液态金属的流动性及充型能力(优质严制)
- 格式:doc
- 大小:215.50 KB
- 文档页数:6
金属液态成型基础作业1、试述液态金属的充型能力和流动性之间在概念上的区别,并举例说明。
答:? 液态金属的填充能力:充满铸型型腔,获得形状完整轮廓清晰的铸件能力。
影响因素:金属液的流动能力、模具性能、铸造条件和铸件结构。
?流动性:液态金属本身的流动能力,与金属本身有关:成分,温度,杂质物理性质。
其流动性是确定的,但填充能力不高。
它可以通过改变一些因素来改变。
流动性是指在特定条件下的填充能力。
11、四类因素中,在一般条件下,哪些是可以控制的?哪些是不可控的?提高浇铸造温度会带来什么副作用?答:一般条件下:合金与铸件结构不可控制,而铸型和浇铸条件可以控制,铸造温度过高,容易使金属严重吸入氧化,达不到预期效果。
3试述液态金属充型能力与流动性间的联系和区别,并分析充型能力与流动性的影响因素。
答:(1)液态金属充型能力与流动性间的联系和区别液态金属填充型腔并获得形状完整、轮廓清晰的铸件的能力,即液态金属填充型腔的能力,简称液态金属填充能力。
液态金属本身的流动性称为“流动性”,这是液态金属的工艺特性之一。
液态金属的充型能力首先取决于金属本身的流动能力,还受外部条件的影响,如模具性能、浇注条件、铸件结构等因素。
它是各种因素的综合反映。
在工程应用和研究中,通常是在相同的条件下(如相同的模具性能、浇注系统、浇注过程中控制相同的合金液过热度等)浇注各种合金的流动性试样,合金的流动性用试样的长度表示,合金的填充能力由测量的合金流动性表示。
因此,可以认为合金的流动性是一定条件下的填充能力。
对于同一种合金,还可以通过流动性试样研究各种铸造工艺因素对其充型能力的影响。
(2)充填量和流动性的影响因素①合金的化学成分决定了结晶温度范围,与流动性之间存在一定的规律。
一般来说,在流动性曲线上,纯金属、共晶成分和金属间化合物对应的位置流动性最好,流动性随结晶温度范围的增加而降低,在最大结晶温度范围内流动性最差,即,随着结晶温度范围的增加,填充能力越来越差。
液态金属综述
液态金属(Liquid Metal)是指在常温下呈现液态的金属物质。
相对于常见的固态金属,液态金属具有独特的性质和应用。
液态金属具有较低的熔点和较高的导电性能,这使得其在电子器件和导电材料方面具有广泛的应用潜力。
例如,液态金属合金具有较高的电导率和机械可变形性能,可以用于制作灵活的电子线路或可拉伸的电极。
此外,液态金属还具有良好的耐蚀性和封装性能,可应用在电池、液态金属电池等领域。
液态金属还具有较高的热导率和热容量,可用于制作高效的散热材料和热界面材料。
由于其流动性,液态金属可以均匀覆盖和填充不规则形状的表面,有利于提高热传导效率。
此外,液态金属还具有形状记忆性能和自修复能力。
形状记忆液态合金可以在一定条件下恢复其初始形状,可用于制作可变形的结构和器件。
自修复液态金属可以自动修复其表面的缺陷或损伤,有望应用在材料保护和机械维修等领域。
然而,液态金属也存在一些挑战和限制。
首先,液态金属在常温下容易氧化或与其他材料发生反应,导致其性能和稳定性下降。
其次,由于液态金属具有高表面张力,制造和加工难度较大。
此外,液态金属的成本相对较高,制备和应用技术尚处于发展阶段。
总之,液态金属具有独特的性质和广泛的应用前景,但也面临一些挑战和限制。
随着材料科学和工艺技术的不断发展,液态
金属有望在电子器件、散热材料、形状记忆和自修复材料等领域发挥更重要的作用。
名词解释:1.均质形核与非均质形核均质形核:均一液相中以自身结构起伏和能量起伏形成新相的核心的方式。
非均质形核:液态金属中新相以外来质点为基底进行形核的方式。
2.沉淀脱氧与扩散脱氧沉淀脱氧:脱氧剂直接加入液态金属内部与FeO 起作用,生成不溶于液态金属的氧化物,并转入熔渣的脱氧方式。
扩散脱氧:利用FeO 在熔渣和钢液中能够相互平衡,相互转移,使FeO 转移到熔渣中的脱氧方式。
3.最小阻力定律最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动。
4.溶质再分配合金凝固过程中,随温度的不同,液、固相平衡成分发生改变,溶质在液、固两相重新分布的现象。
5.长渣与短渣长渣:随温度增高粘度下降缓慢的渣。
短渣随温度增高粘度急剧下降的渣6.简述粗糙界面与光滑界面及其判据。
固-液界面固相一侧的点阵位置有一半左右被固相原子所占据,形成凸凹不平的界面结构,称为粗糙界面;固-液界面固相一侧的点阵位置几乎全被固相原子所占据,只留下少数空位或台阶,称为光滑界面。
根据Jackson 因子大小可以判断: a ≤2 的物质,凝固时固-液界面为粗糙面:a>2 的物质,凝固时固-液界面为光滑面。
7.简述铸件的凝固方式及影响因素。
铸件凝固方式:体积凝固,中间凝固和逐层凝固方式影响因素包括:金属的化学成分和结晶温度范围大小、铸件断面上的温度梯度。
8.简述晶体生长形貌随成分过冷大小变化的规律。
合金凝固界面前沿由溶质再分配引起的成分变化进而导致液相线温度变化而形成的过冷。
随“成分过冷”程度的增大,固溶体生长方式由无“成分过冷”时的“平面晶”依次发展为:胞状晶→柱状树枝晶→内部等轴晶。
9.简述缩孔与缩松的形成条件及形成原因。
缩孔形成原因是金属的液态收缩和凝固收缩之各大于固态收缩,产生条件是铸件由表及里的逐层凝固;缩松形成原因与缩孔相同,产生条件是金属的结晶温度范围较宽,倾向于体积凝固或同时凝固方式。
10.粗糙界面与光滑界面粗糙界面:固-液界面固相一侧的点阵位置有一半左右被固相原子所占据,形成凸凹不平的界面结构;光滑界面:固-液界面固相一侧的点阵位置几乎全被固相原子所占据,只留下少数空位或台阶。
1. 液态金属的结构和性质1、加热时原子距离的变化如图1—2所示,试问原子间的平衡距离R0与温度有何关系? R0、R1、R2…..的概念?答:温度的变化,只改变原子的间距,并不改变原子间的平衡位置,即R0不变。
而R0,R1,R2….是温度升高时,原子振动的中心位置。
因为温度升高,振幅加大但曲线(W-R)是不对称的,所以振幅中心发生变化。
2、图1-1纵坐标表示作用力,金属原子的运动可以看成是一种振动,其振动在图中如何表示的?物质受热后为什么会膨胀?答:振幅在图中的表示:如图1-2中数条的平行线。
加热时,能量增加,原子间距增加,金属内部空穴增加,即产生膨胀。
3、图1-1中的Q是熔化潜热吗?在熔化温度下,金属吸收热量而金属温度不变,熔化潜热的本质是什么?答:Q不是熔化潜热。
在熔化温度下金属吸收热量①体积膨胀做功②增加系统内能(电阻,粘性都发生突变)原子排列发生紊乱。
在熔点附近,原子间距为R1,能量很高,但是引力大,需要向平衡位置运动,当吸收足够能量----熔化潜热时,使原子间距>R1,引力减小,结合键破坏,进入熔化状态,熔化潜热使晶粒瓦解,液体原子具有更高的能量而金属的温度并不升高。
(使晶粒瓦解,并不是所有结合键全部破坏)4、通过哪些现象和实验说明金属熔化并不是原子间的结合力全部被破坏?答:(1)体积变化:固态—气态:体积无限膨胀。
固态到液态,体积仅增加3~5%,原子间距仅增加1~1.5%。
(2)熵值变化:△Sm/△S 仅为0.13~0.54% (3)熔化潜热:原子结合键只破坏了百分之几(4)X 线衍射分析:液态金属原子分布曲线波动于平衡密度曲线上下第一峰位置和固态衍射线极为相近,其配位数也相近,第二峰值亦近似。
距离再大,则与固态衍射线远了,液态金属中原子的排列在几个原子间距的范围内,与其固态的排列方式基本一致。
5、纯金属和实际金属在结构上有何异同?试分析铸铁的液态结构。
答:纯金属的液态结构:接近熔点的液态金属是由和原子晶体显微晶体和“空穴”组成。
1、什么是同时凝固与顺序凝固原则?这两种原则各适用于那种场合,各需采用什么工艺措施来实现?答:顺序凝固原则是指采取一定的工艺措施,使铸件上从远离冒口的部分到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部分向冒口的方向定向地凝固。
同时凝固是指采取一些工艺措施,使铸件各部分温差很小,铸件相邻各部位或铸件各处几乎同时完成凝固过程,无先后的差异及明显的凝固方向性,称作同时凝固。
顺序凝固主要用于消除铸造工艺中的缩孔和缩松,主要通过合理运用冒口或冷铁等工艺措施实现。
同时凝固主要用于降低铸件产生应力、变形和裂纹的倾向,主要通过合理设置内浇口位置及安放冷铁等工艺措施实现。
2、什么是合金的流动性及充型能力?充型能力不足,铸件易产生的主要缺陷有哪些?充型能力的影响因素有哪些?不同化学成分的合金为什么流动性不同?答:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。
液态金属自身的流动能力称为“流动性”,是金属的液态铸造成形的性能之一。
充型能力不足,会产生浇不足、冷隔、气孔、夹渣等缺陷。
液态金属的充型能力主要取决于金属自身的流动能力,还受外部条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。
3、分析下图铸件的热应力分布(拉应力和压应力)和变形趋势。
答:上图1受到拉应力,2受到压应力,下图1受到压应力,2受到拉应力,变形趋势如图所示。
4、绘制自由锻件图与模锻件图有何不同,分别要考虑哪些问题?7、从结构工艺分析此铸造产品的不合理性,并对产品设计进行改进。
答:1.铸造加强肋的布置应有利于取模2.改进工艺8、锻造为什么要进行加热?如何选择锻造温度范围?加热的目的是为了提高金属的塑性,减小变形抗力,使之易于变形,并获得良好的锻后组织和力学性能。
确定锻造温度范围一方面要保证金属应具有良好的可锻性和合适的金相组织 , 另一方面要求在每一次加热之后做更多的成形工作 , 以节约能源和提高效率。
液态金属的流动性与充型能力有何异同(1)液态金属的流动性指液态金属本身的流动能力,与金属成分,温度杂质含量及物理性质有关。
充型能力是指液态金属充满型腔而获得的结构完整轮廓清晰的能力,与液态金属自身性能和金属种类及铸型等有关。
2)液态金属的浇动性是通过浇注流动的方法衡量的,以式样的长度或某处的厚薄程度表示其流动性;而充型能力的影响影响因素很多,故用流动性表示其充型能力,因此液态金属的流动性可以认为是确定条件下的充型能力。
提高充型能力:1)正确选择合金成分。
2)合理浇注条件。
3)铸件结构适当。
2、什么是流变铸造?其工艺特点。
在固液两相区进行,强烈搅拌,使普通铸造易形成树枝晶被打碎而保留分散的颗粒状,当固相率为50%-70%时仍具有一定的流动性,使得可以在固液两相区温度进行的铸造工艺。
特点:1)可以在固液两相区温度进行铸造。
2)由于固相存在,凝固收缩小,气孔少缩孔缩松大幅度度减少且组织细密3)结晶潜热的释放,对模具冲击性能减小,模具寿命提高。
3、灰口铸铁成型时为什么不设置冒口?灰口铸铁在凝固过程中初生A形成骨架,间隙内部的A与石墨相按共生生长方式生长,石墨相横向生长少,纵向生长多,膨胀力主要作用在液相上,使得液态收缩量加上凝固收缩量小于固态收缩量,使缩孔缩松产生空间减小,即自补缩现象,故不用设置冒口。
4、铸件模数以及其意义。
铸件体积V与铸件散热面积S的比即R=V/S使凝固时间计算更加简便即T=R2/K2。
引入模数的意义:1)计算更加简便2)是对平方根定律的补充,考虑到了铸件形状这个主要影响因素,使计算更接近实际。
5、分析说明纯金属的热过冷仅取决于凝固时熔体中的实际温度分布。
纯金属的平衡凝固温度为T0,S-L界面温度T*=T0GLX,由于△Tk很小,可以略去,所以△T(x)=-GLx,要获得过冷,即GL<0,负的温度梯度,所以纯金属的热过冷仅取决于凝固时熔体的实际温度分布。
6、逐层凝固:△Tc/δT<<1凝固区宽度很小或为0,凝固时,由表及里逐层凝固,通常是窄结晶温度温度范围合金,纯金属以及共晶合金。
实验一 金属液的充型能力及流动性测定实验一、实验目的1、 了解合金的化学成分和浇注温度对金属液充型能力和流动性的影响。
2、 熟悉采用螺旋型试样测定铸造金属液的流动性和评定其充型能力的方法。
3、 具备设计和实施常用金属材料充型比较的能力,并能够对实验结果进行分析。
二、实验的主要内容利用电阻坩埚炉熔化合金;使用螺旋形试样的模样造型;完成浇注;冷凝后得到试样。
通过测量试样长度来判断合金在不同条件下的流动性和充型能力。
三、实验设备和工具电阻坩埚炉(5KW )、螺旋形试样模样(见图1)、热电偶测温仪、型砂、砂箱、造型工具、浇注工具等。
四、实验原理充型能力是金属液充满铸型型腔、获得轮廓清晰、形状准确的铸件的能力。
充型能力主要取决于液态金属的流动性,同时又受相关工艺因素的影响。
金属液的流动性是金属液本身的流动能力,用在规定铸造工艺条件下流动性试样的长度来衡量。
流动性与金属的成分、杂质含量及物理性能等有关。
影响金属液充型能力的工艺因素主要有浇注温度、充型压力等。
提高浇注温度或充型压力,均有利于提高充型能力。
五、实验方法和步骤1.合金的熔化、保温 方案一:将某一成分的铝硅合金在坩埚炉中,加热熔化并过热到一定的温度保温。
方案二:将同一成分的铝硅合金(适量)分别置于两个坩埚炉中,加热熔化并过热到不同的温度保温。
2.造型方案一:采用同一个螺旋形试样的模样分别制作两个直浇道高度不同的砂型。
方案二:采用同一个螺旋形试样的模样分别制作两个直浇道高度相同的砂型。
3.浇注方案一:将熔化并保温的铝硅合金液分别浇注到两个直浇道高度不同的砂型中。
方案二:将两个坩埚炉中加热熔化并保温的铝硅合金液分别浇注到两个直浇道高度相同 的砂型中。
4.开型、落砂 待试样凝固后即可开型并落砂。
图1 螺旋形试样5.测定流动性分别测出不同试样螺旋形部分的长度。
(凸点间距L0=50mm,设凸点数为n,不足L0的长度A0估出,L=L0×n+A0)6.填写实验记录,并整理好工具、模样、砂箱,清扫造型场地。
液态合金的充型能力哎呀,说到液态合金的充型能力,那可是个挺有意思的话题,咱们得用大白话好好聊聊。
你想啊,液态合金,就像是厨房里那刚融化的巧克力酱,又或者是铁匠铺里红彤彤的铁水,它们都有个共同的本事——能乖乖地跑到模具里头,变成咱们想要的样子。
这充型能力啊,就像是合金液体的“听话程度”。
你给它个模具,它就能按照那模具的形状,一点一滴地填充进去,就像是小孩子玩沙子,认认真真地堆出一个城堡来。
不过,这合金液体可比沙子调皮多了,它得在高温下才能变得这么听话,还得有足够的流动性,才能顺利地跑遍模具的每个角落。
说起来,液态合金的充型能力可不是吃素的。
它得跟时间赛跑,得在冷却凝固之前,把模具的每个缝隙都填满。
这就像是你参加百米赛跑,得拼了命地往前冲,生怕慢了一秒就被别人超越了。
合金液体也是这样的,它得在有限的时间里,完成这个“变身”的任务,不然啊,等它一冷却,那就成了个“半拉子工程”,不是这儿缺个角,就是那儿多个疙瘩。
要想让液态合金的充型能力更强,咱们得从多方面下功夫。
首先啊,得保证合金液体的温度够高,这样才能让它有足够的流动性,像小溪一样欢快地流淌进模具里。
其次啊,模具的设计也得合理,不能有太多的死角和凹槽,不然合金液体进去就出不来了,那可就尴尬了。
还有啊,浇注的速度也得适中,太快了容易溅出来,太慢了又容易冷却凝固。
这就像是你炒菜放盐一样,得拿捏得恰到好处才行。
当然了,液态合金的充型能力还跟它的成分和性质有关。
不同的合金有不同的脾气和性格,有的喜欢慢悠悠地流淌,有的则喜欢一泻千里。
所以啊,咱们在选择合金的时候啊,也得像挑对象一样慎重考虑才行。
总之啊,液态合金的充型能力是个挺有意思的话题。
它就像是一个魔术师手里的道具一样变幻莫测又充满魅力。
只要咱们掌握了它的脾气和性格就能让它乖乖地按照咱们的意愿去变形去创造出更多美好的东西来。
液态金属的流动性及充型能力
液态金属充填过程是铸件形成的第一阶段,铸件的许多缺陷是在这个过程中形成的。
为了获得优质健全的铸件,必须掌握和控制这个过程。
为此,研究液态金属充满铸型的能力,以便得到形状完整、轮廓清晰的铸件,防止在充型阶段产生缺陷
一、充型的概念
液态合金充满型腔,形成轮廓清晰、形状完整的优质铸件的能力,称为液态合金的流动性又叫做充型能力。
液态合金的流动性愈好,不仅易于铸造出轮廓清晰,薄而形状复杂的铸件,而且有助于液态合金在铸型中收缩时得到补充,有利于液态合金中的气体及非金属夹杂物上浮与排除。
若流动性不好,则易使铸件产生浇不足、冷隔、气孔、夹渣和缩松等缺陷
液态金属充填铸型是一个复杂的物理、化学和流体力学问题,涉及到金属液的各种性质,如密度、黏度、表面张力、氧化性、氧化物的性质及润湿性等。
充型能力的大小影响铸件的成型,充型能力较差的合金难以获得大型、薄壁、结构复杂的健全铸件
而良好的流动性能使铸件在凝固期间产生的缩孔得到液态金属的补充,铸件在凝固末期受阻出现的热裂可以得到液态金属的充填而弥合,有利于防止缺陷产生液态合金流动性的好坏,通常以螺旋形流动性试样的长度来衡量。
如图2-3所示,
将液态合金注入螺旋形试样铸型中,冷凝后,测出其螺旋线长度。
为便于测量,在标准试样上每隔50mm 作出凸点标记,在相同的浇注工艺条件下,测得的螺旋线长度越长,合金的流动性越好。
常用合金的流动性如表2-1所示。
其中,灰铸铁、硅黄铜的流动性最好,铝合金次之,铸钢最差
通常,流动性好的合金,充型能力强;流动性差的合金,充型能力差,在实际的铸造生产中,可以通过改善外界条件来提高其充型能力,根据铸件的要求及合金的充型能力采取相应的工艺措施以获得健全的优质铸件。
二、影响充型能力的因素
影响充型的因素是通过两个途径发生作用的:一是影响金属与铸型之间的热交换条件,从而改变金属液的流动时间;二是影响液态金属在铸型中的水力学条件,从而改变金属液的流速。
影响液态金属充型的因素很多,可以归纳为四类:
①第一类因素,属于金属性质方面的,主要有金属的密度、比热、导热系数、结晶潜热、动力黏度、表面张力及结晶特点等。
不同的合金,其流动性有很大差异,对同种合金而言,化学成分不同,其流动性也不同。
当熔化至液相线以上相同温度时,纯金
属、共晶成分和化合物具有最大的充型能力,而位于结晶温度间隔最大处的合金其充型能力最小。
合金成分对流动性的影响,主要是成分不同时,合金的结晶特点不同造成的。
纯金属、共晶成分和化合物是在固定温度下凝固的,已凝固的固体层从铸件表面逐层向中心推进,与尚未凝固的液体之间界面分明,且固体层内表面比较平滑,对液体的流动阻力小,即流动速度大。
另外,这几类合金在析出较多的固相时,才停止流动,流动的时间较长,所以它们的流动性好。
具有宽结晶温度范围的合金在型腔中流动时,由于在铸件断面上既存在着发达的树枝晶,又有未凝固的液体与固相混杂的两相区,而且越靠近液流前端枝晶数量越多,所以当液流前端枝晶数量达到临界值时,金属液就停止流动;合金的结晶温度间隔越宽,两相区就越宽,枝晶也就越发达,金属液就越早地停止流动,所以流动性差。
主要是由于树枝晶使固体层内表面粗糙,增加了对液态合金流动的阻力。
合金的结晶温度范围愈宽,则液固两相共存的区域愈宽,液态合金的流动阻力愈大,故流动性愈差。
显然,合金成分愈接近共晶成分,流动性愈好。
图2 -4所示为 Fe-C合金的流动性与含C量的关系。
由图图2-4 可见,
亚共晶铸铁随含C量的增加,结晶温度范围减小,流动性提高
②第二类因素属于铸型性质方面的主要有铸型的蓄热系数、密度、比热、导热系数、温度、涂料层和发气性、透气性等。
铸型的阻力影响金属液的充填速度,铸型与液态金属的热交换强度影响其流动时间。
因此,通过调整铸型的热物理性质来改善金属的充型能力往往能收到良好的效果。
比如,预热铸型能减少金属液与铸型的温度差,减少两者的热交换,从而提高其充型能力
铸型材料的导热速度愈大,液态合金的冷却速度愈快,从而使其流动性变差。
如液态合金在金属型中的流动性比在砂型中差; 铸件壁厚过小,形状复杂,会增加液态合金的流动阻力,也会降低合金的流动性。
因此,设计铸件时,铸件的壁厚必须大于规定的最小允许壁厚值,并力求形状简单
型砂含水分多或铸型透气性差,会使浇注时产生大量气体且又不能及时排出,造成型腔内气体压力增大,使液态合金流动的阻力增加,从而降低合金的流动性。
因此,提高铸型的透气性,减少型砂的水分,多设出气口等,有利于提高液态合金的流动性。