(2)利用抽样比确定各年龄段应抽取的个体数, 依次为125/5=25,280/5=56,95/5=19。
(3)利用简单随机抽样或系统抽样的方法,从各年 龄段分别抽取25,56,19人,然后合在一起,就是所 抽取的样本。
精选ppt课件最新
8
数学运用
简单随机抽样
(1)分层抽样中,在每一层进行抽样可用_或__系_统__抽__样____
分层抽样
精选ppt课件最新
1
问题情境
问题1:为什么一个单位老职工多,其投医
疗保险的积极性就高,而老年职工少的单位
其投医疗保险的积极性低?
一个单位的职工500人,其中不到35岁的
有125人,35到49岁的有280人,50岁以上的
有95人。为了了解这个单位职工与身体状况
有关的某项指标,要从中抽取一个容量为100
精选ppt课件最新
9
数学运用
例2.某电视台在因特网上就观众对某一节目的喜爱程 度进行调查,参加调查的总人数为12 000人,其中 持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算 从中抽取60人进行更为详细的调查,应怎样进行抽样?
分层抽样的优点: 使样本具有较强的代表性,而且在各层抽
样时,又可以使用不同的方法进行抽样.因此 分层抽样应用也比较广泛.
精选ppt课件最新
13
课堂练习
1.在100个零件中,有一级品20个,二级品30个,三级品50 个,从中抽取20个作为样本,有以下三种抽样方法:
①采用随机抽样法,将零件编号为00,01,02,…,99,抽签取 出20个;