2013届九年级数学上册期中考试模拟试卷
- 格式:doc
- 大小:223.86 KB
- 文档页数:5
2013届九年级上册数学期中考试卷(附答案)无锡市天一实验学校2012-2013学年度第一学期初三数学期中试卷2012.11一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请把答案填在答题卡上相应位置)1.-5的相反数是()A.-5B.5C.-D.2.下列计算正确的是().A.B.C.D.3.下列四副图案中,不是轴对称图形的是()A.B.C.D.4.沿圆柱体上面直径截去一部分的物体如图所示,它的俯视图是() 5.从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.若∠APB=60°,PA=8,则弦AB的长是()A.2B.4C.8D.166.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝处忽略不计),则该圆锥的高为()A.53cmB.52cmC.5cmD.7.5cm7.如图,在Rt△ABC中,已知=90°,AM是BC边上的中线,则的值为()A.B.C.D.8.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题有()A.1个B.2个C.3个D.4个9.小翔在如图所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图所示,则这个个定位置可能是左图中的()A.点MB.点NC.点PD.点Q10.记=,令,称为,,……,这列数的“理想数”。
已知,,……,的“理想数”为2004,那么2,,,……,的“理想数”为()A.2002B.2004C.2006D.2012二、填空题(本大题共8小题,每小题2分,共l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.分解因式:.12.函数的自变量的取值范围是_____________.13.无锡是国家微电子产业基地,经过20余年的发展已积累了雄厚的产业基础。
第一学期期中考试 九年级数学试题选择题答题栏一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.在△ABC 中,∠C =90°,AC =BC ,则tanA 等于A .21B .1C .22D .22.如图,在平面直角坐标系中,点P(5,12)在射线 OA 上,射线OA 与x 轴的正半轴的夹角为α,则 sinα等于A .135B .125C .1312D .12133.已知点A(-1,0)在抛物线y =ax2+2上,则此抛物线的解析式为A .y =x2+2B .y =x2-2C .y =-x2+2D .y =-2x2+2 4.抛物线y =x2-4x +5的顶点坐标是A .(2,5)B .(-2,5)C .(2,1)D .(-2,1)5.在△ABC 中,∠C =90°,AB =6cm ,cosB =31,则BC 等于A .1cmB .2cmC .3cmD .6cm九年级数学试题(四年制)第1页(共8页)6.已知抛物线y =x2+2x 上三点A(-5,y1),B(1,y2),C(12,y3),则y1,y2,y3满足的关系式为A .y1<y2<y3B .y3<y2<y1C .y2<y1<y3D .y3<y1<y2(第2题7.如图,△ABC 为格点三角形(顶点皆在边长相等的 正方形网格的交叉点处),则cosB 等于A . 54B .53C . 43D .348.如果抛物线y =-x2+bx +c 经过A(0,-2),B(-1,1)两点,那么此抛物线经过A .第一、二、三、四象限B .第一、二、三象限C .第一、二、四象限D .第二、三、四象限9.若抛物线C :y =ax2+bx +c 与抛物线y =x2-2关于x 轴对称,则抛物线C 的解析式为 A .y =x2-2 B .y =-x2-2 C .y =-x2+2 D .y =x2+210.如图,在△ABC 中,∠ACB =90°,AC =5,高CD =3,则sinA +sinB 等于A .53B .54C .1D .57二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上) 11.计算:4sin30°-2cos30°+tan60°= .12.将二次函数y =x2-2的图象向左平移2个单位,再向上平移1个单位,所得抛物线的解析式为 .13.已知抛物线y =-x2+2x +3的顶点为P ,与x 轴的两个交点为A ,B ,那么△ABP 的面积等于 .九年级数学试题(四年制)第2页(共8页)14.如图,在一边靠墙(墙足够长)用120 m 篱笆围成两间相等的矩形鸡舍,要使鸡舍的总面积最大,则每间鸡舍的长与宽分别是 m 、 m .(第7题图)AB C(第15题D (第10题AC DB(第14题15.如图,海中有一个小岛A , 它的周围15海里内有暗礁,今有货船由西向东航行, 开始在A 岛南偏西60° 的B 处,往东航行20海里后到达该岛南偏西30° 的C 处后,货船继续向东航行,你认为货船航行途中 触礁的危险.(填写:“有”或“没有”) 参考数据:sin60°=cos30°≈0.866 .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤) 16.(本题满分4分) 在△ABC 中,若1cos 2 A +(1-tanB)2=0,求∠C 的度数.17.(本题满分4分)已知关于x 的二次函数y =mx2-(2m -6)x +m -2.(1)若该函数的图象与y 轴的交点坐标是(0,3),求m 的值; (2)若该函数图象的对称轴是直线x =2,求m 的值.九年级数学试题(四年制)第3页(共8页) 18.(本题满分4分)在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a =2, b =23,求c 及∠B . 19.(本题满分4分)已知关于x 的二次函数y =x2-2kx +k2+3k -6,若该函数图象的顶点在第四象限,求k 的取值范围. 20.(本题满分6分)已知抛物线 y =x2-4x +c 与直线y =x +k 都经过原点O ,它们的另一个交点为A . (1)直接写出抛物线与直线的函数解析式; (2)求出点A 的坐标及线段OA 的长度.九年级数学试题(四年制)第4页(共8页) 21.(本题满分6分)五月石榴红,枝头鸟儿歌. 一只小鸟从石榴树上的A 处沿直线飞到对面一房屋的顶部C 处. 从A 处看房屋顶部C 处的仰角为30°,看房屋底部D 处的俯角为45°,石榴树与该房屋之间的水平距离为33米,求出小鸟飞行的距离AC 和房屋的高度CD.(第21题22.(本题满分6分)在小岛上有一观察站A .据测,灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向,且相距10海里,灯塔C 与观察站A 相距102海里,请你测算灯塔C 处在观察站A 的什么方向?九年级数学试题(四年制)第5页(共8页) 23.(本题满分6分)如图,直线y =43x -3分别与y 轴、x 轴交于点A ,B ,抛物线y =-21x2+2x +2与y轴交于点C ,此抛物线的对称轴分别与BC ,x 轴交于点P ,Q . (1)求证:AB =AC ;(2)求证:AP 垂直平分线段BC .(第23题(第22题北B九年级数学试题(四年制)第6页(共8页)24.(本题满分7分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润.应将销售单价定为多少元?九年级数学试题(四年制)第7页(共8页)25.(本题满分8分)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P 垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.(友情提示:自画图形)九年级数学试题(四年制)第8页(共8页) 2011—2012学年度第一学期期中考试九年级数学试题(四年制)评分标准与参考答案 一、选择题1.B 2.C 3.D 4.C 5.B 6.C 7.A 8.D 9.C 10.D 二、填空题11.2 12.y =x2+4x +3 13.8 14.30 20 15.没有三、解答题16.解:由题设,得 cosA =21,tanB =1.……………………………………… 1分∴ ∠A =60°,∠B =45°.……………………………………………………… 3分 ∴ ∠C =180°―∠A ―∠B =180°―60°―45°=75°. …………………… 4分 17.解:(1)将x =0,y =3代入二次函数的表达式,得 m -2=3. ……… 1分 解得 m =5. ………………………………………………………………… 2分(2)依题意,得 -m m 2)62(--=2. 解得 m =-3. …………………… 3分经检验,m =-3是上分式方程的根.故 m =-3. ……………………… 4分18.解:在Rt △ABC 中,由勾股定理,得c2=a2+b2=22+2)32(=42.(第25题备用∴ c =4. ………………………………………………………………… 2分∵ sin B =c b =432=23, ∴ ∠B =60°.…………………… 4分19.解:将二次函数的表达式配方,得 y =(x -k)2+3k -6.∴ 二次函数图象的顶点坐标是(k ,3k -6).……………………………… 2分∴ ⎩⎨⎧<->.063,0k k …………………………………………………………… 3分 解得 0<k <2. 故所求k 的取值范围是0<k <2.……………………… 4分 20.解:(1)抛物线的函数解析式为y =x2-4x. ……………………………… 1分 直线的函数解析式为y =x. ……………………………………………… 2分 (2)解方程 x2-4x =x ,得x1=0,x2=5. …………………………… 3分 由题意知,x =5是点A 的横坐标.∴ 点A 的纵坐标y =x =5. …………………………………………………… 4分 ∴ 点A 的坐标是(5,5). …………………………………………………… 5分 ∴ OA =2255+=52. ………………………………………………… 6分 21.解:作AE ⊥CD 于点E.由题意可知:∠CAE =30°,∠EAD =45°,AE =33米. ………………… 1分九年级数学试题答案在Rt △ACE 中,tan ∠CAE =AE CE,即tan30°=33CE .∴ CE =33tan30°=33×33=3(米) .………………………………… 2分∴ AC =2CE =2×3=6(米). ………………………………………………… 3分 在Rt △AED 中,∠ADE =90°-∠EAD =90°-45°= 45°, ∴ DE =AE =33(米). ……………………………………………………… 4分 ∴ DC =CE +DE =(3+33)米. ………………………………………… 5分 答:AC =6米,DC =(3+33)米. ……………………………………… 6分 22.解:过点C 作CD ⊥AB ,垂足为D .…………………………………… 1分 ∵ 灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向, ∴ ∠B =45°.在Rt △BCD 中,∵ sinB =BC CD ,B∴ CD =BC·sin45°=10×22=52(海里).…… 3分在Rt △ACD 中, ∵ AC =102,1sin 2CD CAD AC ∠===∴.即1sin 2CAD ∠=.∴ ∠CAD =30°.……………………………… 5分∠CAF =∠BAF -∠CAD =45°-30°=15°. 答:灯塔C 处在观察站A 北偏西15°的方向. …………………… 6分 23.证明:(1)可求得A (0,-3),B (4,0),C (0,2). ∴ OA =3, OB =4, OC =2. ∴ AC =OA +OC =5.AB =22OB OA +=2243+=5.∴ AB =AC .…………………………………………………………………… 3分(2)∵ 抛物线y =-21x2+2x +2的对称轴是直线x =2,∴ 点Q 的坐标为(2,0).∴ OQ =BQ =2. ∵ PQ ∥y 轴, ∴△BPQ ∽△BCO .∴ BC BP =BO BQ =42=21.∴ BP =PC .…………………………………………………………………… 5分 又∵ AB =AC , ∴ AP ⊥BC .九年级数学试题答案(四年制)第2页(共3页)∴ AP 垂直平分线段BC .……………………………………………………… 6分说明:要证BP =PC ,也可利用勾股定理先求出BC 的值,再利用三角函数求出BP 的值. 24.解:(1)y =(x -20)(-2x +80) =-2x2+120x -1600.故所求y 与x 之间的函数关系式为y =-2x2+120x -1600.…………………… 2分 (2)∵ y =-2x2+120x -1600=-2(x -30)2+200. 当x =30时,y 最大=200.∴ 当销售单价定为30元时,每天的利润最大,最大利润为200元.………… 4分 (3)由题意,当y =150时,即-2(x -30)2+200=150. 解得x1=25,x2=35.又销售量w =-2x +80,-2<0,销售量w 随单价x 的增大而减小,故当x =25时,既能保证销售量大,又可以每天获得150元的利润.………… 7分 25.解:(1)∵ 点A ,B 是二次函数y =mx2+(m -3)x -3(m >0)的图象与x 轴的交点, ∴ 令y =0,即mx2+(m -3)x -3=0,解得x1=-1,x2=m 3,又∵ 点A 在点B 左侧且m >0,∴ 点A 的坐标为(-1,0). ……………………… 3分(2)由(1)可知点B 的坐标为(m 3,0).∵ 二次函数的图象与y 轴交于点C ,∴ 点C 的坐标为(0 ,-3).∵ ∠ABC =45︒, ∴ m 3=3. ∴ m =1. …… 5分(3)由(2)得,二次函数解析式为y =x2-2x -3. 依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为 -2和2.由此可得交点坐标为(-2,5)和(2, -3).将交点坐标分别代入一次函数解析式y =kx +b 中,得 -2k +b =5,且2k +b =-3.解得k =-2,b =1.∴ 一次函数的解析式为 y =-2x +1. ………………… 8分说明:解答题若有其他解法,应按步计分!。
九年级上册期中考试数学试题(考试时间:120分钟,满分:120分) 2012年11月一、选择题(每小题3分,共30分) 1. 下列等式成立的是( ) A .9494+=+ B .3327=C . 3333=+D .4)4(2-=-2. 下列各式中是一元二次方程的是( )A .xx 112=+ B .1)1)(1(2+=--+x x x x C .1322-+x x D .1212=+x x3. 下列二次根式中属于最简二次根式的是( )A .44+a B .48 C .14 D .ba 4. 下列各组中的两个根式是同类二次根式的是( ) A .52x 和3x B .x 2y 和xy 2C .12ab 和13abD . a 和1a2 5. 如图,在等腰直角△ABC 中, 90=∠B ,将△ABC 绕 顶点A 逆时针方向旋转60°后得到△AB ′C ′, 则C BA '∠=( )A .60°B .105° C. 120° D. 135 6. 如果方程0122=++x ax 有两个实根,则实数a 的取值范 围是( ) A .a <1 B .a <1且a ≠0C .a ≤1且a ≠0D .a ≤17. 正方形ABCD 在坐标系中的位置如下图所示,将正方形ABCD 绕D 点顺时针方向旋转90°后.B 点的坐标为( ) A .(一2,2)B .(4,0)C .(3,1)D .(4,1)8. 三角形两边的长分别是8和6,第三边的长是方程x ²-12x +20=0的一个实数根,则三角形的周长是( )A. 24B. 26或16C. 26D. 169.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元。
下列所列方程中正确的是( ) A .128%)1(1682=+a B .128%)1(1682=-a C .128%)21(168=-aD .128%)1(1682=-a10.如图,在4×4的正方形网格中,△MNP 绕某点旋转90°,得到△M 1N 1P 1,则其旋转中心可以是( )A .点EB .点FC .点GD .点H二、填空题(每小题3分,共30分)11. 当x 时,二次根式3-x 在实数范围内有意义.12. 已知1-=x 是方程062=+-ax x 的一个根,则a = 。
广安中学2012—2013学年九年级第一学期数学学科期中试卷1.本试卷共 8 页, 五 道大题, 29 道小题。
满分120分。
时间 120 分钟。
2.在试卷密封线内认真填写班级、姓名。
3.必须用黑色或蓝色钢笔、圆珠笔按要求将答案写在答题纸上。
一、选择题:(每题3分,共30分)1、下列函数中是二次函数的是( )A.142+=x yB.14+=x yC.x y 4=D.142+=x y2、在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( ). A. 21B. 23C. 1D. 223、把二次函数122--=x x y 配方成顶点式为( ) A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y4、已知扇形的圆心角为120°,半径为6cm ,则扇形的面积为( )A. 12cm 2B. 36cm 2C. 12πcm 2D.36πcm 25、如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D,已知AC=4,AB=5,则tan ∠BCD 等于( ). A. 43 B. 34 C. 53 D. 546、已知二次函数y=ax 2+bx+c 的图象如图,则a 、b 、c 满足 ( ) A. a <0,b <0,c >0;B. a <0,b <0,c <0; C. a <0,b >0,c >0;D. a >0,b <0,c >0。
Oxy学校 : 班级: 姓名:DC BA7、将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为( )A .y=2(x +1)2+3B .y=2(x -1)2-3C .y=2(x +1)2-3D .y=2(x -1)2+38、已知二次函数772--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( )A. k >47-B. k ≥47-C. k ≥47-且k ≠0D. k >47-且k ≠09、如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ’B ’,则tanB ’的值为 A .12B .13C .14D .2410、函数y=ax 2+bx+c 的图像如图所示,那么关于x 的方程ax 2+bx+c-4=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根二、填空题:(每题3分,共18分)11、二次函数=2(x-5)2 +1图象的顶点是 。
第一学期九年级期末考试数学模拟试卷四一、选择题(每小题3分,共36分.每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。
)1.如图,已知四边形ABCD 是平行四边形,下列结论中,不一定正确的是( ).A .AC=BDB .AB=CDC .当AC ⊥BD 时,它是菱形D .当∠ABC=90°时,它是矩形2.方程x x 22=的根是( ).A .2,021==x xB .2,021-==x xC .0=xD .2=x3.三角形的外心是指( )A .三角形三条角平分线交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点4.已知:如图,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,则⊙O 的半径为( )A .4cmB .24cmC .5cmD .32cm5.有下列说法:①等弧的长度相等②直径是圆中最长的弦③相等的圆心角对的弧相等④圆中90°角所对的弦是直径 ⑤同圆中等弦所对的圆周角相等.其中正确的有( ) A .1个B .2个C .3个D .4个6.如图,直线a x k y +=11与b x k y +=22的交点坐标为(1,2),则使y y 21<的x 的取值范围为( )A .x >1B .x >2C .x <1D .x <27.如图,在Rt △ABC 中,∠ABC=90°,AB=8cm ,BC=6cm ,分别以A 、C 为圆心,以2AC的长为半径作圆,那么图中两个扇形(阴影部分)的面积之和为( )A .cm 2425π B .cm 2825π C .cm 21625π D .cm 23225π 8.若点(5-,y 1)、(3-,y 2)、(3,y 3)都在反比例函数xy 3-=的图像上,则( ) A .y y y 321>>B .y y y 312>>C .y y y 213>>D .y y y 231>>9.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足Vm=ρ,它的图象如图所示,则该气体的质量m 为( )A .1.4kgB .5kgC .6.4kgD .7kg10.若二次函数2223m m x mx y -+-=的图象经过原点,则m 的值是( )A .1B .0C .2D .0或211.某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .a x y +=2B .()12-=x a yC .()x a y -=12D .()x a y +=1212.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为()02≠++=a c bx ax y ,若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( ).A .第8秒B .第10秒C .第12秒D .第15秒二、填空题(每小题3分,共27分)13.用配方法将一元二次方程0762=--x x 变形为()n m x =-2的形式是________.14.若梯形的面积为12cm 2,高为3cm ,则此梯形的中位线长为________cm .15.如图,△ABC 内接于⊙O ,∠A=50°,∠ABC=60°,BD 是⊙O 的直径,BD 交AC 于点E ,连结DC ,则∠ABD 等于________.16.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 内切,那么⊙A 由图示位置需向右平移________个单位长。
2012年秋中期检测九年级数 学 试 卷第一卷一、选择题 (每题3分,共36分)1.下列图案中,既是轴对称图形,又是中心对称图形的是……………( )2.点P (3,5)关于原点对称的点的坐标是………………………………( ). A . (-3,5) B . (3,-5) C . (5, 3) D . (-3,-5)3. 已知a <b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a - 4..下列二次根式中,最简二次根式的是………………………………( ) A .12+a B .21C .12D .b a 2 5. .下列计算正确的是……………………………………………… ( ) A .532=+ B . 2333=-C . 23222=+D .224=-6.下列方程为一元二次方程的是 ………………………………… ( ) A .0233122=--x x B . 0522=+-y x C . 02=++c bx ax D .07142=+-xx 7.一个直角三角形的面积为24,两条直角边的和为14,则斜边长为……( ) A . 372 B . 10 C . 382 D . 148.一个小组有若干人,新年互送贺年卡,已知全组共送出72张,则这个小组有 ( )学校: 班级: 姓名: 座号:密封线内不要答题A B D CA 12人B 18人C 9人D 10人9 .同圆中,两条弦长分别为a 和b ,它们的弦心距分别为c 和d ,若c >d ,则有( )A .a >bB .a <bC .a =bD .不能确定10. 已知两圆的半径是方程018112=+-x x 两实数根,圆心距为11,那么这两个圆的位置关系是( )A .内切B .相交C .外离D .外切 11. 下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A .3个 B .2个C .1个D .以上都不对12. 在半径为R 的圆中,一条弧长为l 的弧所对的圆心角为( )A . lR180π度 B .R l π180度 C . 180Rl π度 D . Rlπ180度柏树中学2011年秋中期检测九年级数 学 试 卷第一卷答题卡第二卷:非选择题二、填空题(每小题3分,共24分) 13.8×2= .14.将方程1242-=x x 化成一般形式为 , 其二次项系数是 ,一次项是 . 15. P A 、PB 是的⊙O 切线,切点分别是A 、B 。
树人中学九年级第一学期期中考试试卷一、选择题(本大题共10个小题,每题只有一个正确的选项,每小题4分,满分40分) 1.一元二次方程042=-x 的解是( )A .2=xB .2-=xC .21=x ,22-=xD .21=x ,22-=x 2.人离窗子越远,向外眺望时此人的盲区是( )A .变小B .变大C .不变D .以上都有可能 3.下列命题中,不正确...的是( ) A .对角线相等的平行四边形是矩形. B .有一个角为60°的等腰三角形是等边三角形. C .直角三角形斜边上的高等于斜边的一半. D .正方形的两条对角线相等且互相垂直平分. 4.下列函数中,属于反比例函数的是( ) A .2xy =B .12y x=C .23y x =+D .223y x =+5.二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-6.为估计某地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.由这些信息,我们可以估计该地区有黄羊( ) A 、400只B 、600只C 、800只D 、1000只7.若直线y=k 1x (k 1≠0)和双曲线y=(k 2≠0)在同一直角坐标系中的图象无交点,则k 1,k 2的关系是( )A 、互为倒数B 、符号相同C 、绝对值相等D 、符号相反8.方程()()1132=-+x x 的解的情况是( )A 、有两个不相等的实数根B 、没有实数根C 、有两个相等的实数根D 、有一个实数根 9.函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是( )10.如图,已知△ABC 和△CDE 都是等边三角形,AD 、BE 交于点F ,则∠AFB 等于( )A 、50°B 、60°C 、45°D 、∠BCD二、填空题(本大题共10个小题,每小题4分,满分40分) 11.已知函数22(1)my m x -=-是反比例函数,则m 的值为 .12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是 .13.在一个有10万人的城市,随机调查了2000人,其中有250人看中央电视台的早间新闻——朝闻天下.在该城市随便问一个人,他看中央电视台朝闻天下的概率大约是 . 14.依次连接矩形各边中点所得到的四边形是 .15.小芳的房间有一面积为3m 2的玻璃窗,她站在室内离窗子4m 的地方向外看,她能看到窗前面一幢楼房的面积有 _________ m 2(楼之间的距离为20m ).16.如图,▱ABCD 的周长为16cm ,AC 与BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为 cm.17. 已知菱形的周长为cm 40,一条对角线长为cm 16,则这个菱形的面积 为 (cm)2.18.若方程032=+-m x x 有两个相等的实数根,则m = ,两个根分别为 。
潮南区实验中学 2012— 2013 年学年度第一学期九年级数学期中考试题卷一、选择题:(每题 4 分,共 32 分)1、以下图形中,是中心对称图形的是()AB CD2、以下等式成立的是()A .494 9B .2733 C .3333D .( 4)243、以下各式中是一元二次方程的是()A . x21 1B . ( x 1)( x 1) x x21 C . 2x23x 1 D . x 21x 1x24、以下二次根式中属于最简二次根式的是()A . 4a 4B . 48C . 14D .ab5、若代数式 25x 存心义,则 x 的取值围是()A.x ≥﹣2B.x≤2C. x≥2D. x≤-2 55556、对于对于 x 的一元二次方程 x 2x 2 0 的根的状况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .没法判断7、三角形两边的长分别是 8 和 6,第三边的长是方程 x 2 -12x +20=0 的一个实数根, 则三角形的周长是 ()A. 24B. 26 或 16C. 26D. 168、某旅行景点三月份共招待旅客 25 万人次,五月份共招待旅客 64 万人次,设每个月的均匀增添率为 x ,则可列方程为( )A 、25(1 x) 2 64B 、 x) 2 64C 、 x)2 25D 、2525(1 64(1 64(1 x)2 二、填空题二填空(每题4 分,共 20 分)9、若点 A ( a – 2, 3)与点 B (4,– 3)对于原点对称,则 a= 。
10、已知 x =‐ 1 是方程 x 2- ax +6= 0 的一个根,则 a = ____________。
11.若 2<x<3,化简 ( x2) 23 x 的正确结果是_。
A12.如图( 11),△ ABC 绕点 A 旋转后抵达△ ADE 处,E若∠ BAC = 120°,∠ BAD = 30°,BC13 、 对 于 任 意 不 相 等 的 两 个 数 a , b , 定 义 一 种 运 算 ※ 如 下 : a ※b = ab, 如a b3※2=3 25 .那么 12※4= 。
2013年秋期九年级上册期中数学试卷(附答案)浙江省宁波市锦合、新世纪2013-2014学年第一学期期中考试九年级数学试卷一、选择题:(每小题4分,共48分)1.已知点P(1,-3)在反比例函数的图象上,则的值是()A.3B..-3C.D.2.对于反比例函数,下列说法正确的是()A.图象经过点(1,﹣3)B.y随x增大而减小C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小3.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.抛物线与x轴的交点为(﹣1,0),(3,0)4.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6C.y=x2+6D.y=x25.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°6.如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BFC.OF=CFD.∠DBC=90°7.如图,函数与的图象相交于点A(1,2)和点B,当时,自变量x 的取值范围是()A.x>1B.-1<x<0C.-1<x<0或x>1D.x<-1或0<x<18.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.B.8C.D.10.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④11.二次函数的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线上的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤812.如图,等腰的直角边BC在轴上,斜边AC上的中线BD交轴于点E,双曲线的图像经过点A,若的面积为,则的值为()A.8B.C.16D.二、填空题:(每小题4分,共24分)13.如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO 的面积为3,则k的值为14.抛物线的最小值是15.如图,已知⊙O半径为5,弦AB长为8,点P为弦AB上一动点,连结OP,则线段OP的最小长度是16.如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线y=x-1经过点C交x轴于点E,双曲线经过点D,则k的值为________.17.某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y个,则果园里增种棵橘子树,橘子总个数最多.18.如图,AB是半圆O的直径,,则的度数为三、解答题:(共78分)19.(本题6分)已知反比例函数的常数)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当﹣3<x<﹣1时,求y的取值范围.20.(本题6分)已知抛物线经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.21.(本题8分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.22.(本题10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x 的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?23.(本题10分)已知反比例函数的图象与一次函数的图象交于A、B 两点,连结AO。
第15题2013年秋学期九年级数学期中试卷(考试时间:120分钟满分150分)第一部分选择题(共18分)一.选择题(下列各题所给答案中,只有一个答案是正确的.每小题3分,共18分)1.下列变形中,正确的是()A.(23)2=2×3=6 B.)4()9(-⨯-=49⨯C.2)52(-=-52D.259+=259+2.下列二次根式中,与6是同类二次根式的是()A、54B、30C、48D、183.下列命题是真命题的是()A.90º的直角所对的弦是直径B.平分弦的直径垂直于这条弦C.等弧所对圆周角相等D.一条弦把圆分成的两段弧中,至少有一段是优弧4.如图,在Rt△ABC中∠ACB=90º,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是( )A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定点P与⊙O的位置关系5.若m是关于x的一元二次方程02=++mnxx的根,且m≠0,则nm+的值为A.21B.21-C.1 D.1-6.给出以下四个论断:①对角线互相平分且相等的四边形是矩形;②数据1,3,4,5的标准差是数据2,6,8,10的标准差的一半③在直角三角形中,两边分别为5和12,则该三角形的外接圆半径为6.5;④有一组对边和一组对角相等的四边形是平行四边形,其中正确..的有( )个A.1B.2C.3D.4第二部分非选择题(132分)二.填空题(每题3分,共30分)7.若式子32+x有意义,则x的取值范围为.8.已知m是5的整数部分,则m= .9.使式子12-x=11-⋅+xx成立的x的取值范围是________.10.写出一根为-2、另一根为大于3而小于5的数的一元二次方程.11.如图,已知ACB∠是⊙O的圆周角,∠ACB=55°,则圆心角AOB∠是_____12.已知平行四边形ABCD,AP平分∠BAD交边CD与P,AB=10,CP=3,则平行四边形ABCD的周长为_______.13.如图,已知⊙O半径为5,弦AB长为8,点P为弦AB上一动点,连结OP,则线段OP长的范围是.14.已知:如图所示的图形的面积为24,根据图中的条件,可列出方程15.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点M,交边AC于点D,△BCD的周长等于18cm,则AC的长等于cm16.如果等腰三角形一腰上的高与另一边的夹角为34°,那么等腰三角形的顶角为度O CBA第11题第13题xx+11+x第14题第 1 页共 5 页第 2 页 共 5 页三.解答下列各题17. (本题满分12分) 计算:(1)3222233--+ (2)321821324+⨯-÷18.(本题满分8分) 解下列方程:(1)9t 2-(t -1)2=0 (2) 2x 2-5x+1=0(配方法)19.(本题满分8分)先化简,再求值:2225241244a a a a a a ⎛⎫-+-+÷ ⎪+++⎝⎭,其中23a =+20.(8分)关于x 的方程x 2-2(m -1)x +m 2=0 (1)当m 为何值时,方程有两个实数根?(2)若m 为最大的负整数,请求出方程的两个根.21.(10分)为了从甲、乙两名学生中选拔一人参加全国数学竞赛,•李老师每个月对他们的竞赛成绩进行一次测验,下图是两人赛前5次测验成绩的折线统计图.①将下列表格填写完整;②请你参谋一下,李老师应选派哪一名学生参加这次竞赛,结合所学习的统计知识说明理由. 解:(1) 填表如下:(2) 李老师应选派 参加这次竞赛. 理由:22.(10分)如图,在等边△ABC 中,D 是BA 延长线上的一点,点E 是AC 的中点。
九年级(上)数学期中测试试卷(满分:120分 时量:120分钟)一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1、下列方程是一元二次方程的是 ( )A 、-8x 2+3x=4x(3+2x)B 、3-x 2=x+x1C 、x 2-3xy -5=0D 、2x=1-4y2.关于x 的方程3x 2-2x+m=0的一个根是x=1,则m 的值为 ( )A 、-1B 、2C 、1D 、-23.某商品原价289元,经连续两次降价后,售价为256元,设平均每次降价的百分比为x ,下列方程正确的是 ( )A 、289(1-x)2=256B 、256(1-x)2=289C 、289(1-2x)=256D 、256(1-2x)=2894.下列命题中,真命题是 ( )A 、等角的补角相等B 、相等的角是对顶角C 、一个锐角与一个钝角的和一定是个平角D 、命题都是定理5.方程(x -2)2=9的解是 ( )A 、x 1=5 ,x 2=-1B 、x 1=-5, x 2=-1C 、x 1=11,x 2=-7D 、x 1=-11,x 2=7 6.把方程x 2-6x+8=0化成(x -a)2=b 的形式应为 ( )A 、(x -3)2=1B 、(x -6)2=8C 、(x -3)2=17D 、(x -3)2=87.已知△ABC ∽△DEF ,AB ∶DE=1∶2,则△ABC 与 △DEF 的面积之比等于 ( ) A 、1∶4 B 、1∶2 C 、.2∶1 D 、.4∶18.下列各组线段中,能成比例线段的是 ( ) A 、12cm 8cm 9cm 6cm B 、30cm 12cm 0.8cm 0.2cm C 、1cm 2cm 3cm 4cm D 、1cm 3cm 4cm 6cm二、填空题(每小题3分,共30分)9、一元二次方程2x 2+4x -1=0的二次项系数为 ,一次项系数为 ,常数项为10、把方程4x(x+2)-6x=6化为一元二次方程的一般形式为11、若方程2x 1-m -1=0是关于x 的一元二次方程,则m=12、已知a,b,c,d 为成比例线段,即b a =dc ,其中a=3cm,b=5cm,d=10cm,则线段c= cm 13、命题“如果梯形的上底长是3厘米,下底长是5厘米,那么它的中位线长是4厘米”是 命题。
2013---2014学年度九年级上学期期中检测数学试题一、选择题(每小题3分,共30分)1.函数y=中自变量x的取值范围为A. x≥0 B. x≥-2 C. x≥2 D. x≤-22.方程x(x-1)=2的解是()A.x=-1 B.x=-2 C.x1=1,x2=-2 D.x1=-1,x2=23.下面图形中,既是轴对称图形又是中心对称图形的是4.若x1、x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是A.4 B. 3 C.-4 D.-35.已知相交两圆的半径分别是5和8,那么这两圆的圆心距d的取值范围是 A.d>3 B. d<13 C. 3<d<13 D. d=3或d=136.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是A.图① B.图②C.图③D.图④7.不解方程,判定关于x的方程x2+kx+k﹣2=0的根的情况是A.无实数根 B.有两个不相等的实数根C.有两个实数根 D.随k值的变化而变化,不能判定8.某品牌电脑2009年的销售单价为7200元,由于科技进步和新型电子原材料的开发运用,该品牌电脑成本不断下降,销售单价也逐年下降.至2011年该品牌电脑的销售单价为4900元,设2009年至2010年,2010年至2011年这两年该品牌电脑的销售单价年平均降低率均为x,则可列出的正确的方程为A.4900(1+x)2=7200B.7200(1-2x)=4900C.7200(1-x)=4900(1+x)D.7200(1-x)2=49009.如图,⊙O是△ABC的外接圆,∠OBC=30°,则∠BAC的度数为A.30°B.45°C.60°D.70°10.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为A.12秒B.16秒C.20秒 D.24秒二、填空题(每小题3分,共18分)11.计算:= ;(-)2= ;- = .12.已知点A(3,2),则点A绕原点O顺时针旋转180°后的对应点A1的坐标为.13.关于的一元二次方程的一个根为,则实数的值是 .14.两个数的差为8,积为48,则这两个数是.15.国庆期间某单位排练节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为 cm2(π取3)16.如图,在平面直角坐标系中,⊙O的半径为5,点P为直线y=-x+4上的一点,过点P作⊙O的切线PC、PD,切点分别为C、D,若PC⊥PD,则点P的坐标为.三、解答题(共9小题,共72分)17.(本题6分)解方程:x2+3x+1=018.(本题6分)计算:2738141222-++19.(本题6分)如图,在⊙O 中, 弦AB 与CD 相交于E ,且AB =CD . 求证:△AEC ≌△DEB20.(本题6分)如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上).(1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1; (2)把△A 1B 1C 1绕点A 1按逆时针方向旋转90°,在网格中画出旋转后的△A 1B 2C 2; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换后的路径总长.EOACB D21.(本题8分)已知:关于x的方程kx2-(3k-1)x+2(k-1)=0.(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且│x1-x2│=2,求k的值.22.(本题8分)如图,⊙O是Rt△ABC中以直角边AB为直径的圆,⊙O与斜边AC交于D,过D作DH⊥AB于H,又过D作直线DE交BC于点E,使∠HDE=2∠A.求证:(1)DE是⊙O的切线;(2)OE是Rt△ABC的中位线.23.(本题10分)某超市经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg.(1)当销售单价定为每千克35元时,计算销售量和月销售利润;(2)设销售单价为x元,月销售利润为y元,请求出y与x的函数关系;(3)超市想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.(本题10分)如图1,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°)角得到△EFD,点A的对应点为点E,点B的对应点为点F,连接BE、CF.(1)判断BE与CF的位置、数量关系,并说明理由;(2)若连接BF、CE,请直接写出在旋转过程中四边形BCEF能形成哪些特殊四边形;(3)如图2,将△ABC中AB=BC改成AB≠BC时,其他条件不变,直接写出α为多少度时(1)中的两个结论同时成立.25.(本题12分)如图1,在平面直角坐标系中,⊙O1与x轴切于A(-3,0)与y轴交于B、C两点,BC=8,连接AB.(1)求证:∠ABO1=∠ABO;(2)求AB的长;(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM-BN的值不变;②BM+BN的值不变.其中有且只有一个结论正确,请判断出正确结论并证明.。
2013年九年级上册期中数学试卷(含答案)吉林长春二中13—14学年九年级上学期期中试卷—数学(120分钟;满分120分)一,选择题(每小题2分,共16分)1.下列图形既是轴对称图形,又是中心对称图形的是()2下列各式是二次根式的是()3化简的结果是()A.10B.2C.4D.204.一元二次方程3x2-x=0的解是()A.x=0B.x1=0,x2=3C.x1=0,x2=D.x=5.用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6B.(x-1)2=6C.(x+2)2=9D.(x-2)2=96.如图,在ΔABC中,∠CAB=70º,在同一平面内,将ΔABC绕点A旋转到ΔAB'C'的位置,使得CC'∥AB,则∠BAB'等于()A.30ºB.35ºC.40ºD.50º6题图7题图8题图7.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC 的度数是()A.35°B.55°C.65°D.70°8.将5个边长都为2㎝的正方形按如图所示的样子摆放,点A.B.C.D.分别是四个正方形的中心,则图中四块阴影部分的面积的和为().A.2B.4C.6D.8填空题(每小题3分,共24分)9.当x_____时,二次根式有意义10.计算:+=_____.11.请你写出一个有一根为2的一元二次方程:______12.如果关于Χ的方程Χ-4Χ+Κ=0(Κ为常数)有两个相等的实数根,那么Κ=__13..三角形两边长是3和4,第三边的长是方程-12+35=0的根,则该三角形的周长为.14.如图,AB、CD是⊙O的两条互相垂直的弦,圆心角∠AOC=130°,AD、CB的延长线相交于点P,则∠P=.15.当x_____时,2=1-2x16.如图,点C、D在以AB为直径的⊙O上,且CD平分∠ACB,若AB=2,∠CAB=15°,则CD的长为.三,(每小题6分,共36分)17.计算.18.解方程:x(x-2)+x-2=0(1+)(1-)(+1)(-1)19.若+2=0求a2011b2013的值20.如图,在4×4正方形网格中,请你在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.21.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,求a的取值范围.四(每小题8分,共16分)22先化简再求值.,其中=+123某厂2011年投入600万元用于研制新产品的开发,计划以后每年以相同的增长率投资,2013年投入1176万元用于研制新产品的开发。
第一学期期中考试(九年级)数学3数学:满分150分,考试时间100分钟一、选择题:(本大题共6题,每题4分,满分24分)1、已知x:y=1:2,那么(x+y ):y 等于·····················································( ) (A )3:2; (B )3:1; (C )2:2; (D )2:3.2、已知:线段a 、b 、c ,求作线段x ,使bacx =,以下作法正确的是···········( )(A ) (B ) (C ) (D )3、下列命题中,错误的结论是·····································································( ) (A )如果两个三角形都是等腰三角形且一个内角为100°,那么这两个三角形相似 (B )如果两个三角形都是等腰三角形且一个内角为30°,那么这两个三角形相似 (C )如果两个三角形都是等腰直角三角形,那么这两个三角形相似 (D )如果两个直角三角形都有一个内角等于30°,那么两个三角形相似4、下列判断不正确的是··············································································( )(A )0 =-a a ;(B )a b b a +=+;(C )如果),0(≠∙=k b k a 那么b a//;(D )如果b a =,那么b a=5、如果△ABC 中,点D 、E 分别在边AB 、AC 上。
靖江市外国语学校2013-2014学年度第一学期九年级数学期中考试卷201311(考试时间:120分钟 满分150分)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上) 1. 在下列实数中,无理数是( ▲ )A .2B .13- C .3.1415 D2.下列运算正确的是( ▲ )A .235a a a += B2=± C .33(2)6a a = D .2(32)(32)49x x x ---=- 3. 下列一元二次方程中,有两个不相等的实数根的方程是( ▲ )A .2310x x -+=B .210x +=C .2210x x -+=D .2230x x ++= 4.四川雅安发生地震灾害后,某中学九(1)班学生积极捐款献爱心,如图所示是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是 ( ▲ )A .20,10B .10,20C .16,15D .15,165. 如图,点P 、Q 在直线AB 外,在点O 沿着直线AB 从左往右运动的过程中,形成无数个三角形: 1O PQ ∆、2O PQ ∆、…、n O PQ ∆、1n O PQ +∆……,在这样的运动变化过程中,这些三角形的周长变化为( ▲ )A .不断变大B .不断变小C .先变小再变大D .先变大再变小 6.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④222BE 2AD AB =+(),其中结论正确的个数是( ▲ )A .1个B .2个C .3个D .4个第4题 第5题 第6题二、填空题(本大题共10小题,每小题3分,满分30分。
2013—2014学年度第一学期期中模拟监测九年级数学试卷(考试时间120分钟 满分120分)学校 班级 姓名 考号一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的. 1.下列图形中,是中心对称图形的是A B C D2.点(2,-1)关于原点对称的点的坐标为A .(2,1)B .(-2,1)C .(1,-2)D .(-2,-1) 3.如图,⊙O 的半径为5,AB 为弦,半径OC ⊥AB ,垂足为点E ,若OE =3,则AB 的长是 A .4 B .6C .8D .10(第3题图) 4. 方程x x22=的解是A. 2=xB. 2=x C. 0x = D. 2=x 或0x =5. 如图,⊙O 的半径OC 垂直于弦AB , D 是优弧AB 上的一点 (不与点A 、B 重合),若∠AOC =50°,则∠CDB 等于 A .25° B .30° C .40° D .50°(第5题图)6. 若关于x 的一元二次方程013)1(22=-++-m x x m 有一根为0,则m 的值为 A .1 B .-1 C .1或-1 D .21 7.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°, 则∠BDC 的度数是A.110°B.70°C.55°D.125°(第7题图)OE C BA8.如图,将边长为3cm 的正方形ABCD 绕点C 逆时针旋转30º 后得到正方形A ′B ′C D ′,那么图中阴影部分面积为2B.2C.92cm 2D. cm 2(第8题图)二、填空题(共4个小题,每小题4分,共16分)9.已知关于x 的一元二次方程有一个根为0.请你写出一个符合条件的一元二次方程是 .10. 如图,A 、B 、C 是⊙O 上的三点,∠BAC=30°,则∠BOC 的 大小是 .(第10题)11.如图,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径OC 为2,则弦BC 的长为 .(第11题图) 12.如图,在平面直角坐标系中,已知点A(-4,0),B(0,3),对△AOB 连续作旋转变换,依次得到三角形(1)、(2)、(3)、(4)、…,则第(7)个三角形的直角顶点....的坐标是 ;第(2011)个三角形的直角顶点....的坐标是__________. 三、解答题(共13个小题,共72 分) 13. (本小题满分5分)解方程:3x 2+10x+5=014. (本小题满分5分)已知2514x x -=,求()()()212111x x x ---++的值.O C A B (第12题)15. (本小题满分5分)已知:如图,AB 为半圆的直径,O 为圆心,C 为半圆上一点, OE ⊥弦AC 于点D ,交⊙O 于点E. 若AC=8cm ,DE=2cm. 求OD 的长.16. (本小题满分5分)已知:如图5,在⊙O 中,弦AB CD 、交于点E ,AD CB =. 求证:AE CE =.17.(本小题满分5分)在平面直角坐标系xoy 中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴ 画出ABC △;⑵ 画出ABC △绕点A 顺时针旋转90 后得到的AB C △,并求出CC 的长.18. (本小题满分5分)经过18个月的精心酝酿和290多万首都市民投票参与,2011年11月1日,“北京精神”表述语“爱国、创新、包容、厚德”正式向社会发布. 为了更好地宣传“北京精神”,小明同学参加了由街道组织的百姓宣讲小分队,利用周末时间到周边社区发放宣传材料. 第一周发放宣传材料300份,第三周发放宣传材料363份. 求发放宣传材料份数的周平均增长率.E D CB A O D19. (本小题满分5分)已知关于x 的方程(k -2)x 2+2(k -2)x +k +1=0有两个实数根. (1)求正整数k 的值;.(2)当k 取正整数时,求方程的根.20. (本小题满分5分)如图,AB 是⊙O 的直径,C 、D 两点在⊙O 上,若∠C =45°, (1)求∠ABD 的度数.(2)若∠CDB=30°,BC=3,求⊙O 的半径.21.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,将直线AB 绕点O 逆时针旋转90°得到直线A 1B 1.(1)在图中画出直线A 1B 1. (2)求出直线A 1B 1函数解析式.22. 如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB 与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB ,点E 为AC 中点,F 为BC 上一点且BF ≠FC (F 不与B 、C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形; (2在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为锐角三角形.23.已知关于x 的方程2(32)220mx m x m -+++= (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的方程2(32)220mx m x m -+++=的两个不等实数根均为正整数,且m 为整数,求m 的值.图1FE DBA图2ABCDE F图3ABCDEF24.已知△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,点F 为BE 中点,连结DF 、 CF .(1)如图1, 当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE 绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD =1,AC=,求此时线段CF 的长(直接写出结果).25.如图:点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.将线段OC 绕点C 按顺时针方向旋转60°得到线段CD ,连接OD 、AD. (1) 求证:AD=BO(2) 当α=150°时,试判断△AOD 的形状,并说明理由;(3) 探究:当α为多少度时(直接写出答案),△AOD 是等腰三角形?DACBO2013~2014学年九年级第一学期期中考试 数学试卷参考答案及评分标准一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)9. x 2=0(…本题多种情况) ;10. 60° ;11.;12. (24,0);(8040,0)三、解答题(共13个小题,共72 分)13.(若用配方法,可按具体过程酌情给分)14.15. 解:∵OE ⊥弦AC , ∴AD=21AC=4. …………………………1分 ∴OA 2=OD 2+AD 2……………………………..2分∴OA 2=(OA-2)2+16解得,OA=5. ………………………………4分 ∴OD=3 ………………………………5分 16. 解:由题意得{220,[2(2)]4(2)(1)0.k k k k -≠∆=---+≥ …………………1分由①得 2k ≠. ………………………………………………………2分 由②得 2k ≤. ………………………………………………………4分 ∴2k <. ∵k 为正整数,∴1k =. (5)322123,10, 5......1=440 (2)105263105263a b c b ac b x a b x a ===-=-+-+-+===----===解:△2222=231(21) 1......25 1......3514=141=15 (5)x x x x x x x x -+-+++=-+-=+解:原式∵∴原式17.解:⑴如图所示,ABC △即为所求.…1分⑵如图所示,11AB C △即为所求. …3分18. (本小题满分5分)解:设发放宣传材料份数的周平均增长率为x ,由题意,有.363)1(3002=+x …………………………………………………………………3分 解得 1.01=x ,1.22-=x . …………………………………………………………4分 ∵1.2-=x <0,不符合题意,舍去,∴%101.0==x . ……………………………………………………………………5分 答:这两次发放材料数的平均增长率为10%.19. 解:(1)由题意得:k-2≠0①,△=[2(k-2)]2-4(k-2)(k+1)≥0②. ……1 由①得 k ≠2.由②得 k ≤2. ……2 ∴k <2.∵k 为正整数, ∴k=1. (3)(2)方程为-x 2-2x+2=01211x x =-+=-解得, (5)20. 解:(1)∵弧BD ,∠C=45° ∴∠A=∠C=45° ……1 ∵AB 是⊙O 的直径 ∴∠ADB=90°∴∠ABD=45°……2 (2)连接AC∵AB 是⊙O 的直径 ∴∠ACB=90° ∵弧BC∴∠CAB=∠CDB=30°……3 ∵BC=3∴AB=6 ......4 ∴半径为3 (5)21.(1)2分(2)由题意可知,A 1(0,-1) B 1(-2,0) (1)5 (101)=cc设直线A 1 B 1的解析式为 y = kx - 1 (k ≠0)12k =- (4)∴ 112y x =-- (5)22. (1)………………………………………………1分(2)………………………………………………3分(3)………………………………………………5分23. (1)证明:①当m =0时,方程为 -2x + 2 = 0 ,x = 1,此一元一次方程有实根…1 ②当m ≠0时,方程为一元二次方程(2)1211232(2)2222232(2)1 (4)21,1,2,24,0,3,1,1=2 (7)m m m x m m m m m x mx m m x x x x m m ++++===++-+===--==∵为整数,为整数,∴∴∵≠且为正整数∴或24. 解:(1)线段DF 、CF 之间的数量和位置关系分别是相等和垂直.…………1分(2)(1)中的结论仍然成立 ………2分13321ABCA 1B 12222(32)22444(2)...2(2)0a m b m c m b ac m m m m ==-+=+∆=-=++=++∵≥∴此方程有实数根综上,无论m 为任何实数时,方程恒有实数根 (3)证明: 如图,此时点D 落在AC 上,延长DF 交B C 于点G .∵ 90ADE ACB ∠=∠=︒,∴ DE ∥BC .∴ ,DEF GBF EDF BGF ∠=∠∠=∠.又∵ F 为BE 中点, ∴ EF=BF .∴ △DEF ≌△GBF . ………3分∴ DE =GB ,DF =GF .又∵ AD =DE ,AC =BC ,∴ DC =GC .∵ 90ACB ∠=︒,∴ DF = CF , DF ⊥CF . …………5分(3) 线段C F…………7分 25. (1)∵等边ΔABC∴BC=AC,∠ACB=60°∵OC 绕点C 按顺时针方向旋转60°∴OC=CD,∠OCB=∠DCA∴ΔBOC ≌ΔADC ………………………………………………2分∴AD=BO(2) ∵OC 绕点C 按顺时针方向旋转60°∴ΔOCD 是等边三角形……………………………………………3分∴∠ODC=60°∵ΔBOC ≌ΔADC∴∠BOC=∠ADC=150°……………………………………………4分∴∠ADC=90°…………………………………………………… 5分(3)α=110°,α=140°,α=125°……………………8分(一个答案1分)ABCD E F G。
O
x
y
A
3
A
B
C
D
P E
F 2013届九年级数学上册期中考试模拟试卷
(成功属于有准备的人,希望自主成为你最好的学习方法,优秀成为你最好的学习习惯!!) 一、选择题(每小题3分,共18分)
1.近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( ) A 、()2
12000x +=
B 、()2
200013600x +=
C 、()()3600200013600x -+=
D 、()()2
3600200013600x -+= 2.已知四边形ABCD 是平行四边形,下列结论不正确的是( ) A 、当AB=BC 时,它是菱形; B 、当AC ⊥BD 时,它是菱形; C 、当∠ABC=90°时,它是矩形; D 、当AC=BD 时,它是正方形。
3.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )。
A 、①②③④
B 、④①③②
C 、④②③①
D 、④③②① 4.如图,直线2y x =+与双曲线k
y x
=相交于点A ,点A 的纵坐 标为3,k 的值为( ). A 、1 B 、2 C 、3 D 、4
5.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3
y x
=
(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会( ).
A 、逐渐增大
B 、不变
C 、逐渐减小
D 、先增大后减小
6.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;
③△APD 一定是等腰三角形;④∠PFE =∠BAP ;⑤PD = 2EC . 其中有正确结论的个数是( )
A 、2 个
B 、3 个
C 、4个
D 、5个
x
y
O A
B
F
A
B
C
E
x
y
A
B
O
1
S 2
S
A
D C
B
M
二、填空题(每小题3分,共27分)
7.已知,在△ABC 中,AB=AC ,∠A=120°,EF 垂直平分AB,
若BC=30,则CF= 8.直角三角形的两条边长分别6cm 、8cm ,则连接这两边中点的线段长为 。
9.方程2310x x -+=的解是
.
10.若一元二次方程x 2-(A +2)x +2A =0的两个实数根分别是3、B ,则A +B = . 11.方程x (x -1)=2的解是
.
12.如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,C B '交AD
于点E ,AD = 8,AB = 4,则DE 的长为
13.菱形的周长为8cm ,高为1cm ,则菱形较小角度数为 14.函数1k
y x
-=
的图象与直线y x =没有交点,那么k 的取 值范围是
15.如图,点A 、B 是双曲线3
y x
=上的点,分别经过A 、B 两点
向x 轴、y 轴作垂线段,若1S =阴影,则12S S += . 三、解答题
16.解方程(本题6分)
(1)2
620x
x --=(配方法) (2)23(1)1x x -=- (3)()23260x x -+=(公式法)
17.(本题6分)如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD .
求证
:
四
边
形
ABCD
是
等
腰
梯
形
.
18.(本题7分)定理“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ,这个命题正确吗?若正确,请你证明这个命题,若不正确请说明理由。
(注意写已知,求证)
19.(本题7分)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:
(1)作∠ABC 的平分线BD 交AC 于点D ;
(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F . (3)连接ED 、FD ,判断四边形BEDF 是什么四边形
20.(本题9分)关于x 的一元二次方程2310k x x -+=有两个不相等的实数根.
(1)求k 的取值范围.
(2)请任选择一个k 的负整数值,并求出方程的根.
A
B
C
D
A
C
B
D
E
F
G
1
423
21.(本题9分)小明想测量电线杆AB 的高度,他发现电线杆AB 的影子正好落在坡面CD 和地面BC 上,已知CD 和地面成30°角,CD =4m ,BC =10m ,且此时测得1m 高的标杆在地面的影长为2m ,求AB 的高。
22.(本题10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,问(1)每台冰箱应定价多少元?
(2)若使该商场每天获取最大利润,则定价应为多少元,最大利润是多少?
23.(本题10分) 如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. (1)证明:△ABE ≌△DAF ; (2)若∠AGB=30°,求EF 的长.
y x
B 1-
1- 1 2 3 3 1
2 A (1,3)
G
F
E
D C
B
A
24.(本题11分)如图,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k y x
= (k 为常数, 0k ≠)的图象相交于点 A (1,3).
(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)求△OAB 的面积
(3)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.
25.(本题10分)如图,四边形ABCD 是菱形,点G 是BC 延长线上一点,连接AG ,分别交BD 、CD 于点E 、F ,连接CE . (1)求证:∠DAE =∠DCE ;
(2)当AE =2EF 时,判断FG 与EF 有何等量关系? 并证明你的结论?。