江苏省响水中学高二数学上学期《第1课时 函数及其表示》学案
- 格式:doc
- 大小:132.50 KB
- 文档页数:4
一、【基础训练】1. 设()()f x x R π=∈,则(2)f = .2.下图中,能表示函数y =f (x )的图象的是 .3.下图中建立了集合P 中元素与集合M 中元素的对应f .其中为映射的对应是________.4. 已知函数()y f x =的定义域为[1,5]-,则在同一坐标系中,函数()y f x =的图像与直线1x =的交点个数为 .5. 已知函数分别由下表给出x 1 2 3 f (x )131x 1 2 3 g (x )321则f (g (1))的值为____;满足g (f (x ))=1的x 值是__________. 二、【重点讲解】1. 函数的基本概念(1)函数的定义____________________________________________________________ (2)函数的三要素:____________________________________________________________(3)相等函数:____________________________________________________________2. 函数的表示法:______________________________________________表示函数的常用方法有:______________________________________________ 3.映射的概念____________________________________________________________________4. 函数与映射的关系:______________________________________________________________________________________________________________三、【典题拓展】 例1.有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.变式训练1 以下给出的同组函数中,是否为相同函数?为什么?(1)f 1:y =xx ; f 2: y =1;(2)f 1:y =|x |;f 2:y =⎩⎪⎨⎪⎧x ,x >0-x ,x <0;(3)f 1:y =⎩⎪⎨⎪⎧1,x ≤12,1<x <23,x ≥2;f 2:(4)f 1:y =2x ;f 2:如图所示:变式训练2已知f (x )=x 2+2x -3,用图象法表示函数g (x )=f (x )+|f (x )|2.例3(1)已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b =________.(2)已知映射f :A →B .其中A =B =R ,对应法则f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是________.四、【训练巩固】1. 设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B =____________.2.已知集合M ={-1,1,2,4},N ={0,1,2},给出下列四个对应法则:①y =x 2,②y =x +1,③y =2x ,④ y =log 2|x |,其中能构成从M 到N 的函数的是_______.3. 设函数()f x 的定义如右表,数列{}()n x n N *∈满足11x =,且对于任意的正整数n ,均有1()n n x f x +=,则2014x =._____. 4.已知{}{}421,2,3,,4,7,,3,,,,A k B a a a a N k N x A y B **==+∈∈∈∈,:31f x y x →=+是从定义域A 到值域B 的一个函数,求a,k 的值.。
函数及其表示2.若函数y =f (x )的定义域是[0,3],则函数g (x )=f 3xx -1的定义域是( )A .[0,1)B .[0,1]C .[0,1)∪(1,9]D .(0,1) 探究三 已知定义域求参数范围问题3.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.考点二 函数解析式的求法(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(3)已知f (x )+2f )1(x =x (x ≠0),求f (x )的解析式.考点三 分段函数1.(2015·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74 B .-54C .-34 D .-14环节三:课堂总结环节四:课后提高课题第二节 函数的单调性与最值考点二 函数的单调区间的求法求下列函数的单调区间:(1)y =-x 2+2|x |+1;(2)y =log 12(x 2-3x +2).考点三 函数单调性的应用| 函数单调性的应用比较广泛,是每年高考的重点和热点内容.归纳起来,常见的命题探究角度有:1.求函数的值域或最值. 2.比较两个函数值或两个自变量的大小.3.解函数不等式.4.求参数的取值范围或值. 探究一 求函数的值域或最值1.(2015·高考浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,lg x 2+1,x <1,则f (f (-3))=________,f (x )的最小值是________.探究二 比较两个函数值或两自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A..f (x 1)<0f (x 2)<0 B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 探究三 解函数不等式3.(2015·西安一模)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln x +1,x >0,若f (2-x 2)>f (x ),则实数探究四 利用单调性求参数的取值范围4.(2015·江西新余期末质检)已知f (x )=⎩⎪⎨⎪⎧2-a x +1x <1,a x x ≥1满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2>0成立,那么a 的取值范围是( ) A.]2,23[ B.]23,1(C .(1,2) D .(1,+∞)环节三:思维拓展规范训练1.确定抽象函数的单调性以及解含“f ”的不等式 【典例】)函数f (x )对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b )-1,且当x >0时,有f (x )>1.(1)求证:f (x )是R 上的增函数; (2)若f (4)=5,解不等式f (2t -1)-f (1+t )<2.环节四:课堂总结提高 函数单调性应用问题的四种类型及解题策略 (1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数的基本环节.x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; 2.已知函数f (x )是定义在R 上的偶函数,若对于x ≥0,都有f (x +2)=-1f x ,且当x ∈[0,2)时,f (x )=log 2(x +1),则求f (-2 015)+f (2 017)的值为________. 考点三 函数奇偶性、周期性的应用|高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、单调性的综合考查.归纳起来常见的命题探究角度有: 1.已知奇偶性求参数. 2.利用单调性、奇偶性求解不等式.3.周期性与奇偶性综合. 4.单调性、奇偶性与周期性相结合. 探究一 已知奇偶性求参数1.(2015·高考全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 探究二 利用单调性、奇偶性求解不等式2.(2015·高考全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是 探究三 周期性与奇偶性相结合3.(2015·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2) 探究四 单调性、奇偶性与周期性相结合4.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)环节三:思维拓展规构造法在函数奇偶性中的应用1.设函数f(x)=x+12+sin xx2+1的最大值为M,最小值为m,则M+m=________.2.已知f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)等于( )A.-26 B.-18 C.-10 D.10环节四:课堂总结1.函数奇偶性的判定的三种常用方法:定义法;图象法;性质法:2.函数性质综合应用问题的三种常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.环节五:课后提高欢迎您的下载,资料仅供参考!。
学习目标1. 经过使收益最大、用料最省、效率最高等优化问题, 领会导数在解决实质问题中的作用 .2. 在解决详细问题的过程中, 领会导数方法在研究函数性质中的一般性和有效性 .课前预学:问题 1:一般地,假如在区间 a b 上函数 y=f x的图象是一条连续不停的曲[ , ]( )线 , 那么它必有最大值和最小值 . 只需利用导数求出函数 y=f ( x) 的全部,再求出端点的函数值 , 进行比较 , 就能够得出函数的最大值和最小值.问题 2: 生活中常常碰到求收益最大、用料最省、效率最高等问题, 这些问题往常称为问题 . 导数是求函数最大( 小) 值的有力工具 , 能够运用导数解决一些生活中的优化问题.问题 3: 利用导数解决生活中的优化问题的一般步骤(1)剖析实质问题中各个量之间的关系 , 列出实质问题的数学模型 , 写出实质问题中变量之间的函数关系式 y=f ( x);(2)求函数的, 解方程f'x=( )0;(3)比较函数在区间端点和点的函数值的大小 , 最大 ( 小 ) 者为最大(小)值.问题 4: 解决生活中的优化问题应该注意的问题确立函数关系式中自变量的区间 , 必定要考虑实质问题的意义, 不切合实质问题的值应舍去 .讲堂研究:一.收益最大问题某商场销售某种商品的经验表示 , 该商品每天的销售量 y( 单位 : 千克 ) 与销售价钱x( 单位: 元/ 千克) 知足关系式y=错误! 未找到引用源。
+10( x- 6) 2, 此中3<x<6, a 为常数 . 已知销售价钱为 5 元 / 千克时 , 每天可售出该商品 11 千克 .(1)求 a 的值 ;(2)若该商品的成本为 3 元 / 千克 , 试确立销售量价钱 x 的值 , 使商场每天销售该商品所获取的收益最大.三.成本最低问题:如图 , 某工厂拟建一座平面图为矩形 , 且面积为 200 平方米的三级污水办理池 , 因为地形限制 , 长、宽都不可以超出 16 米. 假如池周围壁建筑单价为每米 400元 , 中间两条隔墙建筑单价为每米 248 元, 池底建筑单价为每平方米 80 元 , 无盖 .(1)写出总造价 y( 元) 与污水办理池的长 x( 米 ) 的函数关系式 , 并指出其定义域 ;(2)污水办理池的长和宽各为多少时 , 污水办理池的总造价最低 ?并求出最低总造价 .。
江苏省响水中学高中数学第二章《函数的单调性》导学案苏教版必修11.能利用函数的图象研究函数的单调性.2.理解并掌握函数单调性的概念及其几何意义,会求函数的单调区间.中国传奇女子网球巨星李娜截止到2014年元旦世界排名第3,夺得了7个冠军,制造了中国网球多项纪录,她的打球特点是力量大、速度快、落点准,球在空中划过一道精美的曲线,上图是李娜的一记S球的电脑数据,我们把球在运动时的高度绘制成关于运动时间的函数图象.问题1:依据网球上升和下降的路径变化可以把图象分为部分,总体上看函数图象的变化是先上升后降再,最后,利用函数的可以研究函数图象上升与下降的变化过程.问题2:(1)①增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的两个自变量的值x1,x2,当时,都有,那么就说f(x)在区间D 上是增函数,区间D称为y=f(x)的.②减函数:如果对于区间D上的两个自变量的值x1,x2,当时,都有,那么就说f(x)在这个区间上是减函数,区间D称为y=f(x)的.(2)如果函数y=f(x)在某个区间是增函数或减函数,那么我们说函数y=f(x)在这一区间上具有(严格的)单调性,称函数y=f(x)为.问题3:增函数和减函数的图象有什么特征?在单调区间上增函数的图象从左到右是的、减函数的图象从左到右是的.问题4:基本函数的单调性质(1)一次函数f(x)=kx+b(k≠0):当k>0时,y=f(x)的单调增区间为,单调减区间;当k<0时,y=f(x)的单调增区间,单调增区间为.(2)二次函数f(x)=ax2+bx+c(a≠0):当a>0时,y=f(x)的单调增区间为,单调减区间为.当a<0时,y=f(x)的单调增区间为,单调减区间为.(3)反比例函数f(x)=(k≠0):当k>0时,y=f(x)的单调增区间,单调减区间为,上述的单调减区间不能用并集连接,小组讨论原因.当k<0时,y=f(x)的单调增区间为,单调减区间.1.右图是函数y=f(x),x∈R的图象,则函数f(x)在R上单调递.2.函数y=的减区间是.3.已知函数f(x)=(5a-1)x+2在R上是增函数,则a的取值范围是.4.下图是定义在区间[-4,7]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一个单调区间上它是增函数还是减函数.利用图象研究函数的单调区间画出下列函数的图象,求下列函数的单调区间并指出每一个单调区间上函数的单调性.(1)y=-5x+2;(2)y=3|x|;(3)y=x2+2x-3.基本函数单调性的应用已知二次函数y=ax2+bx+1的单调递减区间是[-2,+∞).则一次函数y=bx+a的图象大致是.由函数的单调性求参数的取值范围已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),求a的取值范围.画出下列函数的图象,并指出函数的单调区间及每一个单调区间上函数的单调性.(1)y=|x-1|;(2)y=x2-2|x|+1.若一次函数f(x)=kx+k满足f()<f(),则该函数的图象不可能经过的象限是第象限.已知函数y=f(x)在[0,+∞)上是减函数,试比较f()与f(a2-a+1)的大小.1.已知函数f(x)=-x2,则函数f(x)的单调增区间是.2.若函数f(x)在(-∞,+∞)上为减函数,则f(a2+1)f(a)(填“>”“<”或“=”).3.下列函数在区间(0,2)上为增函数的是.①y=-3x+1;②y=;③y=x2-4x+3;④y=.4.画出函数y=|x2-4x+3|的图象并指出其单调区间.(2013年·浙江卷)已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则().A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0考题变式(我来改编):第4课时函数的单调性知识体系梳理问题1:4上升下降单调性问题2:(1)①任意x1<x2f(x1)<f(x2)单调递增区间②任意x1<x2f(x1)>f(x2)单调递减区间(2)单调函数问题3:上升下降问题4:(1)R不存在不存在R(2)[-,+∞)(-∞,-)(-∞,-](-,+∞)(3)不存在(-∞,0),(0,+∞)(-∞,0),(0,+∞)(-∞,0),(0,+∞)不存在基础学习交流1.增由图象的“升降”可知函数在R上单调递增.2.(-∞,0),(0,+∞)函数y=的定义域为(-∞,0)∪(0,+∞),但是其在定义域上不单调,它有两个单调减区间,应该写为(-∞,0),(0,+∞).3.(,+∞)由5a-1>0,解得a>.4.解:函数y=f(x)的单调区间有[-4,-1.5),[-1.5,3),[3,5),[5,6),[6,7].其中y=f(x)在区间[-4,1.5),[3,5),[6,7]上是减函数,在区间[-1.5,3),[5,6)上是增函数.重点难点探究探究一:【解析】(1)函数y=-5x+2的图象如图所示,其单调区间为R,在R上为减函数.(2)函数y=3|x|=其图象如图所示,单调减区间为(-∞,0),单调增区间为[0,+∞).(3)函数y=x2+2x-3=(x+1)2-4开口向上,对称轴方程为x=-1,图象如图所示,单调减区间为(-∞,-1),单调增区间为[-1,+∞).【小结】(1)由图象的升降可判断函数的单调性;(2)熟练掌握常见函数的单调性:①一次函数y=kx+b的单调性由参数k决定;②二次函数y=ax2+bx+c(a≠0)的单调性与开口方向和对称轴有关.探究二:【解析】依题意可得-=-2,a<0,所以b<0,所以y=bx+a的图象大致为④中的图象.【答案】④【小结】掌握基本函数的单调性是解决本题的关键.探究三:【解析】由题意可知解得0<a<1. ①又f(x)在(-1,1)上是减函数,且f(1-a)<f(2a-1),所以1-a>2a-1,即a<. ②由①②可知,0<a<.故所求a的取值范围是(0,).【小结】解决此类与抽象函数有关的变量的取值范围问题的关键是利用单调性“脱去”函数符号“f”,从而转化为熟悉的不等式.若函数y=f(x)在区间D上是增函数,则对任意x1,x2∈D,且f(x1)<f(x2),有x1<x2;若函数y=f(x)在区间D上是减函数,则对任意x1,x2∈D,且f(x1)<f(x2),有x1>x2,需要注意的是,不要忘记函数的定义域.思维拓展应用应用一:(1)函数可化为y=其图象如图甲,根据图象,可以看出函数y=|x-1|在(-∞,1)上单调递减,在[1,+∞)上单调递增.(2)函数y=x2-2|x|+1=其图象如图乙,由图象可以看出,该函数在(-∞,-1)上单调递减,在[-1,0)上单调递增,在[0,1]上单调递减,在(1,+∞)上单调递增.应用二:一由f()<f()可知一次函数f(x)=kx+k是减函数,所以k<0,与y轴交点为(0,k),所以函数的图象不经过第一象限.应用三:∵a2-a+1=(a-)2+≥,又y=f(x)在[0,+∞)上是减函数,∴f(a2-a+1)≤f().基础智能检测1.(-∞,0)f(x)的图象开口向下,对称轴为x=0,所以f(x)在(-∞,0)上是增函数.2.< ∵a2+1-a=(a-)2+>0,∴a2+1>a,∴f(a2+1)<f(a).3.②显然①④在(0,2)上为减函数;③中y=x2-4x+3=(x-2)2-1的对称轴为x=2,∴此函数在(0,2)上为减函数.4.解:函数的图象如图所示.由图可知,函数的增区间为[1,2],[3,+∞);减区间为(-∞,1),(2,3).全新视角拓展A由题意可得a>0,结合f(0)=f(4)得c=16a+4b+c,即4a+b=0.思维导图构建f(x1)<f(x2)f(x1)>f(x2)。
江苏省铜山县高中数学第二章函数2.1.1 函数的概念和图象(第1课时)函数的概念及定义域教案苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省铜山县高中数学第二章函数2.1.1 函数的概念和图象(第1课时)函数的概念及定义域教案苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省铜山县高中数学第二章函数2.1.1 函数的概念和图象(第1课时)函数的概念及定义域教案苏教版必修1的全部内容。
第二章函数的概念与基本初等函数Ⅰ2。
1。
1函数的概念和图象第一课时函数的概念及定义域(预习部分)一.教学目标1.理解函数概念;2.了解构成函数的三个要素;3.会求一些简单函数的定义域;4.培养理解抽象概念的能力.二.教学重点1。
理解函数的概念,学会用集合与对应的语言刻画函数的概念;2.体会函数是描述变量之间的依赖关系的重要数学模型,会求函数的定义域.三.教学难点1.理解函数的概念,学会用集合与对应的语言刻画函数的概念;2。
体会函数是描述变量之间的依赖关系的重要数学模型,会求函数的定义域.四.教学过程(一)创设情境,引入新课1。
在现实生活中,我们可能会遇到下列问题:估计人口数量变化趋势是我们制定一系列相关政策的依据。
从人口统计年鉴中可以查得我国1949—1999年人口数据资料如下表所示,你能根据该表说出我国人口的变化情况吗?年份19491954195919641969197419791984198919941999人口数/百万54260367270580790997510351107117712462. 一物体从静止开始下落,下落的距离y(单位:m)与下落时间x(单位:s)之间近似地满足关系式2y .若一物体下落2s,你能求出它下落的距离吗?9.4x问题1: 上述两个问题有什么共同点?问题2:如何用集合语言来阐述上述问题的共同点?(二)推进新课1。
江苏省响水中学高中数学第二章《第1课时函数的概念》导学案苏教版必修11.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.我国著名数学家华罗庚说过这样一句话:从具体到抽象是数学发展的一条重要大道.我们来看三个现象:①清晨,太阳从东方冉冉升起;②随着二氧化碳的大量排放,地球正在逐渐变暖;③中国的国内生产总值在逐年增长.问题1:在初中,我们学习过函数,函数是刻画和描述两个变量之间依赖关系的数学模型,上述三个事例,向我们阐述了一个事实,世界时刻都是变化的,那么变化的本质是什么呢?从数学的角度看,我们发现在这些变化着的现象中,都存在着两个变量,当一个变量变化时,另一个变量随之发生变化.若当第一个变量确定时,另一个变量也随之确定,则它们之间具有.问题2:设A、B是非空数集,如果按照某个确定的对应关系f,使对于集合A中的数x,在集合B中都有的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作.其中x叫作,x的取值集合叫作函数的;与x的值相对应的y值叫作,函数值的集合叫作函数的.问题3:(1)函数f:A→B应该满足什么样的对应关系?一个函数的构成要素有几部分?(2)两个函数的定义域和对应关系分别相同,值域相同吗?由此你对函数的三要素有什么新的认识?(1)应满足:①集合A、B都是;②对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有的元素y与之对应.一个函数的构成要素:、和,简称为函数的三要素.(2)如果两个函数的和分别相同,那么它们的值域一定相同.由此可以认识到:只要两个函数的和分别相同,那么这两个函数就相等.问题4:如何求函数的定义域?函数的定义域主要通过解不等式(组)或方程(组)来求解,定义域要用集合或区间表示.求给出解析式的函数的定义域需注意:①分式的分母不能为;②偶次根式的被开方数;③0次幂的底数不能为;④实际问题中定义域要由确定.1.四个函数:①y=x+1;②y=x3;③y=x2-1;③y=.其中定义域相同的函数有.2.若[a,3a-1]为一确定区间,则a的取值范围是.3.已知f(x)=2x+1,则f(5)=.4.已知函数f(x)=-.(1)求函数的定义域;(2)求f(-1),f(12)的值.对函数概念的考查(1)设M={x|-2≤x≤2},N={y|0≤y≤2},函数y=f(x)的定义域为M,值域为N,对于下列四个图象,不可作为函数y=f(x)的图象的是.(2)下列函数中,与函数y=x+1相等的函数是.①y=(x+1)0;②y=t+1;③y=()2;④y=|x+1|.函数值的求法已知f(x)=x3+2x+3,求f(1),f(t),f(2a-1)和f[f(-1)]的值.函数定义域的求法求下列函数的定义域:(1)f(x)=;(2)f(x)=(a为不等于0的常数).判断下列各组函数是否表示相等函数.(1)f(x)=与g(x)=;(2)f(x)=与g(x)=1;(3)f(x)=x2-x与g(t)=t(t-1);(4)f(x)=与g(x)=()2.已知函数f(x)=x2+|x-2|,求f(1)和f(x2+2).求下列函数的定义域.(1)y=+;(2)y=.1.函数y=的定义域是.2.设全集U=R,集合A=[3,7),B=(2,10),则R(A∩B)=.3.把下列集合用区间表示出来.(1){x|≥0}=;(2){x|-2≤x<8且x≠1}=.4.已知f(x)=,g(x)=x2+2,求f(2),f(g(2)).(2013年·陕西卷)设全集为R,函数f(x)=的定义域为M,则RM为().A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)考题变式(我来改编):第二章函数第1课时函数的概念知识体系梳理问题1:函数关系问题2:任意一个唯一确定y=f(x),x∈A自变量定义域函数值值域问题3:(1)①非空数集②唯一确定定义域对应关系值域(2)定义城对应关系定义域对应关系问题4:①0②非负③0④实际意义基础学习交流1.①②③①②③的定义域都是R,④的定义域是{x∈R|x≠0}.2.(,+∞)由题意,得3a-1>a,则a>.3.11f(5)=2×5+1=11.4.解:(1)由题意知,x-1≠0且x+4≥0,即x≥-4且x≠1.即函数的定义域为[-4,1)∪(1,+∞).(2)f(-1)=-=-3-;f(12)=-=-4=-.重点难点探究探究一:【解析】(1)由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,结合选项可知③中的图象不表示y是x的函数.(2)①③选项中定义域与y=x+1不同;④项中对应关系不同.对于②,尽管自变量不一样,但定义域、对应关系均相同,二者表示相等函数.【答案】(1)③(2)②【小结】(1)给定图象判断是否为函数关系时,可用垂直于x轴的直线与已知图象的交点个数来判断,若交点多于一个,则不是函数关系;(2)当且仅当定义域和对应关系完全相同时,两个函数才相等.探究二:【解析】f(1)=13+2×1+3=6;f(t)=t3+2t+3;f(2a-1)=(2a-1)3+2(2a-1)+3=8a3-12a2+10a;f[f(-1)]=f[(-1)3+2×(-1)+3]=f(0)=3.【小结】求函数的值只需将自变量的值代入函数的解析式化简即可.探究三:【解析】(1)要使函数有意义,需满足x-2≠0,故函数的定义域为x≠2.(2)要使函数有意义,需满足ax-3≥0,故函数的定义域为{x|x≥}.[问题]上面两个题目的解答正确吗?[结论](1)中的定义域应用集合来表示;(2)中含有参数,解该不等式时要对参数进行讨论.于是,正确解答如下:(1)要使函数有意义,需满足x-2≠0,即x≠2.故函数的定义域为{x|x≠2}.(2)要使函数有意义,需满足ax-3≥0.当a>0时,函数的定义域为{x|x≥};当a<0时,函数的定义域为{x|x≤}.【小结】在求函数的定义域时,列出使函数有意义的自变量所满足的不等关系式,求解即可求得函数的定义域.其依据有分式的分母不为0、偶次根式中被开方数不小于0、零次幂的底数不等于零等.当一个函数是由两个或两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的取值集合.思维拓展应用应用一:(1)f(x)与g(x)不相等;(2)f(x)与g(x)不相等;(3)f(x)与g(t)是相等函数;(4)f(x)与g(x)不相等.应用二:f(1)=12+|1-2|=2.f(x2+2)=(x2+2)2+|x2+2-2|=x4+5x2+4.应用三:(1)为使函数式有意义,则有解得即x>-2,且x≠3.故所求函数的定义域为(-2,3)∪(3,+∞).(2)要使函数有意义,需满足即解得x<0且x≠-1,故函数的定义域为(-∞,-1)∪(-1,0).基础智能检测1.{x|x≠0}要使函数有意义,需满足x≠0,用集合表示为{x|x≠0}.2.(-∞,3)∪[7,+∞)∵A∩B=[3,7),∴R(A∩B)=(-∞,3)∪[7,+∞).3.(1)[2,+∞)(2)[-2,1)∪(1,8)4.解:f(2)==,g(2)=22+2=6,故f(g(2))=f(6)==.全新视角拓展D∵1-x2≥0,即x∈[-1,1],∴f(x)的定义域M=[-1,1],则RM=(-∞,-1)∪(1,+∞).思维导图构建唯一定义域、值域、对应法则定义域对应关系。
高中数学函数及其表示教案
教学对象:高中学生
教学目标:
1.了解函数的概念和性质;
2.掌握函数的表示方法;
3.能够应用函数解决实际问题。
教学步骤:
一、引入(10分钟)
通过一个生活实例引入函数的概念,让学生了解函数是什么,并探讨函数的性质。
二、讲解(20分钟)
1.函数的定义和符号表示;
2.函数的性质(奇偶性、单调性等);
3.函数的表示方法(映射法则、方程法则、图象法则)。
三、练习(30分钟)
1.完成课本上的相关习题;
2.结合生活实际问题,应用函数解决问题。
四、总结(10分钟)
总结今天所学知识,强化重点,澄清疑惑。
五、作业布置(5分钟)
布置相关作业,巩固所学知识。
教学辅助手段:
1.幻灯片;
2.黑板;
3.教材。
教学反馈:
1.听取学生对函数概念和性质的理解;
2.检查学生完成的习题。
教学延伸:
1.探讨更多函数的相关性质;
2.引导学生分析更复杂的函数问题。
教学检测:
出一个综合性考试,测试学生对函数概念和表示方法的掌握程度。
学习目标:1.探索函数的单调性与导数的关系.2.会利用导数判断函数的单调性并求函数的单调区间.教学重点:利用导数判断函数单调性教学难点:探索函数的单调性与导数的关系课前预习:问题1: 增函数和减函数一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是.(如图(1)所示)如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是.(如图(2)所示)问题2:单调性与单调区间如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M上具有,区间M称为.问题3:判断函数的单调性有和,图象法是作出函数图象,利用图象找出上升或下降的区间,得出结论.奇函数在两个对称的区间上具有的单调性;偶函数在两个对称的区间上具有的单调性.定义法是利用函数单调性的定义进行判断,通过设变量、作差、变形、定号,得出结论.作图并观察函数的图象,找出图象上升(或下降)的起点和终点的坐标,从而得出单调递增(或递减)区间.问题4:根据导数与函数单调性的关系,在函数定义域的某个区间(a ,b )内求函数单调区间的一般步骤:(1)确定函数f (x )的定义域. (2)求导数f'(x ).(3)解不等式f'(x )>0或f'(x )<0,如果f'(x )>0,那么函数y=f (x )在这个区间内单调递 ;如果f'(x )<0,那么函数y=f (x )在这个区间内单调递 .(4)写单调区间. 课堂探究:探究3.求证:函数f (x )=2x x 在(0,21)上是增函数课堂检测:1. 函数[]()sin (0,2)f x x x π=∈的单调减区间为2.如果函数f (x )=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,那么a 的取值范围是。
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
1.2.2函数的表示(第1课时)一、教学目标(一)核心素养通过本节课,让学生了解函数表示的必要性及多样性,丰富学生对函数的认识,帮助理解抽象函数的函数概念.在数学运算、建模过程中初步体会数形结合这一重要数学方法。
(二)学习目标1.了解函数的三种表示方法及各自的优点与不足,在实际情景中,会根据不同的需要选择恰当的方法表示函数.2.理解映射的概念,了解其与函数的区别,并能判断某些对应关系是否是映射.3.会画简单函数的图像,能根据要求求函数的解析式.(三)学习重点1.函数的三种表示法,根据具体问题选择合适的方法表示函数.2.了解映射的概念及其表示.3.会画简单函数图像,能根据要求求函数解析式.(四)学习难点1.根据具体问题选择合适的方法表示函数.2.函数解析式的求法.二、教学设计(一)课前设计1.预习任务(1)填空:通过初中的学习我们应该知道函数的表示方法有_解析法、图像法、列表法___. (2)映射:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应A:”f→:为从集合A到集合B的一个映射.记作“BBAf→2.预习自测(1)函数的表示法中,能够直观反应函数变化情况的是图像法;可以不需计算直接看出函数值的是列表法;可以通过计算得出任一自变量对应的函数值的是解析法。
(2)下列对应:f A B→,不是从集合A到B映射的有___①②__① {},0,:;A R B x R x f x x ==∈>→ ②*,,:1;A N B N f x x ==→- ③{}20,,:.A x R x B R f x x =∈>=→ (二)课堂设计 1.知识回顾(1)函数的概念,函数的三要素。
(定义域、对应法则、值域) (2)初中画函数图像的方法是描点法,步骤是:列表、描点、连线. 2.问题探究探究一 函数的表示法●活动① 对比提炼三种表示法的优缺点我们在初中已经接触过函数的三种表示法:解析法、图像法和列表法。
江苏省响水中学高中数学第二章《函数的表示法》导学案苏教版必修11.掌握函数的三种表示方法——解析法、图象法和列表法.2.会求函数解析式,并正确画出函数的图象.3.体会数形结合思想在理解函数中的作用.下表是某天一昼夜温度变化情况:时刻0:00 4:00 8:00 12:00 16:00 20:00 24:00温度-2 -5 4 9 8.5 3.5 -1/℃问题1:上面是用什么方法表示时刻与温度这两个变量之间的函数关系的?你能用图象法表示吗?运用了列表法表示,图象法如下:问题2:函数常见的表示方法有几种?各是如何定义的?问题3:函数的图象法和列表法各有什么优缺点?问题4:如何画出函数的图象?画函数图象的一般步骤为、、.在画图象时应注意以下几点:(1)画函数图象时要首先关注函数的,即在定义域内作图;(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;(3)标出某些关键点,例如图象的、、与坐标轴的交点等.要分清这些关键点是实心点还是空心点.1.f(x)=|x-1|的图象是.2.已知函数f(x)由下表给出,则f(3)= .x 1 2 3 4f(x) -3 -2 -4 -13.已知f(x)=2x+3,且f(m)=6,则m等于.4.已知f(x)是一次函数,且满足f(x+1)=2x+7,求f(x)的解析式.函数表示法的应用(1)等腰三角形的周长为20,底边长y是一腰长x的函数,则y= ,定义域为.(2)已知函数f(x)与g(x)的对应关系分别如下表:x 1 2 3 4f(x) 5 6 3 1x 1 2 3 4g(x) 2 0 7 3则g(f(3))= .简单函数图象的作法画出下列函数的图象:(1)y=1+x(x∈Z);(2)y=x2-2x(x∈[0,3));(3)y=,x∈[2,+∞).函数解析式的求法(1)已知f(x)是二次函数,其图象的顶点是(1,3),且过原点,求函数f(x)的解析式.(2)已知f(+1)=x+2,求函数f(x)的解析式.某种洗衣机洗涤衣服时,需经过进水、清洗、排水、脱水四个连续的过程.假设进水时水量匀速增加,清洗时水量不变.已知进水时间为4分钟,清洗时间为12分钟,排水时间为2分钟,脱水时间为2分钟,洗衣机中的水量y(升)与时间x(分钟)之间的关系如下表所示:x0 2 4 16 16.5 17 18 …y0 20 40 40 29.5 20 2 …试写出当x∈[0,16]时,y关于x的函数解析式,并画出图象.画出下列函数的图象:(1)y=+1,x∈{1,2,3,4,5};(2)y=x2+2x,x∈[-2,2].(1)已知g(x-1)=2x+6,求g(3).(2)一次函数的图象过点(0,-1),(1,1),求其解析式.1.某电子公司7年来,生产DVD机总产量C(万台,即前t年年产量的总和)与时间t(年)的函数关系如图,给出下列四种说法:①前3年中,产量增长的速度越来越快;②前3年中,产量增长的速度越来越慢;③第3年后,这种产品停止生产;④第3年后,年产量保持为100万台.其中说法正确的是.2.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)= .3.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f()的值等于.4.某引水渠大堤的横断面是上底为a=3 m的梯形,已知梯形的高x随地势在1 m到5 m之间变化,下底b与高x满足关系b=a+4x,为了估计修建大堤所需土方量,需把横断面的面积表示为堤高的函数,试写出这个函数的解析式,并求出堤高分别为1.5 m,2 m和3 m时大堤横断面的面积.(2012年·安徽卷)下列函数中,不满足...f(2x)=2f(x)的是().A.f(x)=|x|B.f (x)=x-|x|C.f(x)=x+1D.f(x)=-x考题变式(我来改编):第2课时函数的表示法知识体系梳理问题2:数学表达式图象表格问题4:列表描点连线(1)定义域(3)顶点端点基础学习交流1.②∵f(x)=|x-1|=当x=1时,f(1)=0,可排除①③.又当x=-1时,f(-1)=2,排除④.2.-4由表可知,f(3)=-4.3.由已知得2m+3=6,解得m=.4.解:设f(x)=ax+b,则f(x+1)=a(x+1)+b=2x+7,即ax+a+b=2x+7,∴a=2,b=5,故f(x)=2x+5.重点难点探究探究一:【解析】(1)∵2x+y=20,∴y=20-2x.又y>0,∴20-2x>0,x<10.由三角形边的性质得,2x>20-2x,即x>5,∴函数的定义域为{x|5<x<10}.(2)g(f(3))=g(3)=7.【答案】(1)20-2x (5,10)(2)7【小结】求函数解析式时,应注明其定义域.探究二:【解析】(1)函数的图象由无数个点组成,这些点都在直线y=1+x上,如图(1)所示.(2)因为0≤x<3,所以函数的图象是抛物线y=x2-x在0≤x<3之间的一部分,如图(2)所示.(3)当x=2时,y=1,其图象如图(3)所示.【小结】对于函数图象要注意以下几点:(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.(2)画函数的图象时要注意函数的定义域.(3)用描点法画函数的图象,在作图时要先找出关键“点”,再连线.(4)常见函数图象的画法:①对于一次函数的图象,描出与坐标轴的交点,连线即可;②对于二次函数的图象,描出与坐标轴的交点、顶点,连线即得.探究三:【解析】(1)∵图象的顶点是(1,3),∴可设f(x)=a(x-1)2+3,又∵图象过原点,∴a+3=0,解得a=-3,∴f(x)=-3(x-1)2+3.(2)(法一)∵x+2=()2+2+1-1=(+1)2-1,∴f(+1)=(+1)2-1(+1≥1).即f(x)=x2-1(x≥1).(法二)令t=+1,则x=(t-1)2,t≥1,代入原式,有f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1.∴f(x)=x2-1(x≥1).【小结】求函数解析式的常用方法:(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(或方程组),通过解方程(组)求出待定系数,进而求出函数解析式.(2)换元法:已知函数f[g(x)]的解析式求f(x)的解析式可用换元法,即令g(x)=t,反解出x,然后代入f[g(x)]中求出f(t),从而求出f(x).思维拓展应用应用一:∵进水时水量匀速增加,故进水阶段为一条直线.由直线过(0,0),(2,20),(4,40),得y=10x,x∈[0,4];在清洗阶段,y不变,y=40,x∈(4,16].∴解析式为y=图象如图所示.应用二:(1)用列表法可将函数y=+1,x∈[1,5],x∈Z表示如下:x 1 2 3 4 5y 2 3图象如图1所示:(2)y=x2+2x=(x+1)2-1,x∈[-2,2],图象是抛物线y=x2+2x在区间[-2,2]上的部分,如图2所示.应用三:(1)(法一)令x-1=t,则x=t+1,∴g(t)=g(x-1)=2(t+1)+6=2t+8,∴g(x)=2x+8,∴g(3)=2×3+8=14.(法二)令x-1=3,则x=4,∴g(3)=2×4+6=14.(2)设一次函数的解析式为f(x)=kx+b(k≠0),由题意知∴∴解析式为f(x)=2x-1.基础智能检测1.②③通过对图象的观察,0到3年这一阶段,曲线的变化是由快到慢,由急到缓,对应产量的情况则是增长的速度越来越慢.第3年后,是一条平行于x轴的直线,意味着总的产量没有变化,所以可以说这种产品停止了生产.2.2x-1∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.3.2∵f(3)=1,=1,∴f()=f(1)=2.4.解:设y=f(x)表示大堤横断面的面积,根据题意和梯形的面积公式,得y=f(x) ===x(2x+3)=2x2+3x(x∈[1,5]).据此可求得对应于堤高分别为1.5 m,2 m和3 m时大堤横断面的面积,面积分别为f(1.5)=9 m2,f(2)=14 m2和f(3)=27 m2.全新视角拓展C满足f(2x)=2f(x)说明函数式具有的特征是f(x)=kx或f(x)=k|x|或两者的和差组合,故只有C不符合此特征.也可以逐一检验选项的解析式是否满足f(2x)=2f(x).思维导图构建列表描点连线。
学习目标:
1.经过使收益最大、用料最省、效率最高等优化问题 , 领会导数在解决实质问
题中的作用 .
2.在解决详细问题的过程中 , 领会导数方法在研究函数性质中的一般性和有
效性 .
课前预学:
1.把长度为 16 的线段分红两段 , 各围成一个正方形 , 这两个正方形面积的最小值为.
2. 要做一个圆锥形漏斗 , 其母线长 20 cm,要使其体积最大 , 则其高是.
3.周长为 20 的矩形, 绕一条边旋转成一个圆柱, 则圆柱体积的最大值
是.
4. 一边长为 48 cm 的正方形铁皮 , 铁皮四角截去四个边长都为x cm 的小正方形 ,做成一个无盖方盒 . 求 x 多大时 , 方盒容积最大 ?
讲堂研究:
1.如图 , 等腰梯形 ABCD的三边 AB,BC,CD分别与函数 y=- 错误 ! 未找到引用源。
x2+2,x ∈[-2,2] 的图象切于点 P,Q,R. 求梯形 ABCD面积的最小值 .
2.已知某企业生产的品牌服饰的年固定成本为10万元,每生产1千件,需要另
投入 1.9 万元 , 设 R(x)( 单位 : 万元 ) 为销售收入 , 依据市场检查得悉R(x)= 错误 !未找到引用源。
此中 x 是年产量 ( 单位 : 千件 ).
(1)写出年收益 W对于年产量 x 的函数分析式 ;
(2)年产量为多少时 , 该企业在这一品牌服饰的生产中所获年收益最大 ?
讲堂检测:。
江苏省响水中学2013-2014学年高二上学期数学《第1课时函数及其表示》学
案
一、【基础训练】
1. 设()()f x x R π=∈,则(2)f = . 2.下图中,能表示函数y =f (x )的图象的是 .
3.下图中建立了集合P 中元素与集合M 中元素的对应f .其中为映射的对应是________.
4. 已知函数()y f x =的定义域为[1,5]-,则在同一坐标系中,函数()y f x =的图像与直线1x =的交点个数为 .
5. 已知函数分别由下表给出
则f (g (1))的值为____;满足g (f (x ))=1的x 值是__________. 二、【重点讲解】
1. 函数的基本概念
(1)函数的定义____________________________________________________________ (2)函数的三要素:____________________________________________________________
(3)相等函数:____________________________________________________________
2. 函数的表示法:______________________________________________
表示函数的常用方法有:______________________________________________ 3.映射的概念
____________________________________________________________________
4. 函数与映射的关系:__________________________________________
____________________________________________________________________
三、【典题拓展】 例1.有以下判断:
(1)f (x )=|x |
x 与g (x )=⎩⎪⎨
⎪⎧
1 x -
x
表示同一函数;
(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2
-2x +1与g (t )=t 2
-2t +1是同一函数;
(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭
⎪⎫f ⎝ ⎛⎭⎪⎫12=0.
其中正确判断的序号是________.
变式训练1 以下给出的同组函数中,是否为相同函数?为什么?
(1)f 1:y =x
x
; f 2: y =1;
(2)f 1:y =|x |;f 2:y =⎩⎪⎨
⎪⎧
x ,x >0
-x ,x <0
;
(3)f 1:y =
⎩⎪⎨⎪
⎧
1,x ≤12,1<x <2
3,x ≥2
;
f 2:
(4)f 1:y =2x ;
.
变式训练2
已知f (x )=x 2
+2x -3,用图象法表示函数g (x )=f x +|f x
2
.
例3(1)已知a ,b 为两个不相等的实数,集合M ={a 2
-4a ,-1},N ={b 2
-4b +1,-2},f :x →x 表示
把M 中的元素x 映射到集合N 中仍为x ,则a +b =________.
(2)已知映射f :A →B .其中A =B =R ,对应法则f :x →y =-x 2
+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是________.
四、【训练巩固】
1. 设f :x →x 2
是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B =____________.
2.已知集合M ={-1,1,2,4},N ={0,1,2},给出下列四个对应法则:①y =x 2,②y =x +1,③y =2x
,④y =log 2|x |,其中能构成从M 到N 的函数的是_______.
3. 设函数()f x 的定义如右表,数列{}()n x n N *∈满足11x =,且对于任意的正整数n ,均有1()n n x f x +=,则2014x =._____.
4.已知{}{}
421,2,3,,4,7,,3,,,,A k B a a a a N k N x A y B **
==+∈∈∈∈,:31f x y x →=+是从定义
域A 到值域B 的一个函数,求a,k 的值.。