超高阻尼橡胶支座样本(1106版)
- 格式:pdf
- 大小:646.18 KB
- 文档页数:8
〖HDR系列高阻尼隔震橡胶支座〗设计指南目录1 桥梁减隔震技术概述 (1)2 支座结构设计 (2)3 支座技术性能 (4)4 支座布置原则 (5)5 支座选用原则 (6)6 减隔震计算 (7)7 HDR(Ⅰ)支座安装、更换、养护及尺寸 (9)7.1 支座安装工艺细则 (9)7.2 支座更换工艺 (13)7.3 支座的养护与维修 (14)7.4 支座安装尺寸 (15)7.4.1 HDR(Ⅰ)型矩形系列 (15)7.4.2 HDR(Ⅰ)型圆形系列 (24)8 HDR(Ⅱ)支座安装、更换、养护及尺寸 (29)8.1 支座安装工艺细则 (29)8.2 支座更换工艺 (32)8.3 支座的养护与维修 (33)8.4 支座安装尺寸 (34)8.4.1 HDR(Ⅱ)型矩形系列 (34)8.4.2 HDR(Ⅱ)型圆形系列 (41)9 LNR滑动支座及安装、更换、养护、尺寸 (46)9.1 支座结构及技术性能 (46)9.2 支座安装工艺细则 (46)9.3 支座更换工艺 (49)9.4 支座的养护与维修 (49)9.5 支座安装尺寸 (50)9.5.1 LNR矩形滑动型系列 (50)9.5.2 LNR圆形滑动型系列 (54)〖HDR系列高阻尼隔震橡胶支座〗设计指南H D R系列高阻尼隔震橡胶支座1 桥梁减隔震技术概述1.1 隔震基本原理我国是一个强震多发国家,地震发生频率高、强度大、分布范围广、伤亡多、灾害严重,这些地震灾害,特别是近年发生的四川汶川特大地震、青海玉树大地震等,给我们带来了惨痛的教训。
与此同时,桥梁作为生命线系统工程中的重要组成部分,一旦损毁、中断便等于切断了地震区的生命线,次生灾害将十分严重,经济损失无疑将大大加剧。
受到这些地震灾害的教训以后,基于桥梁抗震设计的结构控制技术开始在我国桥梁工程界得到日益重视,并逐步开展了桥梁减隔震设计及研究工作。
对于地震作用,传统的结构设计采用的对策是“抗震”,即主要考虑如何为结构提供抵抗地震作用的能力。
GPZ(II)系列盆式橡胶支座固定支座(GD)型主要尺寸表规格(MN)主要尺寸(mm)重量kg预埋底柱A(B)、C(D)A'(B')、C'(D')H d×LGPZ(Ⅱ)0.8GD2502107525Φ40×250 GPZ(Ⅱ)1.0GD2802358034Φ40×250 GPZ(Ⅱ)1.25GD3102608545Φ40×250 GPZ(Ⅱ)1.5GD3402909057Φ40×250 GPZ(Ⅱ)2.0GD3903309579Φ40×250 GPZ(Ⅱ)2.5GD435370100104Φ40×250 GPZ(Ⅱ)3GD475400105131Φ40×250 GPZ(Ⅱ)3.5GD510430110158Φ40×250GPZ(Ⅱ)4GD545460115187Φ40×250 GPZ(Ⅱ)5GD610520130265Φ50×300 GPZ(Ⅱ)6GD670570145348Φ50×300 GPZ(Ⅱ)7GD720610150428Φ50×300 GPZ(Ⅱ)8GD770650155509Φ60×300 GPZ(Ⅱ)9GD815690160592Φ60×300 GPZ(Ⅱ)10GD860730170697Φ60×300 GPZ(Ⅱ)12.5GD960810185947Φ70×350 GPZ(Ⅱ)15GD10508902001227Φ70×350 GPZ(Ⅱ)17.5GD11359602101497Φ70×350 GPZ(Ⅱ)20GD122010402301896Φ80×350 GPZ(Ⅱ)22.5GD129011002402217Φ80×350 GPZ(Ⅱ)25GD136011502502566Φ90×400 GPZ(Ⅱ)27.5GD143012202602930Φ90×400 GPZ(Ⅱ)30GD149012702703295Φ90×400 GPZ(Ⅱ)32.5GD155013202803709Φ100×400 GPZ(Ⅱ)35GD161013702904154Φ100×400 GPZ(Ⅱ)37.5GD167014203004610Φ100×400 GPZ(Ⅱ)40GD172014603105050Φ100×400 GPZ(Ⅱ)45GD183015603205856Φ110×450 GPZ(Ⅱ)50GD192016303356744Φ110×450 GPZ(Ⅱ)55GD202017203507872Φ120×450 GPZ(Ⅱ)60GD210017903658817Φ120×450注:表中数据规格除"MN"计及注明者外,均以毫米为单位.GPZ(II)系列盆式橡胶支座单向活动支座(DX)型主要尺寸表规格(MN)纵向位移(mm)横向主要尺寸(mm)重量kg预埋底柱位移A A'B B'C(D)C'D'H d×LGPZ(Ⅱ)0.8DX±50±100±150±33204205202803804803152202652301807534.238.843.1Φ40×250GPZ(Ⅱ)1.0DX±50±100±150±33404403004003402452902502008042.647.853.1Φ40×250540500GPZ(Ⅱ)1.25DX±50±100±150±33604605603204205203702753202802308552.558.361.0Φ40×250GPZ(Ⅱ)1.5DX±50±100±150±33804805803404405404103003503102609066.973.980.9Φ40×250GPZ(Ⅱ)2.0DX±50±100±150±342052062038048058046035040036031010096.0104.9113.8Φ40×250GPZ(Ⅱ)2.5DX±50±100±150±346056066042052062050539545405355105122.3132.3142.4Φ40×250GPZ(Ⅱ)3DX±50±100±150±3485585685435535635565425485435370110157.3169.6182.1Φ40×250GPZ(Ⅱ)3.5DX±100±150±200±3620720820570670770600460520470400115202.6216.7230.8Φ40×250GPZ(Ⅱ)4DX±100±150±200±3640740840590690790635485555505435130285.5275.5292.9Φ40×250GPZ(Ⅱ)5DX±100±150±200±3690790890635735835710545620560480140338.5358.5378.7Φ50×300GPZ(Ⅱ)6DX±100±150±200±3740840940680780880770600680620540150423.4446.3468.7Φ50×300GPZ(Ⅱ)7DX±100±150±200±3780880980720820920820650730670590160516.7542.5568.1Φ50×300GPZ(Ⅱ)8DX±100±150±200±38109101010740840940890690780710620170634.0664.7695.5Φ60×300GPZ(Ⅱ)9DX±100±150±200±38509501050780880980935725825755665180744.9778.9813.0Φ60×300GPZ(Ⅱ)10DX±100±150±200±39801080118091010101110985770875800715190907.1944.9982.3Φ60×300GPZ(Ⅱ)12.5DX±150±200±250±31060116012609801080118011008609708907802051205.41251.11291.1Φ70×350GPZ(Ⅱ)15DX±150±200±250±3113012301330105011501250119095010609808702201513.71565.91618.2Φ70×350GPZ(Ⅱ)17.5DX±150±200±250±311901290139011051205130512951030114510609352351887.61949.12010.6Φ70×350GPZ(Ⅱ)20DX±150±200±250±312501155137511001225113010002502263.92332.12400.2Φ80×3501350 14501255 1355GPZ(Ⅱ)22.5DX±150±200±250±3131014101510122013201420145011801300121010802602620.32694.22768.1Φ80×350GPZ(Ⅱ)25DX±150±200±250±3137014601560127013601460154012401370127011202703058.83134.33229.2Φ90×400GPZ(Ⅱ)27.5DX±150±200±250±3144015101610131014101510161013101440134011902803476.13539.83161.7Φ90×400GPZ(Ⅱ)30DX±150±200±250±3150015601660140014601560167013701500140012502903903.93975.04072.7Φ90×400GPZ(Ⅱ)32.5DX±200±250±300±3161017101810150016001700175014201560145012703004470.04577.14684.7Φ100×400GPZ(Ⅱ)35DX±200±250±300±3165017501850154016401740181014801620151013303104949.35064.35179.3Φ100×400GPZ(Ⅱ)37.5DX±200±250±300±3169017901890158016801780189015401680157013703205512.05637.25762.4Φ100×400GPZ(Ⅱ)40DX±200±250±300±31730183016201720194015901730162014203306003.46134.96266.5Φ100×40019301820GPZ(Ⅱ)45DX±200±250±300±3184019102010171017801880207016801840171015103457109.87214.27361.8Φ110×450GPZ(Ⅱ)50DX±200±250±300±3193019902090180018601960216017701930180016003608124.98222.98383.6Φ110×450GPZ(Ⅱ)55DX±200±250±300±3203020602160189019202020228018602030189016803759130.39468.89665.4Φ120×450GPZ(Ⅱ)60DX±200±250±300±32110213022301970199020902360194021101970176039010484.51026.410718.8Φ120×450注:表中数据除规格以"MN"计及注名者外,均以毫米为单位.GPZ(II)系列盆式橡胶支座双向活动支座(SX)型主要尺寸表单位:mm规格(MN)纵向位移(mm)横向主要尺寸(mm)重量预埋底柱位移A A'B B'C(D)C'(D')H(mm)Kg d×lGPZ(II)0.8SX±50±100±150±403204205202803804803002602452007526.930.133.4φ40×250 GPZ(II)1.0SX±50±100±150±403404405403004005003202802702258033.937.641.3φ40×250 GPZ(II)1.25SX±50±100±150±403604605603204205203403003002508542.046.050.0φ40×250 GPZ(II)1.5SX±50±100±150±403804805803404405403603203302759052.557.061.5φ40×250 GPZ(II)2SX±50±100±150±4042052062038048058040036038532010078.781.790.6φ40×250 GPZ(II)2.5SX±50±100±150±40460560660420520620440400425355105100.1107.0113.8φ40×250GPZ(II)3SX±50±100±150±40490590690440540640465415465385110124.1131.7139.3φ40×250 GPZ(II)3.5SX±100±150±200±40620720820570670770500450500415115159.2168.2177.2φ40×250 GPZ(II)4SX±100±150±200±40640740840590690790540490540450130210.4221.8233.3φ40×250 GPZ(II)5SX±100±150±200±40690790890630730830600540600500140271.6284.7297.8φ50×300 GPZ(II)6SX±100±150±200±40740840940680780880655595655540150341.7356.5371.3φ50×300 GPZ(II)7SX±100±150±200±40780880980720820920705640705580160423.7444.3458.9φ50×300 GPZ(II)8SX±100±150±200±408109101010735835935755680755630170512.2532.2552.2φ60×300 GPZ(II)9SX±100±150±200±408509501050775875975800720800660180608.2630.7653.1φ60×300 GPZ(II)10SX±150±200±250±409801080118090510051105845765845700190736.9762.0787.0φ60×300 GPZ(II)12.5SX±150±200±250±4010601160126097010701170945855945780205983.41013.61043.9φ70×350 GPZ(II)15SX±150±200±250±40113012301330104011401240103094010308602201215.21280.51315.9φ70×350 GPZ(II)17.5SX±150±200±250±401190129013901100120013001110102011109202351531.41572.41612.8φ70×350 GPZ(II)20SX±150±200±250±401250135014501150125013501190109011909902501861.81911.21957.6φ80×350 GPZ(II)22.5SX±150±200±250±4013101410151012101310141012601090126010502602166.22217.12268.5φ80×350 GPZ(II)25SX±150±200±250±4013601460156012501350145013401160134011102702510.12597.92651.2φ90×400 GPZ(II)27.5SX±150±200±250±401410151016101300140015001410123014011702802898.82961.53019.5φ90×400 GPZ(II)30SX±150±200±250±4014701560166013601450155014701300147012202903277.33331.53403.2φ90×400 GPZ(II)32.5SX±200±250±300±4016101710181014901590169015251360152512703003714.13788.93963.8φ100×400 GPZ(II)35SX±200±250±300±5016501750185015301630173015851460158513203104113.94225.54307.0φ100×400 GPZ(II)37.5SX±200±250±300±5016901790189015701670177016451520164513703204581.94669.04756.2φ100×400 GPZ(II)40SX±200±250±300±5017301830193016101710181016901570169014103304993.35085.55177.7φ100×400 GPZ(II)45SX±200±250±300±5018101910201016801780188018001660180015003455870.95973.36075.8φ110×450 GPZ(II)50SX±200±250±300±5018901990209017601860196018901750189015703606751.06861.56977.9φ110×450 GPZ(II)55SX±200±250±300±5019902060216018501920202019901850199016603757832.47921.58047.2φ120×450GPZ(II)60SX±200±250±300±5020702130223019301990209020701930207017203908823.78907.79011.9φ120×450注:表中数据除规格以"MN"计及注明者外,均以毫米为单位.。
桥梁隔震橡胶支座检测是什么隔震橡胶支座检测标准为了防范地震对桥梁建筑造成的损害,保障桥梁使用的安全性,通常要在桥梁建筑结构中使用桥梁隔震橡胶支座,用来吸收和平衡地震所产生的破坏能量。
隔震橡胶支座包括天然橡胶支座(LNR)、铅芯橡胶支座(LRB)和高阻尼橡胶支座(HDR),在生产和具体使用中要求其材料及整体性能要满足相关标准规范,所以要采用专业设备和方法对其进行检测。
检测橡塑材料检测实验室可桥梁隔震橡胶支座检测服务。
作为第三方检测中心,机构拥有CMA、CNAS检测资质,检测设备齐全、数据科学可靠。
隔震橡胶支座检测标准JT/T 852-2023 《公路桥梁摩擦摆式减隔震支座》;GB/T 20688.4-2023 《橡胶支座第4部分:普通橡胶支座》;GB/T 20688.3-2023 《橡胶支座第3部分:建筑隔振橡胶支座》;GB/T 20688.2-2023 《橡胶支座第2部分:桥梁隔振橡胶支座》;GB/T 20688.1-2023 《橡胶支座第1部分:隔震橡胶支座试验方法》隔震橡胶支座检测项目1、外观质量尺寸(外形尺寸、平面尺寸、短边长度、长边长度、支座高度、支座总高度、支座组装高度)内部尺寸(单层橡胶厚度、单层钢板厚度、橡胶保护层厚度)拉伸性能(破坏拉力、拉伸破坏或屈服时对应的剪应变)剪切性能(水平等效刚度、等效阻尼比、屈服后刚度、屈服力)耐久性能(老化性能、徐变性能、疲劳性能)压缩性能(压缩永久变形、竖向压缩刚度、压缩位移、压缩变形量、竖向压缩变形)抗臭氧性能(外观变化)2、质量评价剪切性能相关性(剪应变相关性、加载频率相关性能、压应力相关性、反复加载次数相关性、温度相关性)极限剪切性能(破坏剪应变、屈曲剪应变、滚翻剪应变)低速率变形的反力性能(水平等效刚度或剪力)转动性能、支座平整度、超声波探伤、减隔震性能、摩擦系数、油离度、挥发物含量、体积电阻率、球冠衬板与减震底座缺陷、不锈钢外观质量、聚四氟乙烯板材外观、支座各部件外观。
采用高阻尼橡胶支座与普通盆式支座的连续梁桥地震响应对比分析作者:董成来源:《城市建设理论研究》2014年第08期摘要:以一座三跨连续梁桥为例,分析了分别采用高阻尼橡胶支座与普通盆式支座的桥梁结构在E2地震作用下的地震响应。
对桥梁结构的自振周期及桥墩墩底内力进行对比,结果表明,采用高阻尼橡胶支座使得桥梁结构自振周期延长,增加耗能时间,减震效果明显。
关键词:连续梁桥;高阻尼橡胶支座;时程分析;隔震减震中图分类号:TB21文献标识码:A一概述地震反应分析早期主要采用简化的静力法,20世纪50年代后发展为动力法的弹性反应谱理论,20世纪60 年代后随着计算机技术的迅速发展,则对重要结构开始进行地震时程反应分析[4]。
桥梁结构的安全性十分重要,若采用完全由结构抗震型设计,桥墩及结构尺寸则会很大、配筋增多,这不仅会极大地影响结构的经济性,还势必会影响到整个桥梁的美学造型和净空要求。
因此,桥梁迫切需要采用结构控制技术,通过应用隔震效果好、尺寸较小的减隔震装置(支座)解决上述难题,实现结构的优化设计,确保工程项目的安全、适用、经济、美观。
二工程概况本工程桥梁为预应力混凝土连续箱梁,跨径组成为30+35+30m。
桥型布置如图1所示。
桥梁桥宽17.5m,桥面净宽16.5m。
箱梁梁高1.8m,单箱三室,悬臂2.2m,横断面详见图2。
桥面铺装采用8cmC50混凝土铺装层+9cm沥青混凝土铺装。
0、3号台为三柱式台,柱距为5m。
1~2号桥墩为中墩,三柱式墩,桩接柱,柱距5m,1#墩柱高7.5m,2#墩柱高8.5m,柱径为1.6m,桩径1.8m。
工程所在位置地震动峰值加速度为0.2g,地震基本烈度为Ⅷ度,反应谱特征周期0.4s。
桥梁属B类桥梁,需按提高一级抗震设防。
此外,拟建场地地形起伏较大,地貌较为复杂,处于8度地震区。
图1 桥型布置图图2 横断面构造图三结构计算参数确定根据本工程地震烈度和场地土类别,采用和场址场地土条件相近的天然地震波,经调整得到和设计加速度反应谱兼容的一组地震波[3],B类桥梁E2地震下抗震重要性系数取1.7[1]。
超高阻尼橡胶支座力量 创造美好世界品质 托起幸福生活柳州东方工程橡胶制品有限公司成立于1993年,是柳州欧维姆机械股份有限公司的全资子 公司。
位于广西柳州市鸡喇路5号,占地约100亩,厂房面积20000多平方米。
员工400余人,其中技术和管理人员120多人。
公司主要从事桥梁支座,桥梁伸缩装置、减隔震支座、阻尼器、灌浆设备等系列产品的研发、生产、销售和服务。
产品性能达到国内领先技术水平,广泛应用于各重大基础设施建设中。
公司技术研发能力强,生产检测设备齐全,先后荣获“国家级企业技术中心”和“高新技术企业”称号。
公司质量体系完善,1994年在同行中率先取得了ISO9001质量体系认证。
营销和服务网络遍布各地,在国内各大中城市及香港特区、越南、中东、北非等地设有办事处,体系高效迅捷。
我公司将以快速的反应能力,可靠的产品质量,通过创新更好地为国内外客户提供服务。
地震是一种突发性、毁灭性的自然灾难,地震所造成的损失主要来自于地震给人类社会的道路、桥梁和住房等基础设施工程造成的毁灭打击,让人类往往来不及从这类建筑工程中逃离,就已经遭受到了灭顶之灾。
而受灾地区的道路,桥梁工程的损毁所造成的交通中断更让震后的抢救工作无法开展,加剧了地震所造成的人员伤亡及各类经济损失。
国际上在20世纪80年代兴起了新的抗震方法——减隔震技术,目前被认为是结构抗震最有效的方法。
而隔震技术所应用的隔震装置主要有水平力分散型橡胶支座、铅芯隔震橡胶支座、(超)高阻尼橡胶支座等。
其中超高阻尼橡胶支座是最新型、最有市场潜力的隔震装置。
在新型高阻尼橡胶支座技术方面,我公司已在2004年进行了开发,目前已成功开发出具世界最前沿水平的超高阻尼橡胶支座。
超高阻尼橡胶支座阻尼比已能达到0.18以上,并且具有良好的适应环境温度变化能力,支座最大剪切应变能力达到300%以上。
超高阻尼橡胶支座只由橡胶和钢板组成,不需要使用重金属铅,而能使支座的阻尼性能相当于铅芯隔震橡胶支座。
建筑隔震橡胶支座的介绍橡胶材料具有优异的阻尼特性,在工程技术和尖端科学中早已用其作减震制品。
根据“基础隔震”概念研发出来的隔震橡胶支座,使传统的、被动的“以刚克刚”的抗震方法,转变为主动的、积极的“以柔克刚”的隔震方法。
目前采用橡胶支座是世界上研究和应用最多、技术成熟并有成效显著实例的隔震技术。
1 隔震橡胶支座的种类、型号、规格橡胶支座是由薄钢板和薄橡胶板交替叠合,经高温、高压硫化而成。
1.1 种类隔震部件分为隔震支座(隔震器)和阻尼器两大类,前者稳定地支承建筑物自重和荷载,后者在地震时能抑制较大的变形,地震结束后起到迅速中止晃动的作用[1]。
橡胶支座目前尚未有统一的分类标准。
按截面形状分有方形(含正方形及长方形)和圆形两大类(见图1、图2)[2、3]。
由于圆形橡胶支座具有各向同性的优点,是目前应用的主要形式。
图1、方形橡胶支座剖面图2、圆形橡胶支座剖面根据对橡胶支座阻尼比要求不同,目前国内外的橡胶支座分为下列四种:(1)标准叠层橡胶支座(MRB )普通叠层橡胶支座是用天然橡胶或氯丁橡胶制造的,通常把用天然橡胶制造的普通叠层橡胶支座又称为天然橡胶叠层橡胶支座或标准叠层橡胶支座[1、4](见图3)。
这种支座具有高弹性,在水平方向上起弹簧作用,但阻尼性能较低,一般不单独使用。
为了满足隔震结构体系对阻尼值的要求,通常与外加阻尼器(消能装量)一起并用[2、4]。
图3、标准叠层橡胶支座结构示意图 图4、铅芯叠层橡胶支座结构示意图(2)铅芯叠层橡胶支座(LRB )在普通叠层橡胶支座中心嵌入铅棒而成(见图4)。
铅棒单独使用不容易吸收能量,而利用周围叠层橡胶的约束力和铅棒的屈服应力较低的特点,使橡胶支座在受力终止时具有可恢复特性,提高其吸能效果及确保有适度阻尼,而且铅芯增加了橡胶支座的早期水平刚度,对控制风反应和抵抗地基微震动有利。
铅棒的直径应根据设计的阻尼值要求,通过计算确定[2],其阻尼比一般可达20~30%,可以单独在隔震系统中使用[2、4]。
板式橡胶支座70年代中期,由铁道部科学研究院主持,常熟橡胶厂参加了板式橡胶支座的研制生产,并把我厂小批量试制的产品,进行一系列的试验和实地试用,为我国铁路、公路桥梁应用橡胶支座积累了大量科学数据和实践经验。
1982年,铁道部在全国首家对我厂板式橡胶支座进行了唯一的部级的技术鉴定。
从此开始,板式橡胶支座的应用和生产如雨后春笋,应用面之广、品种开发之快前所未有,至目前板式橡胶支座产品品种,按支座形状划分有矩形板式橡胶支座(GJZ、GJZF4)、圆形板式橡胶支座(GYZ、GYZF4);球冠圆板橡胶支座(TCYB);坡形橡胶支座。
按橡胶种类划分的氯丁橡胶支座(CR)、天然橡胶支座(NR)、三元乙丙橡胶支座(EPDM)。
按结构型式分有普通橡胶支座、聚四氟乙烯滑板橡胶支座。
我厂生产的“永恒”牌橡胶支座,先后在国内著名的桥梁上被采用,如唐山滦河大桥、柳州二桥、郑州黄河大桥、东营黄河大桥、九江长江大桥、重庆长江大桥、嘉陵江大桥、哈尔滨松花江大桥、广东南海西樵大桥、南昌新八一桥等等。
随着城市市政建设的加快,在全国众多大城市的城市立交桥、高架桥也纷纷使用“永恒”产品,其中著名的北京多座立交桥、天津多座立交桥、上海南浦、杨浦大桥和高架道路、广州六二三高架道路、南京长江大桥立交等。
还使用于全国首条沪嘉高速公路的配套工程,沈大、成渝、杭甬、沪宁高速公路的桥梁、立交桥上使用了数以万计的“永恒”橡胶支座。
从85年起,还被选用于出口配套孟加拉国、伊拉克、也门、坦桑尼亚等援外桥梁工程,91~93年经香港费雷雪纳德公司(FREYSSINET)检测中心检测质量符合英国BS5400标准,配套使用于澳门新澳凼大桥的工程。
我厂是铁道部、交通部首批认可的生产部标系列产品的专业厂,产品严格按中华人民共和国铁道部TB1893-1987《铁路桥梁板式橡胶支座》和中华人民共和国交通部标准JT/T4-1993《公路桥梁板式橡胶支座》组织生产。
并能提供聚四氟乙烯滑板橡胶支座的全套附件。