ab b θθ==<,且22cos 1a b θ=> ,所以12a b <<,故有32a b = ,选C .【另解】C ;1||cos 2||k a a b b θ==,2||cos 2||k b b a a θ==,两式相乘得212cos 4k k θ=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,12,k k 均为正整数,于是cos 122θ<=<,所以1224k k <<,所以123k k =,而0a b ≥> ,所以123,1k k ==,于是32a b = ,选C .二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 【解析】1,2⎛⎤-∞-⎥⎝⎦;“|2|||x x +-”的几何意义为“点x 到2-和0的距离之差”,画出数轴,先找出临界“|2|||1x x +-=的解为12x =-”,然后可得解集为1,2⎛⎤-∞- ⎥⎝⎦.10.261()x x+的展开式中3x 的系数为__________.(用数字作答)【解析】20;通项()621231661rrrr rr T C x C xx --+⎛⎫== ⎪⎝⎭,令1233r -=得 3r =,此时对应系数为3620C =.11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =【解析】21n -;设公差为()0d d >,依题意可得()21214d d +=+-, 解得2d =(2-舍去),所以21n a n =-.12.曲线33y x x =-+在点(1,3)处的切线方程为__________. 【解析】21y x =+;求导得231y x '=-,1|2x y ='=,由直线的点斜式 方程得()321y x -=-,整理得21y x =+.13.执行如图所示的程序框图,若输入n 的值为8,则输出s 的值为____.【解析】8;第一次循环得2,4,2s i k ===;第二次循环得4s =,6,3i k ==;第三次循环得第17题图B.第15题图AC PO8,8,4s i k ===,此时不满足8i <,输出8s =.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14. (坐标系与参数方程选做题)在平面直角坐标系中x O y 中,曲线1C 和曲线2C 的参数方程分别为⎩⎨⎧==t y t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .【解析】()1,1;对应的普通方程分别为y =222x y +=,联立得交点坐标为()1,1.15. (几何证明选做题)如图,圆O 的半径为1,,,A B C 是圆上三点,且满足︒=∠30ABC ,过点A 作圆O 的切线与O C 的延长线交 于点P ,则PA = .,OA AC ,易得60,30AOC CAP ∠=︒∠=︒,在 直角三角形O A P 中,根据题中的数量关系易得PA =.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()2cos()6f x x πω=+(其中R x ∈>,0ω)的最小正周期为π10.(Ⅰ) 求ω的值;(Ⅱ) 设,0,2παβ⎡⎤∈⎢⎥⎣⎦,56(535f πα+=-,516(5)617f πβ-=,求cos()αβ+的值.【解析】(Ⅰ)由210ππω=得15ω=. (Ⅱ)由(Ⅰ)知1()2cos()56f x x π=+,由56516(5,(535617f f ππαβ+=--=得3sin 5α=,8cos 17β=.又,0,2παβ⎡⎤∈⎢⎥⎣⎦,所以4cos 5α=,15sin 17β=,所以324513cos()cos cos sin sin 858585αβαβαβ+=-=-=-17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图所 示,其中成绩分组区间是:[)[)40,50,50,60,[)[)60,70,70,80,[)[]80,90,90,100.(Ⅰ) 求图中x 的值;(Ⅱ) 从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望. 【解析】(Ⅰ) 由()0.00630.010.054101x ⨯+++⨯= 解得0.018x =.(Ⅱ)成绩不低于80分的学生人数有()500.0180.0061012⨯+⨯=人. 成绩在90分以上(含90分)的人数有500.006103⨯⨯=人.P ABCDE第18题图随机变量ξ的可能取值为0,1,2,且 ()292126011C P Cξ===,()11392129122C C P Cξ===,()232121222C P Cξ===,所以ξ的分布列为ξ的数学期望0121122222E ξ=⨯+⨯+⨯=. 18.(本小题满分13分)如图所示,在四棱锥P A B C D -中,底面A B C D 为矩形,P A ⊥平面A B C D ,点E 在线段P C上,P C ⊥平面BD E .(Ⅰ) 证明:B D ⊥平面PAC ;(Ⅱ) 若1PA =,2AD =,求二面角B P C A --的正切值.【解析】(Ⅰ)因为P A ⊥平面A B C D ,BD ⊂平面A B C D , 所以PA BD ⊥,又P C ⊥平面BD E ,BD ⊂平面BD E ,所以PC BD ⊥,因为PA PC P = ,所以B D ⊥平面PAC .(Ⅱ) 由(Ⅰ)可知B D ⊥平面PAC ,所以B D A C ⊥,又底面A B C D 为矩形,从而底面A B C D 为正方形,设AC BD O = ,连结O E ,则,,OE PC BO PC ⊥⊥所以B E O ∠为二面角B P C A --的平面角, 在R t P A C ∆中,由等面积法可得112233PA AC O E PC ⋅=⋅==,又BO =在R t B O E ∆中,tan 3B O B E O O E∠==所以二面角B P C A --的正切值为3.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列.(Ⅰ) 求1a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211132na a a ++⋅⋅⋅+<.【解析】(Ⅰ)因为11221n n n S a ++=-+,当1n =时,1223S a =-,即2123a a -=,当2n =时,2327S a =-,即321227a a a --=,又()21325a a a +=+联立上述三个式子可得11a =. (Ⅱ)由(Ⅰ)可知25a =当2n ≥时,由11221n n n S a ++=-+得1221n n n S a -=-+,两式相减整理得132nn n a a +=-,即11312222n n n n a a ++=⋅+,即11311222n n n n a a ++⎛⎫+=⋅+ ⎪⎝⎭,又2121311222a a ⎛⎫+=⋅+ ⎪⎝⎭, 所以12nn a ⎧⎫+⎨⎬⎩⎭为首项为113122a +=,公比为32的等比数列, 所以133312222n nnn a -⎛⎫⎛⎫+=⋅= ⎪⎪⎝⎭⎝⎭,所以32n n n a =-. (Ⅲ) 当1n =时,11312a =<显然成立,当2n =时,121113152a a +=+<显然成立.当3n ≥时,32(12)2n n n n n a =-=+-12211122222n n n nn n n C C C --=+⋅+⋅++⋅+-122111222n n n n nC C C --=+⋅+⋅++⋅ 2222(1)n C n n >⋅=-又因为2522(21)a =>⨯⨯-,所以2(1),2n a n n n >-≥, 所以11111()2(1)21na n n n n<=---所以12311111111111131(1)1(1)2234122na a a a n nn++++<+-+-++-=+-<- .20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b ab+=>>的离心率e =,且椭圆C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ) 求椭圆C 的方程(Ⅱ) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点,A B ,且O AB ∆的面积最大?若存在,求出点M 的坐标及对应的O AB ∆的面积;若不存在,请说明理由.【解析】(Ⅰ)依题意2223c e c a a==⇒=,所以222213b ac a =-=,设(,)P x y 是椭圆C 上任意一点,则22221x y ab+=,所以222222(1)3y x a a y b=-=-,所以||PQ ===当1y =-时,||PQ3=,可得a =所以1,b c ==故椭圆C 的方程为2213xy +=.(Ⅱ)[韦达定理法]因为(,)M m n 在椭圆C 上,所以2213mn +=,2233m n =-,设11(,)A x y ,22(,)B x y由2211m x ny x y +=⎧⎨+=⎩,得2222()210m n x m x n +-+-=所以22222222244()(1)4(1)8(1)0m m n n n m n n n ∆=-+-=+-=->,可得21n <, 由韦达定理得12222m x x m n+=+,212221nx x m n-=+所以2212121212222111()1mx mx m x x m x x my y n n n m n---++-=⋅==+所以||AB ====设原点O 到直线A B 的距离为h ,则h =所以1||2O AB S AB h ∆=⋅=设221t m n=+,由201n <<,得22232(1,3)m n n +=-∈,所以,1(,1)3t ∈O AB S ∆==1(,1)3t ∈所以,当12t =时,OAB S ∆面积最大,且最大为12,此时,点M 的坐标为22⎛ ⎪⎝⎭或22⎛- ⎪⎝⎭或,22⎛⎫- ⎪ ⎪⎝⎭或22⎛-- ⎪⎝⎭. [垂径定理切入]因为点()n m P ,在椭圆C 上运动,所以2213mn +=,2233m n =-,圆心O 到直线1:=+ny mx l 的距离d =直线l 被圆O 所截的弦长为||AB ==所以1||2O AB S AB d ∆=⋅=,接下来做法同上.21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (Ⅰ) 求集合D (用区间表示);(Ⅱ) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.【解析】(Ⅰ)由方程223(1)60x a x a -++=得判别式29(1)483(3)(31)a a a a ∆=+-=--因为1a <,所以30a -< 当113a <<时,0∆<,此时B R =,所以()0,D A ==+∞; 当13a =时,0∆=,此时{|1}B x x =≠,所以(0,1)(1,)D =+∞ ;当13a <时,0∆>,设方程223(1)60x a x a -++=的两根为12,x x 且12x x <,则 14x =,24x =,12{|}B x x x x x =<>或当103a <<时,123(1)02x x a +=+>,1230x x a =>,所以120,0x x >>此时,12(,)(,)D x x x =+∞)44=+∞当0a ≤时,1230x x a =≤,所以120,0x x ≤>此时,2(,))4D x =+∞=+∞.综上,1(0,),133(1)3(1)1(0,(),0443),04a a a D a a ⎧+∞<<⎪⎪⎪+-++=+∞<≤⎨⎪⎪+∞≤⎪⎩(Ⅱ) 2()66(1)66(1)()f x x a x a x x a '=-++=--,1a <所以函数()f x 在区间[,1]a 上为减函数,在区间(,]a -∞和[1,)+∞上为增函数 当113a <<时,因为()0,D =+∞,所以()f x 在D 内的极值点为,1a ; 当13a =时,(0,1)(1,)D =+∞ ,所以()f x 在D 内有极大值点13a =;当103a <<时,)44D =+∞由103a <<,很容易得到144a <<<(可以用作差法,也可以用分析法),所以()f x 在D 内有极大值点a ; 当0a ≤时,)4D =+∞由0a ≤,14>,此时()f x 在,内没有极值点.综上,当113a <<时,极值点为,1a ;当103a <≤时,极值点为a ;当0a ≤时,无极值点.。
2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.试卷分析 陈功文一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --解:分子分母同乘以-i ,得D 选项为正确答案。
2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}解:选C3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--解:BC =BA+AC=(2,3)+(-4,-7)=(-2,-4),选A 4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B 1y x =-+C . 1()2xy =D . 1y x x=+解:B 、C 为减函数,D 为双钩函数,双钩函数在(0,)+∞上先减后增,选A 分析:前4题难度都不大,掌握概念和基本方法就可以拿到分。
5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1解:可行域如图:所3z x y =+的最大值为3*3+2=11,选B6.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π解:根据三视图可知,该几何体上部分为圆锥,下部分为圆柱,选C7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .19解:个位数为0且“个位+十位=奇数”的两位数是10 30 50 70 90 共5个 若十位数为奇数,则个位数为偶数,共有C (5,1)*C (5,1)=25 若十位数为偶数,则个位数为奇数,共有C (4,1)*C (5,1)=20 5/(25+20)=1/9选D分析:5-7题难度中等,考察的方法较简单,计算量比前4题大些。
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =,(4,7)CA =,则BC = ( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββ.若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则=a b ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______.10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩t为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++<.20.(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a b>>)的离心率e=且椭圆C上的点到点(0,2)Q的距离的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C上,是否存在点(,)M m n,使得直线l:1mx ny+=与圆O:221x y+=相交于不同的两点A、B,且OAB△的面积最大?若存在,求出点M的坐标及对应的OAB△的面积;若不存在,请说明理由.21.(本小题满分14分)设1a<,集合{|0}A x x=∈>R,2{|23(1)60}B x x a x a=∈-++>R,D A B=.(Ⅰ)求集合D(用区间表示);(Ⅱ)求函数32()23(1)6f x x a x ax=-++在D内的极值点.数学试卷第4页(共18页)数学试卷第5页(共18页)数学试卷第6页(共18页)数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析【答案】A【解析】()2,4BC BA AC BA CA =+=-=--.【提示】由向量(2,3)BA =,向量(4,7)CA =,知(2,AB =-,(4,7)AC =--BC AC AB =-能求出结果.4.【答案】A借助于图像可知:当3x =,2y =时,max 11z =.||cos ||a b θ,||cos ||y b a θ,x ,,所以4cos Z ,所以cos θ2223||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =, 则||cos 33322||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)60,所以60,因为直是直角三角形,最后利用三角函数tan603=【考点】同弧所对的圆周角与圆心角的关系,切线的有关性质 (Ⅰ)10T =π=65f ⎛-= ⎝3sin 5α∴=1617f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于PA PC P =,PAC ; ACBD O =,连结数学试卷 第13页(共18页)数学试卷 第14页(共18页) 数学试卷 第15页(共18页)所以(0,0,1)P ,(0,2,0),所以(2,DB =-的一个法向量,(0,2,0)BC =,(2,0,1)BP =-设平面PBC 的法向量为(,,)n x y z =22n BC y n BP x z ⎧==⎪⎨=-+⎪⎩2,取(1,0,2)n =,PC A -的平面角为θ,21||||8510DB n DB n ==所以二面角BPC A --的正切值为3.(Ⅰ)2n n S a +=127a a ⎧⎪-⇒⎨⎪133n -,所以1221122222n n n n n n n C C --++⋯++- 122-1-1222222n n n n n n C C C +++>1)-522(21)=>⨯⨯-,数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)1||||sin 2OA OB AOB ∠点O 到直线AB 的距离d 1)x a+2)(,)x +∞,,2(,A x B +∞=13a <≤时,2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a AB a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=()0g x >AB =(0,+∞综上所述,当0a ≤时,33a ⎫⎛++⎪ ⎪ ⎭⎝2)(,)x +∞,()f x 随x 的变化情况如下表:a。
数学试卷 第1页(共6页)数学试卷 第2页(共6页)数学试卷 第3页(共6页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =u u u r ,(4,7)CA =u u u r ,则BC =u u u r( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+B .1y x =-+C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββo g g .若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b o 和b a o 都在集合{|}2nn ∈Z 中,则=a b o ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______.10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty t =⎧⎪⎨=⎪⎩(t 为参数)和2cos 2sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=o ,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++L<.20.(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(0a b>>)的离心率23e=,且椭圆C上的点到点(0,2)Q的距离的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C上,是否存在点(,)M m n,使得直线l:1mx ny+=与圆O:221x y+=相交于不同的两点A、B,且OAB△的面积最大?若存在,求出点M的坐标及对应的OAB△的面积;若不存在,请说明理由.21.(本小题满分14分)设1a<,集合{|0}A x x=∈>R,2{|23(1)60}B x x a x a=∈-++>R,D A B=I.(Ⅰ)求集合D(用区间表示);(Ⅱ)求函数32()23(1)6f x x a x ax=-++在D内的极值点.数学试卷第4页(共6页)数学试卷第5页(共6页)数学试卷第6页(共6页)。
绝密★使用前 试卷类型:A2012年普通高等学校招生全国统一考试(广东卷)数 学(理科)第I 卷 选择题(共40分)一、选择题:本大题共8小题,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,则复数56ii-=( )A .65i +B .65i -C .65i -+D .65i --2.设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( ) A .U B .{1,3,5}C .{3,5,6}D .{2,4,6} 3.若向量(2,3)BA = ,(4,7)CA =,则BC = ( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)-4.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩;则3z x y =+的最大值为( )A .12B .11C .3D .1- 6.某几何体的三视图如图1( )A .12πB .45πC .57πD .81π 7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是( ) A .49B .13C .29D .198.对任意两个非零的平面向量α和β,定义 αβαβ=ββ。
若平面向量a ,b 满足0≥>a b ,a 与b 的夹角(0,)4πθ∈,且 a b 和 b a 都在集合{}2nn ∈Z 中,则= a b( )A .12B .1C .32D .52正视图侧视图俯视图图1第II 卷 非选择题(共110分)二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分 (一)必做题(9—12题)9.不等式21x x +-≤的解集为 。
10.621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为 。