不等概抽样.ppt
- 格式:ppt
- 大小:495.00 KB
- 文档页数:27
抽样技术:7不等概率抽样1. 引言在进行数据分析和统计研究时,抽样是一种常用的技术。
抽样技术允许我们从总体中选择一个样本,以便推断总体的性质。
在抽样技术中,不等概率抽样是一种常见的方法,它允许我们以非均匀的概率抽取样本。
本文将介绍关于7种不等概率抽样方法的详细信息。
2. 简单随机抽样简单随机抽样是最根本的抽样方法之一,它要求每个个体被选中的概率相等且任意组合都是可能的。
然而,在某些情况下,简单随机抽样可能并不适用,例如当总体分布不均匀时,或者我们希望在样本中增加一定的多样性。
这时,我们可以考虑使用不等概率抽样方法。
3. 整群抽样整群抽样是一种不等概率抽样方法,它将总体划分为假设干个互不重叠的群组〔或称为簇〕,然后从每个群组中抽取样本。
整群抽样可以有效地减少抽样过程中的复杂性,并提高样本的效率。
整群抽样常用于调查社会群体或大型组织等场景。
4. 分层抽样分层抽样是一种根据总体特点进行划分的抽样方法,它将总体划分为假设干个层级或相似的子群〔层〕,然后从每个层中抽取样本。
通过分层抽样,我们可以保证样本在各层中的分布情况与总体相似,从而更为准确地推断总体的特征。
5. 系统抽样系统抽样是一种按照固定间隔选择样本的抽样方法。
它类似于简单随机抽样,但是通过定义一个间隔,我们可以按照一定的规律抽取样本。
例如,我们可以在总体中选取每隔一定数量的个体作为样本。
系统抽样在样本大小较大时表现出较高的效率。
6. 按比例分层抽样按比例分层抽样是一种常用的不等概率抽样方法,它根据总体各层的比例确定各层的样本容量。
比例分层抽样可以使得样本在各层中的分布与总体的比例相对应。
这种抽样方法适用于总体中的各个层存在不同比例的情况。
7. 两阶段抽样两阶段抽样是一种复杂的不等概率抽样方法,它将抽样过程分为两个阶段。
在第一阶段,我们从总体中选择一局部群组〔或称为簇〕,在第二阶段,我们从每个群组中抽取一定数量的样本。
两阶段抽样适用于总体较大或分布复杂的情况下,可以提高抽样的效率。
三阶段不等概率抽样设计
三阶段不等概率抽样设计是一种常用的抽样方法,用于从整体群体中选择代表性样本。
它将样本选择过程分为三个阶段,每个阶段的概率不等,具体步骤如下:
1. 第一阶段:按照一定的抽样概率,从总体中选择第一阶段的样本单元。
这可能涉及到某些抽样单元的非选择或重复选择,以达到样本的多样性。
2. 第二阶段:在第一阶段选择的样本单元中,按照一定的概率再次进行抽样,选择第二阶段的样本单元。
这个阶段的抽样概率可能与第一阶段有所不同,以达到更好的样本覆盖和精度。
3. 第三阶段:在第二阶段选择的样本单元中,按照一定的概率再次进行抽样,选择最终的样本个体。
同样,这个阶段的抽样概率可能与前两个阶段有所不同。
通过三阶段不等概率抽样设计,可以灵活地选择样本单元,并通过控制抽样概率来保证样本的代表性和可靠性。
这种设计方法在实际应用中可以更好地适应不同的调查需求和场景,提高样本选择的效果。
第6章 不等概率抽样1 不等概率抽样原理等概率抽样通常容易设计和解释,但并不总是如不等概率抽样一样的可行、实用、有效。
因为等概率抽样(psu’s)可能导致方差很大(尤其是对于无偏估计量)、管理困难以及成本难以控制。
而不等概率抽样的特点是以不等概率抽取psu’s 、m i 的数目相同,因此不等概率抽样使得每一个样本被抽取的概率相等、调查成本可控、每一个初级样本单元(psu )的样本数相等、方差急剧减小。
当采用不等概率抽样时,我们可以自由的调整选择不同初级样本单元(psu’s )作为样本的概率,并在估计中补充合适的权重。
核心是选择一个给定单元的概率已知: πi =P(psu i), ψi = P(psu i on first sample), ωi =1/πi1.1 抽取一个初级样本单元假定我们只要抽取N 个初级样本单元(psu )中的一个作为样本(n=1)。
初级样本单元i 的总值用t i 表示,我们需要估计总体总值t.用抽取一个初级样本单元的简单例子来说明不等概率抽样的思想。
先来考虑一个所有总体已知的情形。
一个城镇拥有四个超市,从100平方米到1000平方米按面积大小排列。
通过抽取一个超市,来估计四个超市上个月的总营业收入。
你可能预期大超市比小超市的营业收入多而且大超市的收入波动性也明显大于小超市。
因为仅抽取一个超市,所以在第一个回合中一个超市被抽取的概率 ψi 等于这个超市包含在样本中的概率πi 。
即,πi = ψi =P(超市i 被选取),此概率与超市的面积成比例。
超市A 占四个超市总面积的1/16,则它被抽取的概率为1/16。
为了说明性目的,假定我们已知总体的所有总值t i :我们可以以以上给定的概率选择一个容量为1的概率样本,通过洗散16张卡片并从中选择1张。
如果卡片数字为1,则选择超市A;如果卡片数字为2或3,则选择超市B;…… 在估计量中,我们通过使用 ψi 补充选取的不等概率权重。
如果超市面积与超市营业收入近似成比例,那么超市A 的营业收入在总收入的1/16,则可用超市A 的营业收入的16倍来估计四个超市的总收入。
非概率抽样四种类型:就近抽样、目标式或判断式抽样、滚雪球抽样、配额抽样就近抽样(偶遇抽样、方便抽样、自然抽样)定义:是指研究者根据现实情况,以自己方便的形式抽取偶然遇到的人作为调查对象,或者仅仅选择那些离得最近的、最容易找到的人作为调查对象。
举例:为了调查某市的交通情况,研究者到离他们最近的公共汽车站,把当时正在那里等车的人选作调查对象。
其他类似的偶遇抽样还有:在街口拦住过往行人进行调查;在图书馆阅览室对当时正在阅读的读者进行调查;在商店门口、展览大厅、电影院等公众场所向进出往来的顾客、观众进行的调查;利用报刊杂志向读者进行调查;老师以他所教的班级的学生作为调查样本的调查等等。
与随机抽样的相似点:都排除了主观因素的影响,纯粹依靠客观机遇来抽取对象。
与随机抽样的不同点:偶遇抽样没有保证使总体中的每一个成员都具有同等的被抽中的概率。
那些最先被碰到的、最容易见到的、最方便找的对象具有比其他对象大得多得机会被我们抽中。
优缺点:优点——方便省力;缺点——样本的代表性差,有很大的偶然性,我们不能依赖偶遇抽样得到的样本来推论总体。
实例:“都市里的吉卜赛人——对武汉市外来务工、经商人员的调查”,《青年研究》2001年第6期,作者:刘玉、方洋、晏德光这篇文章根据实地调查,从生活、工作、社会帮助与保障、观念等几个方面对武汉市外来务工、经商人员的生活状态进行了初步的描述分析,发现文化水平对城市外来人口的收入情况影响不大,但是对观念有一定的影响。
方法:调查对象。
本次调查以武汉市外来务工、经商人员为对象。
具体做法如下:在武汉市外来务工、经商人员集中的地方(汉正街)的几条主街道发放调查问卷,由调查员按照非随机抽样中的偶遇抽样原则抽取一定的人员进行调查。
资料的收集方法。
本次调查问卷由58个问题组成,主要询问了外来务工、经商人员的基本社会特征、工作、收入与支出、观念、社会交往以及对现有生活的满意度等方面的问题。
实际发放问卷280份,回收有效问卷252份,有效回收率90 0%。
抽样技术:不等概率抽样引言在统计学和数据分析中,抽样技术是一项重要的工具,用以从总体中选择一部分元素进行研究。
而抽样技术的核心就是如何从总体中选取样本,以保证样本能够准确地反映总体的特征。
其中一种常用的抽样技术是不等概率抽样。
不等概率抽样是指在抽取样本时,各个个体被选中的概率不相等。
与等概率抽样相比,不等概率抽样更能满足实际问题的需求,更能提高样本的效率和精确性。
本文将介绍不等概率抽样的原理、常用方法以及应用案例,希望能够帮助读者更好地理解和应用抽样技术。
不等概率抽样的原理不等概率抽样的原理基于概率论和统计学的基本原理。
在进行不等概率抽样时,需要根据总体的特征和研究目的,选择合适的抽样方法和样本选择概率,以使样本能够准确地反映总体。
不等概率抽样的核心在于赋予每个个体被选中的概率,也称为抽样概率。
抽样概率可以根据总体特征和研究目的进行选择,常见的选择方法包括:概率比例抽样、系统抽样、整群抽样等。
概率比例抽样是一种根据个体在总体中所占比例来确定抽样概率的方法。
具体而言,可以先计算出样本所需的个体数目,再根据各个个体在总体中的比例,分配相应的抽样概率。
这样可以保证样本能够按比例反映总体的特征。
系统抽样是一种按照一定规律选择样本的方法。
具体而言,可以在总体中确定一个起始点,然后以固定的间隔选择样本个体。
系统抽样具有简单方便、无需随机表和随机数的优点,常用于总体具有周期性分布的情况。
整群抽样是一种将总体划分为若干群体,然后随机选择部分群体进行抽样的方法。
这种方法适用于总体分布不均匀,但各群体内部相对均匀的情况。
通过整群抽样,可以减小样本误差,提高样本的代表性。
不等概率抽样的常用方法不等概率抽样有多种不同的方法和技术,根据实际问题的需求和样本特征的不同,可以选择合适的抽样方法。
以下将介绍几种常用的不等概率抽样方法。
简单随机抽样是不等概率抽样中最基本的方法之一。
简单随机抽样是指每个个体都有相等的被选中概率,且个体间的选择是相互独立的。